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The severe shortage of deceased donor organs has driven a search for alternative methods of treating liver
failure. In this context, cell-based regenerative medicine is emerging as a promising interdisciplinary field
of tissue repair and restoration, able to contribute to improving health in a minimally invasive fashion.
Several cell types have allowed long-term survival in experimental models of liver injury, but their therapeu-
tic potential in humans should be regarded with deep caution, because few clinical trials are currently avail-
able and the number of patients enrolled so far is too small to assess benefits versus risks. This review
summarizes the current literature on the physiological role of endogenous stem cells in liver regeneration
and on the therapeutic benefits of exogenous stem cell administration with specific emphasis on the potential
clinical uses of mesenchymal stem cells. Moreover, critical points that still need clarification, such as the
exact identity of the stem-like cell population exerting the beneficial effects, as well as the limitations of
stem cell-based therapies, are discussed.
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INTRODUCTION cell-based therapies are raising the possibility of improv-
ing liver repair by either hepatocyte regeneration and the
prevention and/or reduction of fibrosis.Liver failure is a major cause of morbidity and mor-

tality in the Western world (159). Acute liver failure This review summarizes current knowledge on the
use of stem/progenitor cells in hepatic regenerative med-(ALF) is a rare disorder in which the rapid deterioration

of liver function results in encephalopathy and coagulo- icine, focusing particular attention on multipotent mes-
enchymal stromal cells, which have been shown to pos-pathy in a previously healthy individual (12). The devel-

opment of ALF represents the final common outcome of sess a high potential for injured liver tissue regeneration
in experimental models, compared to other stem-likea wide variety of potential causes including viral hepati-

tis, drugs and toxins (12). Chronic liver disease (CLD) cell subpopulations.
is a more common disease, in which a gradual destruc-

LIVER FAILURE AND REGENERATIONtion of liver tissue occurs over time, the tissue being
CAPACITY: THE ROLE OF OVAL CELLS,replaced by newly formed collagen fibers (113). Attenu-
SMALL HEPATOCYTES, AND HEPATICation of fibrosis progression to prevent the development

STELLATE CELLSof cirrhosis and/or hepatocellular carcinoma constitutes
a major therapeutic challenge in the treatment of CLD A current explanation for the collapse of normal he-

patic architecture is the imbalance between injury mech-today (113). Nonetheless, although multiple potential
targets have been identified, no antifibrotic medication anism and regenerative repair. The liver is mitotically a

quiescent organ in adult humans. However, the two ma-has yet been approved for clinical use (118). Instead,
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jor types of hepatic epithelial cells—hepatocytes and (CK)-19 (81), being therefore able to differentiate into
both hepatocyte-like cells and biliary-type cells. Thesebiliary epithelial cells (BECs)—are capable of prolifera-

tion and can, at least in a healthy liver, meet the demand bipotential precursors are now believed to represent the
progeny of a subset of stem cells with a slow-cyclingfor the replacement of damaged cells (28,29). The best

example of their ability to restore the liver mass was phenotype that retain long-term self-renewal capacity al-
most throughout life (149). Impairment of hepatocyteseen after partial hepatectomy (PH) in animal models

(93), creating the basis for living donor transplantation proliferation induces these dormant/facultative pluripo-
tential liver stem cells (FLSCs) to proliferate in order toin humans. Due to this well-established trait of hepato-

cytes and BECs to regenerate the liver, the existence of reestablish homeostasis.
FLSCs likely possess the lineage potential of uncom-hepatic stem cells was a matter of considerable contro-

versy until recent years. mitted gastrointestinal stem cells. This plasticity appears
to be passed on to OC progeny, as indicated by the ob-In the 1990s Potten and colleagues defined ‘‘actual’’

stem cells of a particular tissue as ‘‘(a) undifferentiated servation that under certain conditions OCs can be in-
duced to differentiate into nonhepatic lineages, includingcells, (b) capable of proliferation, (c) able to self-main-

tain the population, (d) able to produce a large number intestinal and pancreatic epithelium (80,143,164).
Whether the progenitors of OCs have intra- or extra-of differentiated, functional progeny, (e) able to regener-

ate the tissue after injury, and (f) flexible use of this hepatic origin is still a matter of debate. Although the
terminal bile duct system is thought to be the mainoptions’’ (82).

Similar to stem cells, progenitor cells retain the dif- source of OCs (119,147), they have also been described
as deriving from bone marrow (BM) (30,107). Other au-ferentiation potential and high proliferation capability,

but they have lost the self-replication property. More- thors have postulated that OCs may even arise from a
dedifferentiation of hepatocytes (19). Light was shed onover, they are considered committed to the cell pheno-

types of their tissues of origin. From this perspective, a this controversy between 2003 and 2004 by two separate
groups (92,156). Wang et al. observed that OCs inducedprogenitor cell can be considered as an adult stem cell

(ASC), a term typically used to describe postnatal stem by chronic administration of 3,5-diethoxycarbonyl-1,4-
dihydro-collidine (DCC) neither derived from maturecells, which, as opposed to embryonic (ESCs) or fetal

stem cells, persist throughout life (152). Although a use- hepatocytes nor originated in significant proportions
from progenitors in the BM (156). OCs therefore appearful distinction, over recent decades compelling evidence

has suggested a greater developmental potential of pro- to derive from intrahepatic precursors and are activated
when liver damage is so severe that hepatocytes are pre-genitors/ASCs, according to which they are thought to

be committed but not restricted to a single fate, as was vented from entering the cell cycle, as indicated by ex-
perimental models in which hepatocytes were renderedproven in the case of bone marrow-derived cells (BMDCs)

(71). Both cell fusion and transdifferentiation may ac- unable to proliferate through exposure to mito-inhibitory
compounds. In the same study OCs were capable ofcount for this plasticity (170).
liver repopulation and rescued liver disease, thus repre-

Oval Cells senting a potential cell source for stem cell-based
therapy.The first indication of the presence of a stem cell

population in the liver came in 1956 from Farber’s stud- Evidence that OCs in the rodent liver can be consid-
ered the specific progeny of liver stem cells and not theies of hepatocarcinogenesis in rats (44). Two years later,

Wilson and Leduc reported “indifferent cholangiole progeny of hematopoietic stem cells was also provided
by Menthena et al. by using three different liver injurycells” as the only cells responsible for liver regeneration

in a mouse model of dietary injury (160). These small protocols for activation and expansion of OCs: D-galac-
tosamine, retrorsine/PH, and 2-acetylaminofluorene (2-periportal cells with scant cytoplasm and ovoid nuclei

were termed “oval cells” (OCs) (44). Due to their loca- AAF)/PH (92). Apart from the above-mentioned proto-
cols, several other models have been developed to inducetion within the intrahepatic biliary tree, OCs have been

improperly regarded by some authors as proliferating OC proliferation in rodents, including injury caused by
a choline-deficient diet combined with ethionine orbile duct cells (58), but the finding of a number of dif-

ferences in protein expression between these two cell AAF, PH combined with dipin, carbon tetrachloride
(CCl4) combined with AAF, as well as allyl alcoholtypes later contradicted this assumption. The expression

pattern of OCs appeared to be rather similar to that of (AA) (31,43,109,131–133).
The stromal-derived factor (SDF)-1/CXCR4 axis ishepatoblasts as they expressed markers of immature

liver cells such as alpha-fetoprotein (AFP) and the hepa- involved in OC activation. Hatch et al. reported that
when massive liver injury occurs, hepatocytes located intocyte-lineage marker albumin (42,81). Moreover, OCs

expressed the biliary epithelial cell marker cytokeratin the proximity of OCs upregulate SDF-1 (57). In turn,
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binding of SDF-1 to its unique CXCR4 receptor ex- studies are needed to ascertain whether or not they rep-
resent a distinct population of liver progenitor cells.pressed on the OC surface leads to OC activation and

migration along a SDF-1 gradient, thus resulting in liver
Hepatic Stellate Cellsregeneration. Additional studies revealed that OCs can

also synthesize SDF-1 (90). To establish a role of SDF- A third group of multipotent progenitors able to sup-
port the regeneration of damaged liver could be the he-1 in hepatic regeneration by OCs, these authors injected

rats with fucoidan, known to inhibit SDF-1 biological patic stellate cells (HSCs). During chronic liver injury,
massive hepatocyte death and subsequent inflammationactivity. Fucoidan markedly decreased OC accumulation

in a majority of treated rats, suggesting that SDF-1 pro- are responsible for the conversion of quiescent HSCs
into proliferative, fibrogenic, and contractile myofi-motes the activation of quiescent hepatic stem cells into

OCs and/or stimulates OC growth via an autocrine/para- broblasts (127). Myofibroblasts participate actively in
the synthesis of extracellular matrix (ECM) componentscrine pathway. Impaired OC activation has also been re-

ported after SDF-1 knockdown, further confirming the such as collagens I and III, tenascin, and fibronectin. As
a result, a progressive overtaking of functional tissue byimportant role of SDF-1 in the repair process (172).

OCs were detected using histology and immunohisto- scar material occurs, a condition known as fibrosis. Ad-
vanced liver fibrosis results in portal hypertension, cir-chemistry in liver biopsies from patients with genetic

hemochromatosis, alcoholic liver disease, or chronic rhosis, and liver failure. Even though HSCs are classi-
cally viewed as the primary source of the fibrotichepatitis C virus (HCV) infection (83). Importantly, OC

numbers increased in direct ratio to the severity of each response, other fibrogenic cells and signaling pathways
including immune, apoptotic, and angiogenic signaling,of the diseases studied. Further investigations revealed

that the increase in OC numbers parallels the increase in as well as responses to oxidative stress, are likely to
contribute to the production of ECM (78). Importantly,the mRNA levels of the tumor necrosis factor (TNF)

superfamily member lymphotoxin-β (LT-β), the activa- an increasing body of evidence is indicating that, apart
from their role in liver fibrogenesis, HSCs are also keytion of which is presumably responsible for cellular traf-

ficking during chronic HCV infection (84). players in liver regeneration (86,112). A close relation-
ship between HSCs, ECM components (laminin and fi-

Small Hepatocytes bronectin), and OCs has been observed in the 2-AAF/
PH rat model, highlighting the influence of the hepaticIn addition to OCs, there are other potential regenera-

tive cell populations in both rat and human liver that microenvironment on hepatic OC activation and prolif-
eration (171). Of note, Yang et al. suggested that HSCsrespond to toxic liver injury. Between 1995 and 1996,

small hepatocytes with features of committed progenitor could be a type of OCs, transiting through a mesenchy-
mal phase before differentiating into mature liver epithe-cells were fractionated from normal-sized hepatocytes

by differential centrifugation (94,144). These so-called lial cells (163). In other words, HSCs could dictate the
ultimate outcome of liver injury.small hepatocyte-like progenitor cells (SHPCs) have

been found both in the periportal zone of liver lobules In conclusion, in contrast to the intestinal epithelium,
the liver does not behave like a classical stem cell-fed(166) and within the hepatic parenchyma (53). SHPCs

express albumin but not CK-19 or AFP, thus behaving lineage renewal system. After ALF parenchymal regen-
eration occurs through the proliferation of fully differen-like unipotential committed hepatocytic lineage progeni-

tor cells. tiated hepatocytes and/or BECs, under conditions of re-
generative stress (i.e., during CLD), an unsuccessful orThe activation, emergence, and outgrowth of SHPCs

has been observed in response to liver deficit generated even dangerous emergence and proliferation of stem-
like progenitor cells take place. The possibility to ex-via both surgical PH in rats treated with the pyrrolizidine

alkaloid retrorsine and exposure to necrotizing agents pand and differentiate local progenitors or stem cells is
an interesting approach for regenerative medicine.(14,15).

The origin of SHPCs has long been debated. Both Nonetheless, studies investigating whether they could
represent a therapeutic option in the clinical perspectiveOCs and mature hepatocytes have been indicated as

SHPCs precursors (5,153). Strong evidence that SHPCs to cure liver disease are still lacking.
are not the progeny of OCs was reported by Best and

CELL-BASED THERAPIES FOR LIVERcoworkers (16). More recent data indicate that SHPCs
DISEASES: STATE OF THE ARTare derived from hepatocytes (110). One hypothesis is

that SHPCs may arise from a subpopulation of hepato- End-stage liver disease, in particular cirrhosis, repre-
sents a worldwide health problem (159). Currently,cytes lacking hepatic cytochrome P450 proteins (CYPs),

which are required to metabolize retrorsine (53). Never- orthotopic liver transplantation represents the only effec-
tive treatment for end-stage liver disease, but its appli-theless, despite great efforts in SHPCs research, other
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cability still remains limited by a variety of problems, duction of hepatocyte proliferation (142). Single or re-
peated EPC transplantation has also been reported to re-including the shortage of donor organs. Additional limi-

tations on liver transplantation are the numerous compli- duce liver fibrosis by the suppression of activated HSCs
and an increase in metalloproteinase (MMP) activity (98).cations that can affect the recipient of a liver transplant.

Early failure of the transplant can occur. Some trans- Although from these studies EPC transplantation
seems to be a feasible treatment for patients with liverplants never work, some patients succumb to infection,

and some suffer immune rejection. The latter is usually diseases, other studies are needed before clinical trials
can begin, because the EPC population actually com-treated with large doses of immunosuppressants, with

severe toxic and side effects. Consequently, it has be- prises two subpopulations, known as early EPCs (eEPCs)
and outgrowth endothelial cells (OECs) (63), whose mo-come imperative to develop alternative therapeutic strat-

egies. Some of the important findings in the field of liver lecular fingerprint has only recently been identified. Ac-
cording to Medina et al., eEPCs are hematopoietic cellscell therapy follow.
with a typical monocytic phenotype, and because of

Mature Hepatocytes their expression of genes involved in inflammation and
immune responses they could cause adverse events ifThe transplantation of mature hepatocytes has been

widely evaluated in clinical trials in hepatology, result- injected into a proinflammatory microenvironment (91),
such as in the liver during fibrosis development.ing in the cure or alleviation of a variety of inherited

metabolic disorders of the liver (IMDs) (33,46,60,96).
Fetal HepatocytesThe efficacy of hepatocyte transplantation and bioartifi-

cial liver devices has also been evaluated in the setting Fetal liver is a rich source of stem cells as it has been
found to be a major hematopoietic organ during embryoof ALF (1,2,18,128,139,162), but the long-term efficacy

of these treatments remains unclear and the scarcity of development (38) consisting of up to 60% erythrocytes
at certain developmental stages (106). Of the two exist-donor cells limits these strategies. Although hepatocytes

used for cell transplantation are usually isolated from ing pluripotent hepatic progenitors (hepatic stem cells
and hepatoblasts), hepatoblasts are the dominant celldonors with a beating heart, livers retrieved from non-

heart-beating donors (NHBDs) could significantly expand type in fetal and neonatal livers. Their typical features
are the expression of high levels of AFP and albumin,the donor pool. Human NHBDs have been considered a

valuable source of hepatocytes for cell transplantation low levels of genes characteristic of the stem cell pheno-
type (CK-19 and c-kit), and of adult liver-specific genesonly if the livers are harvested within 45 min after death

(62). On the contrary, in the mouse, viable hepatocytes [e.g., connexins, phosphoenol pyruvate carboxykinase
(PEPCK), and P450s], as well as a lack of expression ofhave been recently isolated for up to 27 h postmortem,

and their engraftment and liver-repopulating capabilities neuronal cell adhesion molecule (NCAM) and claudin-
3 (CLDN-3) (129). Evidence shows that hedgehog sig-have been confirmed in animals with fumarylacetoace-

tate hydrolase (FAH) deficiency, a model for the human naling is conserved in hepatic progenitors from fetal de-
velopment through adulthood, thus representing a thera-IMD tyrosinemia type I (40).
peutic target in patients with liver damage (134).

Endothelial Progenitor Cells A strong dispute exists about the ethical and legal
implications of creating embryos in vitro to derive cellsThe shortage of sources of transplantable human he-

patocytes has led to the experimental and clinical exploi- for therapeutic or research purposes. Fetal hepatocytes
can be obtained from fetuses after medical abortion.tation of stem/progenitor cells in liver disease. Unfortu-

nately, clinical application has often proceeded without These cells offer a valuable alternative to mature hepato-
cytes, having several advantages, including greater avail-a thorough understanding of the underlying biology of

the stem-like cells used, leading to great contradictions ability, proliferative capacity, and plasticity, lower im-
munogenicity, good adaptation, and integration capacity,concerning the utility of cell-based therapies.

Among the exogenous stem/progenitor cells that have as well as a greater resistance to cryopreservation and
ischemia (111).been used for therapeutic purposes are endothelial pro-

genitor cells (EPCs), a minor population of mononuclear Fetal rat liver cells have been reported to proliferate
for up to 6 months after transplantation in naive adultcells circulating in peripheral blood (PB) known to play

a role in regulating liver regeneration. Treatment with rats and to divide as many as 10 times, while adult rat
hepatocytes proliferate for only 1 month and divide onlyvascular endothelial growth factor (VEGF) has been re-

ported to mobilize EPCs, facilitating liver repair (10). three or four times (126). Moreover, they are able to
differentiate into both hepatocytes and BECs after trans-Moreover, human and mouse EPCs have been shown to

improve the survival of mice following CCl4-induced plantation.
Transplantation of human fetal hepatocytes, immortal-ALF, through the production of growth factors and in-
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ized by introducing the gene encoding simian virus 40 digits and survived even when maternal milk lacked
NTBC. In vivo analyses showed that iPSCs were intrin-large T antigen (SV40 Tag), has been reported capable of

rescuing mice with ALF induced by 90% hepatectomy sically able to differentiate into fully-mature hepatocytes
leading to the complete restoration of liver function.(25). Stimulation of the mitotic activity of hepatocytes

from fetal hepatocytes has been observed by Kurbatova Moreover, iPSC-derived hepatocytes were able to repop-
ulate the livers of adult FAH-deficient mice off NTBC(73). Of note, human fetal hepatocytes can stimulate the

differentiation of human mesenchymal stem cells (MSCs) and responded to 2/3 PH with the rapid and coordinated
cell cycle entry and progression characteristic of normalinto hepatocyte-like cells (24).

A trial recently concluded in a cohort of 25 patients liver regeneration. Importantly, FAH-expressing hepato-
cytes in iPSC chimeras resulted from direct iPSC differ-with end-stage liver cirrhosis of different etiologies con-

firmed the ability of human fetal liver-derived stem cells entiation and not from the fusion of iPSC progeny with
blastocyst-derived hepatocytes. In the same issue of Theto improve clinical and biochemical parameters of liver

function (68). However, caution should be taken with Journal of Clinical Investigation, the generation of a li-
brary of human iPSC lines from individuals with a rangeregard to this cell therapy due to the risk of immune

rejection and therefore it appears to be mainly applicable of IMDs was also reported (116). Dermal fibroblasts ob-
tained from skin biopsies from individuals with IMDsin patients with depressed immune function or human

fetuses (45). were reprogrammed to pluripotent stem cells using the
four-factor approach developed by Takahashi and col-

Induced Pluripotent Stem Cells leagues (141) and subsequently differentiated into hepa-
tocytes using a three-step protocol. The human iPSC-Ethical concerns and the risk of rejection related to

embryonic and fetal liver stem cells can be overcome by derived hepatocytes showed a strong morphological
resemblance to human hepatocytes and shared with themreprogramming somatic cells through the introduction of

specific transcription factors, such as octamer binding in vitro functional characteristics, including albumin se-
cretion and cytochrome P450 metabolism. Importantly,transcription factor 3/4 (Oct3/4) and sex-determining re-

gion Y box 2 (Sox2) with either Krueppel-like factor 4 iPSC-derived hepatocytes replicated key features of the
diseases from which they were derived, thus demonstrat-(Klf4) and c-Myc (141) or Nanog and Lin28 (168). The

induced pluripotent stem cells (iPSCs) generated in this ing the ability to derive large numbers of patient-specific
hepatocytes to use as instruments in the study of theway have been demonstrated to possess a hepatocyte-

lineage differentiation potential comparable to that of pathogenesis, disease mechanism(s), and possible cures
of IMDs.ESCs and to integrate into the hepatic parenchyma in

vivo (135,136,140). In addition to the above-mentioned protocol for the
generation of iPSCs without using viruses, a noninte-iPSC technology enables the generation of an almost

inexhaustible source of immune-compatible cells for tis- grating strategy using synthetic mRNA has also been
developed to prevent cancer risk (158). Other studiessue regeneration. However, the viral transfection sys-

tems used to insert the genes at random locations in the will be necessary to confirm the safety and efficiency of
this cell population.host’s genome have aroused important concerns about

the safety of iPSCs for use in human patients. An impor-
Bone Marrow Hematopoietic Stem Cellstant turning point came with the development of a proto-

col for generating iPSCs without using viruses to intro- In the last few decades, evidence has been provided
to support spontaneous progenitor cell mobilizationduce genetic material into the host cells. This protocol

involves the repeated transfection of two expression from the BM to the periphery during various diseases.
The mobilization of CD133+ hematopoietic progenitorplasmids, one containing the complementary DNAs

(cDNAs) of Oct3/4, Sox2, and Klf4, and the other con- cells into the PB has been described in both patients
undergoing PH and cirrhotic patients (49,50). In the lat-taining the c-Myc cDNA, in mouse embryo fibroblasts

(101). In an attempt to determine the regenerative capa- ter, c-kit+ and Bcrp-1+ populations have also recently
been found to be recruited (50). Due to their well-knownbilities of iPSC-derived hepatocytes, Espejel et al. first

created iPSCs by using this virus-free technique, and contribution to the repair of solid organs, BM stem cells
have been considered the most promising candidates forsubsequently generated chimeric mice by injecting

iPSCs into blastocysts obtained from FAH-deficient regenerative medicine, when compared with other stem/
progenitor cell populations.mice (41). To prevent damage to FAH-deficient hepato-

cytes, foster mothers carrying the iPSC-injected blasto- Petersen et al. were the first to examine the possibil-
ity that BM contains a population of pluripotent stemcysts were treated with the drug 2-(2-nitro-4-fluoro-

methylbenzoyl)-1,3-cyclohexanedione (NTBC). Eight of cells with epithelial cell lineage capability, able to re-
generate the liver following injury (108). In 2000, La-the total offspring of 24 pups presented chimerism in
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gasse et al. demonstrated that intravenous injection of found in small groups of patients, trials were not ran-
domized and also lacked a control group of stem cell-purified hematopoietic stem cells in mice with FAH de-

ficiency rescues the mouse and restores the biochemical untreated patients. A larger cohort of patients with
chronic HCV liver disease has only recently been stud-function of its liver (74). Further studies highlighted that

it was not a case of transdifferentiation, but of cell fu- ied. In the work of Salama et al. (125), 140 patients
were randomized into two groups. Group 1, comprisingsion of hematopoietic stem cells (157). Nevertheless,

others showed that hematopoietic stem cells become 90 patients, received G-CSF for 5 days, followed by au-
tologous CD34+ and CD133+ stem cell infusion in theliver cells when cocultured with injured liver separated

by a barrier (i.e., without fusion) (64). Indeed, when portal vein. Group 2, comprising 50 patients, received
regular liver treatment only and served as a controltransplanted into liver-injured mice, hematopoietic stem

cells converted into viable hepatocytes, restoring liver group. A significant improvement in mean serum albu-
min and bilirubin levels was observed in the trans-function.

The fate of ECM following BM transplantation in planted patients compared to the control group (125).
Thus, autologous CD34+ and CD133+ stem cell trans-mice was investigated by Sakaida et al. (124). In their

study, the subpopulation of Liv8-negative BM cells de- plantation may be safely administered and appears to
offer some therapeutic benefit to patients with viral he-graded collagen fibers, reducing CCl4-induced liver fi-

brosis. Fibrinolysis was likely dependent on: 1) the in- patic end-stage liver disease.
Although G-CSF treatment has often been able tocrease in MMPs levels in transplanted BM cells,

especially of MMP-9, whose production may be related collect sufficient numbers of CD34+ cells for autologous
transplant, a great body of evidence is indicating that G-to both the migration of BM cells to the inflamed liver

and ECM degradation; 2) a reduction in the number of CSF mobilization alone—independently of the reinjec-
tion of ex vivo expanded autologous hematopoieticactivated HSCs, possibly through apoptosis induction by

BM cells. Importantly, transplanted cells differentiated cells—can induce hepatoprotective and regenerative ef-
fects through multiple mechanisms (35,48,148,165). Theinto albumin-producing hepatocytes, thus providing evi-

dence of the transdifferentiation ability of a nonhemato- beneficial effects of G-CSF have been recently attrib-
uted to the downregulation of SDF-1 expression in BMpoietic subpopulation of BM. Following on from the re-

ports of BM cells functioning as a potential source of and upregulation in a liver with massive injury, with the
formation of a SDF-1 gradient between the two com-hepatocytes to replace or restore hepatic tissues in ro-

dents, Theise et al. investigated whether extrahepatic partments and chemo-attraction of BM CD34+ cells to
the site of injury (79).stem cells could also contribute to liver regeneration in

humans (146). Biopsy and autopsy liver specimens from
Mesenchymal Stem Cellshuman recipients of therapeutic BM or liver transplants,

in which there was gender discordance between the do- Several investigations have shown that the nonhema-
topoietic adherent cell population of BM could be usefulnor and recipient, were analyzed for marrow-derived he-

patocytes and BECs. According to the results of mouse for liver regeneration. The hypothesis that these cells
take part in normal tissue repair is long-standing. Cohn-studies, human BMDCs could differentiate into both of

the above-mentioned hepatic epithelial cells (146). heim was the first to suggest in 1867 that BM may be
the source of fibroblasts that deposit collagen fibers asClinical experience in using BMDCs for the treat-

ment of liver damage is still limited. Most stem cell- part of the normal process of wound repair (27), but it
was not until the early 1970s that Friedenstein and hisbased therapies in hepatology have been based on the

collection of mononuclear fractions of the BM or PB colleagues provided direct evidence of the existence of
“clonogenic fibroblast precursor cells” (CFU-F) in thesamples, following mobilization by granulocyte colony-

stimulating factor (G-CSF) administration and subse- BM, spleen, and thymus of adult mice (47). CFU-F were
selected by means of their adherence to tissue culturequent reinfusion. Infusion therapy of either unfraction-

ated autologous BM cells (145) and in vitro-expanded plastic and acquisition of a spindle-cell morphology.
Cells were also found to differentiate into colonies thatautologous BM CD34+ cells (67,104) has been shown to

improve liver function in patients with liver insuffi- resembled small deposits of bone or cartilage. These ob-
servations were extended by other groups throughout theciency. Among the PB-derived CD34+ cells, a rare cell

population with a small lymphocyte-like morphology 1980s (3,6,21). At the beginning, these fibroblast-like
plastic-adherent cells were called “bone marrow stromaland potential to generate multiple tissue types was frac-

tionated by adherence to plastic (54). cells” (BMSCs). In 1991, Caplan proposed the term
“mesenchymal stem cell” on the basis of the ability ofOverall, in these studies, BM stem cell transplanta-

tion improved residual liver function in patients with this cell population to differentiate towards tissues of
mesenchymal origin (20), but the currently recom-chronic liver failure. However, the observations were
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mended designation proposed by the Mesenchymal and searchers. As a consequence, despite the large number
of markers studied to date, none of them can be regardedTissue Stem Cell Committee of the International Society

for Cellular Therapy (ISCT) is “multipotent mesenchy- as specific to MSCs.
The ISCT has recently proposed minimal criteria tomal stromal cells,” because convincing data in support

of a “stemness” phenotype for this population are still define human MSCs (37). First, MSCs must be plastic
adherent when maintained in standard culture condi-lacking (61). Nonetheless, the acronym MSC can be ap-

plied to both cell populations. tions. Second, MSCs must express CD105, CD73, and
CD90, but not CD45, CD34, CD14 or CD11b, CD79αOver the years, it has become progressively clear that

MSCs are not an exclusive feature of BM, but can also or CD19, and human lymphocyte antigen-DR (HLA-
DR) surface molecules. Third, MSCs must differentiatebe isolated from other adult organs and tissues, includ-

ing adipose tissue (174), umbilical cord blood (UCB) into osteoblasts, adipocytes, and chondroblasts in vitro.
In 2004, Lee et al. demonstrated that MSCs derived(17,39,52,70), PB (22,175), connective tissues of the

skeletal muscle and dermis (167), the heart (11,59), liver from both human BM and UCB could differentiate into
functional hepatocytes-like cells in vitro (75). Enrich-(11), and spleen (59) (Fig. 1A). A great deal of effort

has been directed toward defining a general marker sig- ment of nonhematopoietic BM and UCB cells was
achieved by negative immunoselection. Single cell-nature of MSCs. Unfortunately, MSC populations have

emerged as heterogeneous cell populations whose com- derived populations were then obtained via limiting dilu-
tion, and hepatic differentiation was finally induced withposition likely depends on isolation methods and expan-

sion conditions, which vary considerably among re- a two-step protocol using hepatocyte growth factor

Figure 1. (A) Mesenchymal stem cells (MSCs) can be isolated from bone marrow, adipose tissue, cord blood, liver, heart, spleen,
peripheral blood, and connective tissue. (B) Representative restoration of liver function following transplantation of MSCs and
possible mechanisms involved. (C) Simplified scheme of the most common properties of MSCs.
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(HGF) and oncostatin M. Differentiated cells were engraft and proliferate, while MSCs may not be able to
enter the liver parenchyma because of the lack of impor-found to be capable of albumin production, glycogen

storage, urea secretion, uptake of low-density lipopro- tant adhesion molecules, being therefore cleared during
the first 2 days after injection (115).tein, and phenobarbital-inducible cytochrome P450 ac-

tivity, thus confirming MSC potential to generate liver The first human study on MSC transplantation for
liver cirrhosis was reported by Mohamadnejad et al.cells.

A growth medium containing HGF and epidermal (95). In their study, infusion of autologous cultured
MSCs through the peripheral vein was reported to begrowth factor (EGF) was also used to differentiate hu-

man BM MSCs, generating a cell population able to in- safe and feasible and was associated with a slight im-
provement in liver function tests and model for endtegrate and repopulate the murine host liver injured by

PH (4). Human BM MSCs facilitated recovery and de- stage liver disease [MELD] scores in two out of four
patients examined. This group is currently studying thecreased fibrosis in rat models of CCl4-induced liver

damage (23,55) and were capable of enhancing the re- efficacy of this new treatment strategy in a phase II
multicenter randomized placebo-controlled trial, enroll-population of endogenous cells following necrotizing in-

jury, suggesting an MSC paracrine effect (72). Indeed, ing 50 patients with decompensated cirrhosis. Moreover,
other clinical trials are currently ongoing to evaluate theMSC-conditioned medium (MSC-CM) contained high

levels of chemokines and significantly improved the sur- safety and efficacy of both autologous BM- and alloge-
nic UCB-MSCs transplantation for the treatment of livervival of rats with fulminant hepatic failure (FHF), via

the alteration of leukocyte trafficking (105). MSC-CM failure and cirrhosis.
Table 1 shows some of the already concluded clinicalhad an effect on resident liver cells as suggested by the

90% reduction in apoptotic hepatocytes and a threefold trials for liver cirrhosis.
increase in the number of proliferating hepatocytes in

LIMITS OF MESENCHYMAL STROMAL CELLvivo (151). Downregulation of proinflammatory cyto-
THERAPY FOR LIVER REGENERATIONkines [interleukin 1β (IL-1β), tumor necrosis factor-α

(TNF-α), IL-6, IL-2, IL-1ra] and upregulation of anti- Heterogeneity of BM is a well-accepted feature. In
recent years, great effort has been devoted to determin-inflammatory cytokines (IL-10) were observed follow-

ing treatment. Figure 1B shows a scheme summarizing ing which BM cell types hold clinical promise. From
these studies MSCs have emerged as among the mostpossible mechanisms of MSC-mediated liver regenera-

tion. promising candidates for tissue regeneration/repair, due
to their intrinsic capacity for self-renewal, potential toWharton’s jelly, the main component of umbilical

cord ECM, is thought to be a rich source of MSCs. Like differentiate into multiple cell lineages, as well as immu-
nogenic and immunosuppressive properties (51,123)BM MSCs, under appropriate culture conditions UCB

MSCs can also differentiate into hepatocytes (75,77). (Fig. 1C). The recent finding of MSCs in other tissues
has fostered the growth of knowledge about how theseDespite this, until recently there has been little investiga-

tion into the effect of UCB MSCs on liver injury. Two cells can replace damaged tissues.
Despite the hopes and enthusiasms of researchers, thestudies on CCl4-induced liver fibrosis in rats have sug-

gested an antifibrotic activity of transplanted UCB therapeutic potential of MSCs for supporting liver re-
generation in clinical practice has been somewhat un-MSCs (65,150). However, a more recent study has indi-

cated only a partial improvement in liver function in clear. Existing contradictory data on MSC therapeutic
utility might be due to a variety of factors, including themice subjected to the same fibrosis induction, due to

their inability to accelerate the capillarization and venu- use of separate sources of MSCs, caveats, models of
liver injury, as well as routes of cell delivery. The differ-larization of hepatic sinusoids (117).

The ability of MSCs to express genes of therapeutic ences in behavior of MSCs derived from the same
source observed by separate research groups could alsopotential has been reported in numerous studies in vari-

ous regenerating organ systems, including the liver (69, reflect the use of different methodologies of cell prepa-
ration as well as the extraction site.76,85,88,100,114,161,169). Indeed, following HGF ex-

ogenous expression, MSCs were shown to improve re- Conventionally, MSCs are generated by plating cells
from different sources into culture flasks and selectinggeneration of the liver grafts in the rat model of 30%

small-for-size liver transplantation (SFSLT) (169). plastic-adherent cells with a spindle-shape fibroblastic
morphology. This isolation procedure has several limita-Although MSCs have been reported to possess a high

liver regeneration ability (26), a study comparing the tions, including the influence of undesired cocultured
cells on the growth and differentiation of MSCs duringability of syngeneic MSCs and hepatocytes to contribute

to liver regeneration in different models of artificial liver the first culture period (56). Moreover, early removal of
nonadherent cells may result in the elimination of a late-injury indicated that only hepatocytes may be able to
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Table 1. Clinical Trials of Stem/Progenitor Cell Therapy on Human Patients With Liver Cirrhosis

Type of Delivery of
Authors No. of Treated Control Stem/Progenitor Stem/Progenitor Improvement
(Year) Patients Indication Etiology Group (n) Group (n) Cell Source Cells Cells Shown?

Gordon et al. (54) 5 liver cirrhosis 1 AL/HBV; 5 0 G-CSF–mobilized CD34+ cells portal vein/hepatic yes
(2006) 2 AL/HCV; peripheral blood artery

1 AL;
1 N.D.

Terai et al. (145) 9 liver cirrhosis 3 HBV; 9 0 bone marrow monuclear cells peripheral vein yes
(2006) 5 HCV;

1 N.D.

Mohamadnejad et al. 4 liver cirrhosis 4 N.D. 4 0 bone marrow mesenchymal cubital vein of yes
(95) (2007) stem cells the arm

Khan et al. (67) 4 liver cirrhosis 1 HBV; 4 0 G-CSF–mobilized CD34+ cells hepatic artery yes
(2008) 3 HCV bone marrow

Pai et al. (104) 9 liver cirrhosis 7 AL; 9 0 G-CSF–mobilized CD34+ cells hepatic artery yes
(2008) 2 AL/HBV peripheral blood

Khan et al. (68) 25 liver cirrhosis 23 AL; 25 0 human fetal liver EpCAM+ve cells hepatic artery yes
(2010) 1 AL/HBV;

1 AL/HCV

Salama et al. (125) 140 liver cirrhosis 140 HCV 90 50 G-CSF–mobilized CD34+ CD133+ cells portal vein yes
(2010) bone marrow

AL, alcoholic liver disease; HBV, hepatitis B virus infection; HCV, hepatitis C virus infection; N. D., not defined; G-CSF, granulocyte colony-stimulating factor.
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adhering MSC subset (56). In fact, the existence of late- One of the characteristics of aging is the increase in
the likelihood of neoplastic transformation (120). In-adhering MSCs has been proposed, at least with respect

to BM (8,155). Baksh et al. observed that not all MSCs deed, Rubio et al. reported the spontaneous transforma-
tion of MSCs from human adipose tissue, but while indirectly isolated from BM were readily adherent capable

when exposed to tissue culture plastic (8). Specifically, their model transformation occurred following long-term
in vitro culture (4–5 months) (121), other investigatorsif nonadherent cells were removed 24 h postseeding,

there were no detectable colony-forming unit-fibroblasts revealed that mouse BM MSCs undergo chromosomal
aneuploidy within three passages (173). Therefore, cell(CFU-Fs) and CFU-osteoblast (CFU-Os) development

from the adherent cells that remained, thus suggesting expansion ex vivo may increase the risk of spontaneous
transformation, posing several questions: Is MSC ther-that accessory cells present in the suspension cell frac-

tion provide growth factor and cytokine signals neces- apy safe? Does MSC therapy provide a real benefit in
the treatment of liver and other diseases?sary for MSC attachment and subsequent proliferation.

The suspension culture had a CD45− CD49elow phenotype Discrepancies between studies on MSC engraftment
and function in liver after delivery may then be relatedin accordance with previous indications (32) and main-

tained the capacity to differentiate into fibroblastic and to the transplantation of undefined populations of MSCs.
Although clinical trials have been conducted for theosteogenic cells. Importantly, MSC suspensions were

smaller in size than cultured expanded MSCs, making treatment of a variety of diseases, including multiple
sclerosis, diabetes, and skeletal and heart diseases,them ideal candidates for cellular therapies requiring

systemic infusion. In fact, the majority of systemically MSCs are still in fact not well defined by physical, phe-
notypic, and functional properties. Even though theirinfused plastic-adherent MSC cultures are prevented

from homing to damaged tissues due to their large size heterogeneity is a well-accepted feature, to date no stud-
ies reporting the successful separation of distinct celland repertoire of cell surface adhesion receptors, which

cause them to be trapped especially within the lungs, subpopulations have been published. Thus, the largely
conflicting results existing in the literature about liverleading to pulmonary embolism (130).

Evidence that proliferative and differentiation poten- disease are likely dependent on the heterogeneity of the
initial population. It would be very useful to separatetials depend on BM MSCs in vivo location was given

for the first time by Matsubara et al. They showed that different phenotypic subpopulations on the base of their
migration, antifibrogenic, self-renewal, and death resis-unlike iliac BM MSCs, alveolar BM MSCs had a poor

adipogenic or chondrogenic potential, suggesting that tance in vitro properties. Correlation of the molecular
signature and/or pathways activation of the so-selectedthe site of aspiration influences cell behavior (89). Im-

portantly, alveolar BM MSCs were not obtained from subpopulations with different experimental outcomes
could provide important lessons and guidance for theall alveolar aspirates of patients >50 years of age, sug-

gesting an age-related marked decline in the prolifera- treatment of liver failure and cirrhosis, allowing MSC
therapy to develop toward an efficient biomedical appli-tive capacity of this cell type. At that time, the effects

of aging on MSCs had already been investigated, with cation. Wagner et al. reported that microarray analysis
might provide a better tool for the characterization ofsome groups finding an age-related decline and others

seeing no change (9,36,66,87,97,99,102,103,137). A more MSCs rather than surface antigen phenotyping. In their
study, MSCs from three different sources and fibroblastsrecent study has shed new light on this controversy by

using a wider range of donor ages and by measuring a were compared under two growth conditions. Although
the MSC populations were quite different in genetic pro-variety of markers of cellular aging, oxidative damage,

and senescence. Briefly, an age-related decline in overall file, they shared a panel of 25 genes, which were upreg-
ulated in comparison with fibroblasts (154). Thus, thisBM MSC “fitness” was found, thus posing important

concerns over use of autologous aged MSC for cell- study offers the potential to enhance the quality of clini-
cal trials contributing to the establishment of standardbased therapies (138).

In MSCs, the expression of telomerase is also dis- guidelines for the molecular identification of MSCs.
A fundamental limitation in MSC therapy is its un-puted. Baxter et al. found that even a limited expansion

in vitro induces severe dramatic telomerase shortening dervalued profibrogenic potential. A contribution to liver
fibrosis of both whole BM cells (122) and MSCs (34)(9). However, according to other investigators, MSCs

do not exhibit telomere maintenance mechanisms (13). through differentiation into myofibroblast-like cells has
been observed. Baertschiger et al. observed that whenStudying adult and pediatric MSCs, Baertschiger et al.

found that although an inverse relation between human injected into the spleen, few MSCs migrated into the
liver after PH. These cells integrated randomly into thedonor age and average life span of the cells in culture

exists, expansion ability is not dependent on telomerase tissue and were not able to differentiate into hepatocytes.
The MSCs instead retained a mesenchymal morphology,activity (7).
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expressing vimentin and α-smooth muscle actin (αSMA). Briefly, the key advantages of using MSC therapy
would be the reduced waiting time before transplanta-Further, their localization merged with collagen deposi-

tion in transplanted liver, indicating a potential harmful tion, the opportunity to utilize small samples of adult
tissues to obtain an initial MSC culture, a reduced rejec-effect on the liver parenchyma (7).

In conclusion, more research is needed to optimize tion risk, and higher success rates of liver regeneration.
the techniques by which MSCs are isolated, expanded ACKNOWLEDGMENTS: M.C. and G.M. have been supported
in vitro, and infused to improve long-term functional in- in part by grants PRIN 2008 from MIUR—the Italian Ministry

for Education, Universities and Research.tegration in vivo.
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