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In this paper, dynamic stability analysis of functionally graded cylindrical shells subjected to combined 
static and periodic axial forces is presented, considering the effect of transverse shear and rotary inertia. 
Material properties of functionally graded cylindrical shells are considered as temperature dependent 
and graded in the thickness direction according to a power-law distribution in terms of the volume 
fractions of the constituents. Numerical results for silicon nitride-nickel cylindrical shells are presented 
based on two different methods of first-order shear deformation theory, considering the transverse 
shear strains and the rotary inertias and the classical shell theory. The results obtained show that the 
effect of transverse shear and rotary inertias on dynamic stability of functionally graded cylindrical 
shells subjected to combined static and periodic axial forces is dependent on the material composition, 
the temperature environment, the amplitude of static load, the deformation mode, and the shell 
geometry parameters. 
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INTRODUCTION 
 
Functionally graded materials (FGMs) are being 
increasingly considered in various applications to 
maximize strengths and integrities of many engineering 
structures. FGMs have received considerable attention in 
many engineering applications, since they were first 
reported in 1984 in Japan (Koizumi and Niino, 1995). 
FGMs are composite materials, microscopically 
inhomogeneous, in which the mechanical properties vary 
smoothly and continuously from one surface to the other. 
This is achieved by gradually varying the volume fraction 
of the constituent materials. FGMs were initially designed 
as thermal barrier materials for aerospace structures and 
fusion reactors and now they are also considered as 
potential structural materials for future high-speed 
spacecrafts. Formulation and theoretical analysis of the 
FGM plates and shells were presented by Reddy (2004), 
Reddy and Chin (1998), Arciniega and Reddy (2007) and 
Praveen et al. (1999). Shell structure made up of this 
composite material (FGM) is also one of the basic 
structural elements used in many engineering structures. 

Despite      the     evident     importance    in     practical  

applications, investigations on the static and dynamic 
characteristics of FGM shell structures are still limited in 
number. Among those available, Loy et al. (1999) 
investigated the free vibration of simply supported FGM 
cylindrical shells, which was later extended by Pradhan et 
al. (2000) to cylindrical shells under various end 
supporting conditions. Gong et al. (1999) presented 
elastic response analysis of simply supported FGM 
cylindrical shells under low-velocity impact. Ng et al. 
(2001) studied dynamic instability of simply supported 
FGM cylindrical shells, a normal-mode expansion and 
Bolotin method were used to determine the boundaries of 
the unstable regions. In all the aforementioned studies, 
theoretical formulations were all based on classical shell 
theory, that is neglecting the effect of transverse shear 
strains. Using Love’s shell theory and the Galerkin 
method, Sofiyev (2005) presented an analytic solution for 
the stability behavior of cylindrical shells made of 
compositionally (or functionally) graded ceramic–metal 
materials under the axial compressive loads. 

This paper studies the effect  of  transverse  shear  and  



 

 
 
 
 

 
 
Figure 1. Coordinate system of the FGM cylindrical shell. 

 
 
 

rotary inertias on dynamic stability of the functionally 
graded (FG) cylindrical shells subjected to combined 
static and periodic axial forces, through a comparison of 
results obtained by using two different methods such as 
the first-order shear deformation theory (FSDT) 
considering the transverse shear strains and the rotary 
inertias and the classical shell theory (CST). Material 
properties of FG cylindrical shells are considered as 
temperature dependent and graded in the thickness 
direction, according to a power-law distribution in terms of 
the volume fractions of the constituents. The results 
obtained show that the effect of transverse shear and 
rotary inertias on dynamic stability of FG cylindrical shells 
subjected to combined static and periodic axial forces is 
dependent on the material composition, the temperature 
environment, the amplitude of static load, the deformation 
mode, and the shell geometry parameters. It was found 
that the effect of transverse shear and rotary inertias on 
dynamic stability of FG cylindrical shells subjected to 
combined static and periodic axial forces is not neglected 
in some cases. The new features of the effect of 
transverse shear and rotary inertias on dynamic stability 
of FG cylindrical shells and some meaningful results in 
this paper, are helpful for the application and the design 
of nuclear reactors, space planes and chemical plants, in 
which FG cylindrical shells act as basic elements. 
 
 
THEORY AND FORMULATIONS 
 
An FGM cylindrical shell with mean radius of R, thickness 
h, and   the   length    L   is  shown    in   Figure    1.   The  
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displacement components in the x, θ  and z direction are 
denoted by u, v and w respectively. The pulsating axial 
load is given by 
 

PtNNN doa cos+=                                      (1) 

 
Where P is the frequency of excitation in radians per unit 
time.  
 
The material properties of FGM cylindrical shells with 
both temperature dependent and position dependent are 
accurately modeled, by using a simple rule of mixtures for 
the stiffness parameters coupled with the temperature 
dependent properties of the constituents. The volume 
fraction is described by a spatial function as follows 
 

( )∞≤Φ≤+= Φ
0,)21()( hzzV ,        (2) 

 

where Φ  expresses the volume fraction exponent. 
 
The combination of these functions gives rise to the 
effective properties of FGMs. An FGM cylindrical shell 
that is metal rich at the inner surface and ceramic rich at 
the outer surface is defined as Type A. The 
corresponding effective material properties are expressed 
as 
 

( )( )zVTFzVTFzTF mceff −+= 1)()()(),(      (3) 

 

Where effF  is the effective material property of the FGM 

cylindrical shell, including the effective elastic modulus, 

effective mass density and effective Poisson’s ratio. cF  

and mF  are the temperature dependent properties of the 

ceramic and metal, respectively. 
 
On the other hand, an FGM cylindrical shell that is 
ceramic rich at the inner surface and metal rich at the 
outer surface is defined as Type B, whose effective 
material properties are given by 
 

( )( )zVTFzVTFzTF cmeff −+= 1)()()(),(                  (4) 

 
Based on FSDT, the equations of motion for an FGM 
cylindrical shell under axially dynamic load according to 
Sofiyev (2005) are as follows 
 

″
+′′=

∂

∂
+

∂

∂
121

61 1
φ

θ
IuI

N

Rx

N
                                  (5) 

 

″
+′′=

∂

∂
++

∂

∂
+

∂

∂
2212

2

2
16 11

φ
θ

IvI
x

v
NQ

R

N

Rx

N
a       (6) 



 

2288            Sci. Res. Essays 
 
 
 

wI
x

w
N

R

NQ

Rx

Q
a

′′=
∂

∂
+−

∂

∂
+

∂

∂
12

2
221 1

θ
                             (7) 

 

″
+′′=−

∂

∂
+

∂

∂
1321

61 1
φ

θ
IuIQ

M

Rx

M
                             (8) 

 

″
+′′=−

∂

∂
+

∂

∂
2322

26 1
φ

θ
IvIQ

M

Rx

M
                                (9) 

 

where 1φ and 2φ  are the rotations of a normal to the 

reference surface, )3,2,1( =iI i is the mass inertia terms 

defined as 
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and )(zρ is the effective mass density of FGMs. The 

stress resultants of FGM cylindrical shells are given by 
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where ijA , ijB , ijD  and ijC  are ,respectively, the 

extensional, coupling, bending, and shear stiffness, which 
are given by 
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where effE  and effν are the effective elastic modulus 

and effective Poisson’s ratio of FGM cylindrical shells, 
respectively. κ  is the shear correction factor introduced 
by Reddy (2004) and is equal to 5/6 . The strains are 
expressed as 
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Utilizing Equations (5) to (9), (11) and (13), the equations 
of motion can be expressed in terms of generalized 

displacement ),,,,( 21 φφwvu as follows 
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By neglecting terms 2I  and 3I  involved in Equations (5) 

to (9) and setting 
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The equations of motion based on a classical shell theory 
can be easily obtained. Here, the two ends of FGM 
cylindrical shells are considered as simply supported, so 
that a solution for the motion Equations (14) to (18) can 
be described by 
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where 
L

m
m

π
λ = , n represents the number of 

circumferential waves and m represents he number of 
axial half-waves. 
 
Substituting Equation (20) into Equations (14) to (18) and 

letting 0=dN  in Equation (1), yields 
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where ijT  is given in Appendix A. 

 
To solve the equations of motion containing the dynamic 

load dN , a solution is sought in the form shown as 

follows 
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where )(tqmnj is a generalized co-ordinate, and mnjU , 

mnjV  , mnjW , xmnjθ and mnjθθ are the modal function of 

FGM cylindrical shells with simply supported ends, under 

the axially static load 0N . Substituting Equations (22) to 

(26) into Equations (14) to (18), yields 
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Equations (14) to (18) may be rewritten as 
 

( )( )∑ ∑∑
=

∞

=

∞

=

=++′′
5

1 1 1

21
2

0coscos
j m n

mmnjmnjmnjmnjmnj nxHIAIqq θλω

                                                                                     (32) 
 

( )( )∑∑∑
=

∞

=

∞

=

++′′
5

1 1 1

21
2

sinsin
j m n

mmnjmnjmnjmnjmnj nxKIBIqq θλω  

∑∑∑
=

∞

=

∞

=

=+
5

1 1 1

2
0sinsincos

j m n

mmnjmnjmd nxqBPtN θλλ  

 
                                                                                     (33) 
 

( )∑∑∑
=

∞

=

∞

=

+′′
5

1 1 1

1
2

cossin
j m n

mmnjmnjmnjmnj nxCIqq θλω

∑∑∑
=

∞

=

∞

=

=+
5

1 1 1

2
0cossincos

j m n

mmnjmnjmd nxqCPtN θλλ
 

                                                                                    (34) 
 

( )( )∑∑∑
=

∞

=

∞

=

=++′′
5

1 1 1

32
2

0coscos
j m n

mmnjmnjmnjmnjmnj nxHIAIqq θλω

                                                                                     (35) 
 

( )( )∑ ∑∑
=

∞

=

∞

=

=++′′
5

1 1 1

32
2

0sinsin
j m n

mmnjmnjmnjmnjmnj nxKIBIqq θλω

                                                                                     (36) 
 

Making use of the orthogonality condition, Equations (32) 
to (36) are simplified to 
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In the aforestated formula, the coefficients of mode 

shapes IA  , IB , IC , IH and IK can be obtained from 

Equation (21). Based on the classical shell theory and the 
orthogonality condition, Equation (37) can be simplified to 
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The coefficients IA  , IB , IC in Equations (40) can be 

obtained from Equation (24). Equations (37) and (40) are 
in the form of a second order differential equation with 
periodic coefficients of the Mathieu-Hill type. Using the 
method presented by Bolotin (1964), the regions of 
unstable solutions are separated by periodic solutions. As 
a first approximation, the periodic solutions with period 2T 
can be sought in the form 
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Equation (42) into Equations (37) and (40), and equating 

the coefficients of the 2sin Pt  and 2cos Pt  terms, a 

set of linear homogeneous algebraic equations in terms 

of Ia and Ib can be obtained. The conditions for non-

trivial solutions for the linear homogeneous algebraic 
equations are 
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Each unstable region is bounded by two lines which 
originate from a common point from the P-axis. The 

branches emanate at 0=dN from the Iω2 . The left and 

right branch correspond with 
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RESULTS AND DISCUSSION 
 

The ceramic material used in this study is silicon nitride 
and the metal material used is nickel. The density of 

silicon nitride is cρ =2370 kg/m
3
 that of nickel is eρ =8900 

kg/m
3
, the Poisson’s ratio is cν =0.24 for silicon nitride 

and eν =0.31 for nickel, which are independent of the 

temperature. The elastic moduli are given by Ng et al. 
(2001). 
 

( )3112749
10946.810160.210070.311043.348 TTTEc

−−− ×−×+×−×=

 

( )2949
10998.310794.211095.223 TTEm

−− ×−×−×=  

 

where cE  and mE are the elastic modulus of silicon 

nitride and nickel, respectively, and T is the temperature 
in Kelvin. Also a computer program has been written in 
MATLAB software in order to compute the numerical 
results. Based on the classical shell theory, the points of 

origin, αω ××= 11 2P [the nondimensionalized 

coefficient 1,2 111 =×= IAIRπα , as in (39)] is 

presented in Table 1, for a silicon nitride-nickel FGM 
cylindrical shell with simply supported ends, under axial 
extensional loading, Where the computation parameters 
are taken as 
 

 100,1,5.0,1
0

===== hRRLNNnm
cr

.  
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Table 1. Comparison of the points of origin P1 for a simply supported silicon nitride-nickel FGM cylindrical 
shell under axial extensional loading. 
 

ΦΦΦΦ 
P1 (Type A)  P1 (Type B) 

Present Ng et al. (2001)  Present Ng et al. (2001) 

0 10.955 10.956  10.778 10.774 

0.5 10.896 10.894  10.849 10.849 

1.0 1.0867 10.865  10.883 10.883 

5.0 10.809 10.805  10.936 10.937 

10 10.795 10.791  10.945 10.946 

∞  10.778 10.773  10.955 10.946 
  
 
 

 
 
Figure 2. Comparison of CST and FSDT unstable regions for a simply supported silicon 

nitride-nickel FGM Type A cylindrical shell under combined static axial compressive loading 

and periodic axial loading (m=1,2 , n=1,2 , crNN 5.00 = , L/R=1.0 , T=300K, Φ=1.0, 

h/R=0.01). 
 
 
 

The results in Table 1 present the transverse modes 

corresponding to the points of origin 1P  , which is a good 

agreement with Ng et al. (2001). The dynamic instability 
regions for the first order parametric resonances of a 
silicon nitride-nickel FGM (Type A) cylindrical shell with 
simply supported ends, under combined static and 
periodic axial loads are presented in Figure 2 using the 
CLT and the FSDT. The effect of the FSDT on the 
dynamic instability regions is relational to the points of 
origin, )6(2 61 =××= IP αω  , )16(2 162 =××= IP αω , 

)1(2 13 =××= IP αω  [Equation (39), FSDT]. 

For the points 1P  and 2P  , the dynamic instability 

regions obtained from the FSDT are less than those 
obtained from the CST no considering shear deformation 

and   rotary   inertias.   For   the   points 3P ,  the  dynamic 

instability regions are very close for the CST and the 

FSDT. Where 6ω , 16ω  and 1ω denote the three lowest 

natural frequency using the FSDT. Figure 3 shows the 
effect of thickness to radius ratio ( Rh ) on the first 

unstable region (corresponding to the point of origin 1P  ) 

for a silicon nitride-nickel FGM (Type A) cylindrical shell 
under combined static axial extensional loading and 
periodic axial load, based on the FSDT. It is observed 
that the points of origin of the unstable region are lower 

for the thinner shells. The angle ϕ  gives a good measure 

of the size of the unstable region in Figure 3. Here, the 
unstable regions increase with the increasing thicknesses. 

 The effect of static axial compressive loading 

cro NN on unstable angles ϕ   can  be  seen from  the  
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Figure 3. Effect of thickness to radius ratio h/R on the first unstable region (corresponding 
to the points of origin 1 P1 ) for a simply supported silicon nitride-nickel FGM Type A 
cylindrical shell under combined static axial extensional loading and periodic axial load 

(m=1,2 , n=1,2 , crNN 5.00 = , L/R = 1.0 , T = 300K, Φ = 1.0). 

  
 
 

results presented  in  Figure  4,  using  the  CST  and  the 
FSDT. The points of origin are, respectively, 

)6(2 61 =××= IP αω  , )16(2 162 =××= IP αω ,  

)1(2 13 =××= IP αω , )11(2 114 =××= IP αω  

[Equation (39), FSDT]. The first four unstable angles 

ϕ (corresponding to the points of origin 1P  , 2P  , 3P  , 

4P ) for a silicon nitride-nickel FGM (Type A) cylindrical 

shell under combined static axial compressive loading 
and periodic axial loading are described in Figures 4(a) 
and (b), respectively. 

The unstable region increases as the static axial load 
increases, and the effect of shear deformation and rotary 
inertias on the unstable region is dependent on the points 
of origin. It is shown from the results presented in Figures 

4(a) and (b), that the unstable angle for the points 1P  , 

2P and 4P  obtained using the FSDT are less than those 

obtained using the CST, and when the static axial 

compressive loading cro NN is larger than 0.4, the third 

unstable angle (corresponding to the point of origin 3P  

and m=1, n=1) is almost the same using the CST and the 
FSDT. Figures 5(a) to (c) show the effect of volume 
fraction exponent on the unstable angle ϕ  of a silicon 

nitride-nickel FGM (Type A) cylindrical shell under 
combined static axial compressive loading and periodic 
axial loading, based on two different theories such as the 

CST   and  the  FSDT.  The  first  three  unstable  regions 

(corresponding to the points of origin 1P  , 2P and 3P ) are 

described in Figures 5(a) to (c), respectively. It is 
observed that the unstable angle ϕ nonlinearly increases 

as the volume fraction exponent Φ increases, the effect 
of shear deformation and rotary inertias on the unstable 
angles (corresponding to m=1, n=1) is not only 
dependent on the points of origin, but also dependent on 

the volume fraction exponent Φ , the unstable angles for 

the point 2P  obtained by using the CST and the FSDT 

are the same. 
 
 
CONCLUSIONS 
 
This paper reports the result of an investigation into the 
effect of the FSDT considering rotary inertia and the 
transverse shear strains on the dynamic instability of FG 
cylindrical shells with simply-supported ends, under 
combined static and periodic axial forces. The result 
obtained using the FSDT is compared with that obtained 
using CST. The differences between the results from 
FSDT and the results from CST increase as the 
deformation mode and thickness increase. It is proved 
that the unstable angle is different using the CST and the 
FSDT for the higher mode. It was found that reasonable 
control can be achieved on the dynamic instability 
regions by correctly varying the ratio  of  length  to  radius,  
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Figure 4. Unstable region ϕ versus axial compressive loading 
crNN0

for a 

simply supported silicon nitride-nickel FGM Type A cylindrical shell under 
combined static axial compressive loading and periodic axial loading (m=1, 2, 

n=1,2 ,  L/R=1.0 , T=300K, Φ =1.0, h/R=0.01). 
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Figure 5. Effect of the volume fraction exponent Φ on the unstable angles ϕfor a 
simply supported silicon nitride-nickel FGM Type A cylindrical shell under 
combined static axial compressive loading and periodic axial loading (m=1, n=1, 

crNN 5.00 = , L/R=1.0 , T=300K, Φ=1.0, h/R=0.01). 

  
 
 

the ratio of  thickness  to  radius,  the  amplitude  of  static 
axial load, thermal environment and volume fraction 
exponent. 
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APPENDIX A 
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