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In this paper, dynamic stability analysis of functionally graded cylindrical shells subjected to combined
static and periodic axial forces is presented, considering the effect of transverse shear and rotary inertia.
Material properties of functionally graded cylindrical shells are considered as temperature dependent
and graded in the thickness direction according to a power-law distribution in terms of the volume
fractions of the constituents. Numerical results for silicon nitride-nickel cylindrical shells are presented
based on two different methods of first-order shear deformation theory, considering the transverse
shear strains and the rotary inertias and the classical shell theory. The results obtained show that the
effect of transverse shear and rotary inertias on dynamic stability of functionally graded cylindrical
shells subjected to combined static and periodic axial forces is dependent on the material composition,
the temperature environment, the amplitude of static load, the deformation mode, and the shell

geometry parameters.
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INTRODUCTION

Functionally graded materials (FGMs) are being
increasingly considered in various applications to
maximize strengths and integrities of many engineering
structures. FGMs have received considerable attention in
many engineering applications, since they were first
reported in 1984 in Japan (Koizumi and Niino, 1995).
FGMs are composite materials, microscopically
inhomogeneous, in which the mechanical properties vary
smoothly and continuously from one surface to the other.
This is achieved by gradually varying the volume fraction
of the constituent materials. FGMs were initially designed
as thermal barrier materials for aerospace structures and
fusion reactors and now they are also considered as
potential structural materials for future high-speed
spacecrafts. Formulation and theoretical analysis of the
FGM plates and shells were presented by Reddy (2004),
Reddy and Chin (1998), Arciniega and Reddy (2007) and
Praveen et al. (1999). Shell structure made up of this
composite material (FGM) is also one of the basic
structural elements used in many engineering structures.

Despite  the evident importance in practical

applications, investigations on the static and dynamic
characteristics of FGM shell structures are still limited in
number. Among those available, Loy et al. (1999)
investigated the free vibration of simply supported FGM
cylindrical shells, which was later extended by Pradhan et
al. (2000) to cylindrical shells under various end
supporting conditions. Gong et al. (1999) presented
elastic response analysis of simply supported FGM
cylindrical shells under low-velocity impact. Ng et al.
(2001) studied dynamic instability of simply supported
FGM cylindrical shells, a normal-mode expansion and
Bolotin method were used to determine the boundaries of
the unstable regions. In all the aforementioned studies,
theoretical formulations were all based on classical shell
theory, that is neglecting the effect of transverse shear
strains. Using Love’s shell theory and the Galerkin
method, Sofiyev (2005) presented an analytic solution for
the stability behavior of cylindrical shells made of
compositionally (or functionally) graded ceramic—metal
materials under the axial compressive loads.

This paper studies the effect of transverse shear and



Figure 1. Coordinate system of the FGM cylindrical shell.

rotary inertias on dynamic stability of the functionally
graded (FG) cylindrical shells subjected to combined
static and periodic axial forces, through a comparison of
results obtained by using two different methods such as
the first-order shear deformation theory (FSDT)
considering the transverse shear strains and the rotary
inertias and the classical shell theory (CST). Material
properties of FG cylindrical shells are considered as
temperature dependent and graded in the thickness
direction, according to a power-law distribution in terms of
the volume fractions of the constituents. The results
obtained show that the effect of transverse shear and
rotary inertias on dynamic stability of FG cylindrical shells
subjected to combined static and periodic axial forces is
dependent on the material composition, the temperature
environment, the amplitude of static load, the deformation
mode, and the shell geometry parameters. It was found
that the effect of transverse shear and rotary inertias on
dynamic stability of FG cylindrical shells subjected to
combined static and periodic axial forces is not neglected
in some cases. The new features of the effect of
transverse shear and rotary inertias on dynamic stability
of FG cylindrical shells and some meaningful results in
this paper, are helpful for the application and the design
of nuclear reactors, space planes and chemical plants, in
which FG cylindrical shells act as basic elements.

THEORY AND FORMULATIONS

An FGM cylindrical shell with mean radius of R, thickness
h,and the length L is shown in Figure 1. The
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displacement components in the x, @ and z direction are
denoted by u, v and w respectively. The pulsating axial
load is given by

N,=N,+ N,cos Pt (1)

Where P is the frequency of excitation in radians per unit
time.

The material properties of FGM cylindrical shells with
both temperature dependent and position dependent are
accurately modeled, by using a simple rule of mixtures for
the stiffness parameters coupled with the temperature
dependent properties of the constituents. The volume
fraction is described by a spatial function as follows

V(z)=(z/h+1/2)* | (0<d <o), (2

where @ expresses the volume fraction exponent.

The combination of these functions gives rise to the
effective properties of FGMs. An FGM cylindrical shell
that is metal rich at the inner surface and ceramic rich at
the outer surface is defined as Type A. The
corresponding effective material properties are expressed
as

Fy (T,2) = F.(TV () + F,(D)(1-V(2) )

Where Feﬁ is the effective material property of the FGM
cylindrical shell, including the effective elastic modulus,
effective mass density and effective Poisson’s ratio. F,
and F,, are the temperature dependent properties of the
ceramic and metal, respectively.

On the other hand, an FGM cylindrical shell that is
ceramic rich at the inner surface and metal rich at the
outer surface is defined as Type B, whose effective
material properties are given by

Fu(T,2)=F,(TWV(2)+ F.(T)(1-V(z)) (4)

Based on FSDT, the equations of motion for an FGM
cylindrical shell under axially dynamic load according to
Sofiyev (2005) are as follows

ON, 1 9N, ,
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where @ and ¢, are the rotations of a normal to the

reference surface, I;(i =1,2,3) is the mass inertia terms
defined as

ey 10 |

(11,12,13): P(Z)(LZ,ZZ)CZZ (10)
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and p(z)is the effective mass density of FGMs. The
stress resultants of FGM cylindrical shells are given by
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where A, , B; , D; and C; are ,respectively, the

extensional, coupling, bending, and shear stiffness, which
are given by
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(12)

where E . and Vv, are the effective elastic modulus

and effective Poisson’s ratio of FGM cylindrical shells,
respectively. X is the shear correction factor introduced
by Reddy (2004) and is equal to 5/6 . The strains are
expressed as

g—% £ —av+ E_@leau
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Utilizing Equations (5) to (9), (11) and (13), the equations
of motion can be expressed in terms of generalized
displacement (u,v,w,@,,®,) as follows

Li(u,v,w,8,,0,) = Lu" + 1,8 (14)
9%y
Ly(u,v,w,0,,0,)+ N, . — =1 ‘v 1, (15)
X
9w ”
Ly(u,v,w,0,0,)+ N, — =Iw (16)
L4(M,V,W’¢1’¢z):12””+13¢1” (17)
Ls(u,v,w,@,0,) = I,v" + 1,0, (18)

By neglecting terms [, and /I, involved in Equations (5)
to (9) and setting

ow 1 ow

=" P =" Ra8’

19
" (19)

The equations of motion based on a classical shell theory
can be easily obtained. Here, the two ends of FGM
cylindrical shells are considered as simply supported, so
that a solution for the motion Equations (14) to (18) can
be described by

= Zmne’m cos A, xcosné

=B, e“sin A, xsinné
o = Cone'® sin A, xcosn
“cos A, xcosné

®sin 4, xsinn@



mn
where ﬂsz,, n represents the number of

circumferential waves and m represents he number of
axial half-waves.

Substituting Equation (20) into Equations (14) to (18) and
letting N, =0 in Equation (1), yields

I, I, T3 L, T L 0.0 I, 04, 0
Ty T+ AN, Ty Ty Ty 0 5, 0 0 L||B, 0
T, T T+ 2Ny Ty Tis|-@’|0 0 L, 0 0[]C,, |=|0
T, T, Ty Ty Tis L oo 1, ollm,| |o
T5, I, I, Iy, Tss 05, 0 0 L]\K,, 0

where T;; is given in Appendix A.

To solve the equations of motion containing the dynamic
load N, , a solution is sought in the form shown as
follows

_Zzzqmn](t)Umn](x’ 6) Zzzqmn](t)Amn]COS%n xcosn6

Jj=lm=ln=1 Jj=lm=ln=1

(22)

V= Zzzqmn,(f) (6 0) = ZZqum(t) B,,,;sin4, xsinng

Jj=lm=1ln=1 Jj=lm=1n=1

(23)

5 oo o 5 o oo o
= Z Z Z qmn/ (t)Wnn/ (X, 0) = Z Z Z qmnj (t)cmnj sin ﬂm xcosn@
j=lm=1n=1

j=lm=1n= Jj=lm=1n=1
(24)

5 o o
¢l = z z z qmn] ([) e)cmn] (x 6) z z z qmn] ([) Hmn] cos 2’ xcosné

j=lm=1n=1 j=lm=1n=1
(25)

5 o oo
¢ = Z > Z Gy () gy (x.60) = Z Z Z G (DK, sin A, xsin n6

Jj=lm=1n=1
(26)

where ¢,,,(f) is a generalized co-ordinate, and U, ,

Vi s W s @y @nd by, are the modal function of
FGM cylindrical shells with simply supported ends, under
the axially static load N,,. Substituting Equations (22) to
(26) into Equations (14) to (18), yields

LI( mnj mn] mn] xmn]eﬁnn) IlaZt ymnj 2((21 ﬂan (27)
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lQ(Umnj’ anj’ Wnnj’ xmnp eannj) NO//ifzn mnj -1, aﬁmj mnj— ZQir ﬂannj
(28)

l’j(Umn/’ an/’ Wmn/’ exmn/’ eéhmj) NO m mn/ -1 a)rznn/Wmn/

(29)

L4 (Umnj ’ an} ’ Wmn} ’ exmnj ’ eﬁmnj) = a)mnj Umnj exmnj
(30)

LS (Umn] ’ an] ’ Wmn] ’ exmn]’ eann]) = _IZwmn]an] 136€lnnj
(31)

Equations (14) to (18) may be rewritten as

5 © o
” 2 —
Z Z Z (qmnj + wmnj qmnj XIlAmnj + IZHmnj )COS /lm xcos nd =0
j=lm=1ln=1

(32)
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(34)

i Mw
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(35)
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(36)

Making use of the orthogonality condition, Equations (32)
to (36) are simplified to

(m 0 0 0 | q

0 m 0 0 || &

0o 00 o [|mM[" (37)
_0 0 0 mg, q;N

k0 0 0] 0 0 0 0 q

000 o [Melg Qg o |l

0 0 0 k| 0 0 0 O, |)|gsy:



2290 Sci. Res. Essays

where
ny :% [(1131 +LK, )2 +(11;‘1 +LH, )2 +(1161)2 +(1221 +LH, )2 +(12§1 +LK, )2]

N AN I _
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(38)

(mm=Q1: I=1(j=1), 2(j=2), 3(j=3), 4j=4, 3j=5);
(mm)=(012): I=6(j=1),7(j=2), 8j=3), Aj=4), 10(j=5);

(mm)=(LN): I=5N-4)(j=D, 5(N=3)(j=2), 5N(j=5)
(mn)=@2,1): I=5N+1(j=1), 5N+2(j=2), S5N+5(j=5);

(mm)=(N,N): I=5N>—4(j=1), 5N*-3(j=2), 5N’ (j=5);
(39)

In the aforestated formula, the coefficients of mode
shapes A, ,B,,C,, H,and K, can be obtained from

Equation (21). Based on the classical shell theory and the
orthogonality condition, Equation (37) can be simplified to

m 0 0 ar
0 m 0 0 q;
+
0 O 0 M
0 myy |5y
kk 0 0 0 0, 0 0 0 q, 0
0 k, 0 0 0 0, 0 0
§ — N, cos Pt 2 2l
0 0 O 0 0 O M M
0 0 kyyo 0 0 0 Oy |)|4sn: 0
(40)
where

m/:%[(111'?1)2"‘(1121)2+(11C1)21 k, = wim,,

2

0, :—%in B,(1,8,)+1,5,2] 1=123...3N°

(41)

The coefficients A, , B, , C, in Equations (40) can be
obtained from Equation (24). Equations (37) and (40) are
in the form of a second order differential equation with
periodic coefficients of the Mathieu-Hill type. Using the
method presented by Bolotin (1964), the regions of
unstable solutions are separated by periodic solutions. As
a first approximation, the periodic solutions with period 2T
can be sought in the form

. Pt Pt
q, =q s1n?+b, cos; (42)

where a,and b, are arbitrary constants. Substituting

Equation (42) into Equations (37) and (40), and equating
the coefficients of the sin Pz/2 and cos Pt/2 terms, a
set of linear homogeneous algebraic equations in terms
of a, and b, can be obtained. The conditions for non-

trivial solutions for the linear homogeneous algebraic
equations are

| — -

——P’m; +k, ——N,0, =0 (43)
4 2
1, -

_ZPI m1+k1+ENdQI:0 (44)

Each unstable region is bounded by two lines which
originate from a common point from the P-axis. The

branches emanate at N, =0 from the 2@, . The left and
right branch correspond with

_ M t2NO 5 [ =2N0,

ol

(N;>0) or
ny

1
my
_ |4 -2NG L [N, N, <0):
1 m, 1 m, d

RESULTS AND DISCUSSION

The ceramic material used in this study is silicon nitride
and the metal material used is nickel. The density of

silicon nitride is p,=2370 kg/m® that of nickel is ©,=8900
kg/m®, the Poisson’s ratio is V,=0.24 for silicon nitride

and v,=0.31 for nickel, which are independent of the

temperature. The elastic moduli are given by Ng et al.
(2001).

E, =34843x10°(1-3.070<10°T +2.160x107 T2 —8.946x10™'T°)
E, =223.95x10°(1-2.794x10T —3.998 x10°T?)

where E_. and E, are the elastic modulus of silicon

nitride and nickel, respectively, and T is the temperature
in Kelvin. Also a computer program has been written in
MATLAB software in order to compute the numerical
results. Based on the classical shell theory, the points of

origin, P =2X@ X« [the nondimensionalized
coefficient a=2mRx./I,/A,.[=1 , as in (39)] s
presented in Table 1, for a silicon nitride-nickel FGM
cylindrical shell with simply supported ends, under axial
extensional loading, Where the computation parameters
are taken as

m=n=1, N,=0.5N,, L/R=1, R/h=100.
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Table 1. Comparison of the points of origin P; for a simply supported silicon nitride-nickel FGM cylindrical
shell under axial extensional loading.
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® P+ (Type A) P; (Type B)
Present Ng et al. (2001) Present Ng et al. (2001)
0 10.955 10.956 10.778 10.774
0.5 10.896 10.894 10.849 10.849
1.0 1.0867 10.865 10.883 10.883
5.0 10.809 10.805 10.936 10.937
10 10.795 10.791 10.945 10.946
00 10.778 10.773 10.955 10.946
0.5 4 T;
. |
5 04- -
5 - —m— CST(m.n)=(1.2) *ﬂ; .
“ 0.3 —e— CST(m.n)=(2.2 .
|7 | —a— CST(m.n)=(1.1) z J
E 02 —o— FSDT(m.n)=(1.2 L )
g .27 —%— FSDT(m.n)=(2.2 ¥ 7
- 7 s FSDT(m.n)=(1.1) t :
S 0.1- 3
1 P
0.0 . -

hed
Lh

P

Figure 2. Comparison of CST and FSDT unstable regions for a simply supported silicon
nitride-nickel FGM Type A cylindrical shell under combined static axial compressive loading

and periodic axial loading (m=1,2 , n=1,2 , N, =0.5N

h/R=0.01).

The results in Table 1 present the transverse modes
corresponding to the points of origin F , which is a good
agreement with Ng et al. (2001). The dynamic instability
regions for the first order parametric resonances of a
silicon nitride-nickel FGM (Type A) cylindrical shell with
simply supported ends, under combined static and
periodic axial loads are presented in Figure 2 using the
CLT and the FSDT. The effect of the FSDT on the
dynamic instability regions is relational to the points of
origin,  p=ixgxa(l=6) , P=2x@zxa(l=16) ,

P, =2xw, X a (I =1) [Equation (39), FSDT].

For the points B and P, , the dynamic instability

regions obtained from the FSDT are less than those
obtained from the CST no considering shear deformation

and rotary inertias. For the points P, the dynamic

L/R=1.0 , T=300K, ®=1.0,

cr’

instability regions are very close for the CST and the
FSDT. Where @, , @, and @, denote the three lowest
natural frequency using the FSDT. Figure 3 shows the
effect of thickness to radius ratio (/R ) on the first
unstable region (corresponding to the point of origin F )
for a silicon nitride-nickel FGM (Type A) cylindrical shell
under combined static axial extensional loading and
periodic axial load, based on the FSDT. It is observed
that the points of origin of the unstable region are lower
for the thinner shells. The angle @ gives a good measure
of the size of the unstable region in Figure 3. Here, the
unstable regions increase with the increasing thicknesses.

The effect of static axial compressive loading

N,/N,, on unstable angles @ can be seen from the
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Figure 3. Effect of thickness to radius ratio h/R on the first unstable region (corresponding
to the points of origin 1 P; ) for a simply supported silicon nitride-nickel FGM Type A
cylindrical shell under combined static axial extensional loading and periodic axial load

(m=1,2,n=1,2, N, =0.5N_,,UR=1.0, T =300K, &= 1.0).

results presented in Figure 4, using the CST and the
FSDT. The points of origin are, respectively,

P =2xasxa(l=06) ; P, =2X@xa (I =16) ;
P, =2xwxa(l=1) , P =2xo,xa(l=11)
[Equation (39), FSDT]. The first four unstable angles
@ (corresponding to the points of origin A , P, , P ,

P,) for a silicon nitride-nickel FGM (Type A) cylindrical

shell under combined static axial compressive loading
and periodic axial loading are described in Figures 4(a)
and (b), respectively.

The unstable region increases as the static axial load
increases, and the effect of shear deformation and rotary
inertias on the unstable region is dependent on the points
of origin. It is shown from the results presented in Figures

4(a) and (b), that the unstable angle for the points P, ,

P,and P, obtained using the FSDT are less than those
obtained using the CST, and when the static axial
compressive loading N, /N, is larger than 0.4, the third

unstable angle (corresponding to the point of origin P,

and m=1, n=1) is almost the same using the CST and the
FSDT. Figures 5(a) to (c) show the effect of volume
fraction exponent on the unstable angle @ of a silicon
nitride-nickel FGM (Type A) cylindrical shell under
combined static axial compressive loading and periodic
axial loading, based on two different theories such as the

CST and the FSDT. The first three unstable regions
(corresponding to the points of origin A , P, and P;) are

described in Figures 5(a) to (c), respectively. It is
observed that the unstable angle @ nonlinearly increases

as the volume fraction exponent @ increases, the effect
of shear deformation and rotary inertias on the unstable
angles (corresponding to m=1, n=1) is not only
dependent on the points of origin, but also dependent on
the volume fraction exponent®, the unstable angles for

the point P, obtained by using the CST and the FSDT
are the same.

CONCLUSIONS

This paper reports the result of an investigation into the
effect of the FSDT considering rotary inertia and the
transverse shear strains on the dynamic instability of FG
cylindrical shells with simply-supported ends, under
combined static and periodic axial forces. The result
obtained using the FSDT is compared with that obtained
using CST. The differences between the results from
FSDT and the results from CST increase as the
deformation mode and thickness increase. It is proved
that the unstable angle is different using the CST and the
FSDT for the higher mode. It was found that reasonable
control can be achieved on the dynamic instability
regions by correctly varying the ratio of length to radius,
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Figure 4. Unstable region gversus axial compressive loading N,/N,, for a

simply supported silicon nitride-nickel FGM Type A cylindrical shell under
combined static axial compressive loading and periodic axial loading (m=1, 2,
n=1,2, L/R=1.0, T=300K, ® =1.0, //R=0.01).
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Figure 5. Effect of the volume fraction exponent ®on the unstable angles ¢for a
simply supported silicon nitride-nickel FGM Type A cylindrical shell under
combined static axial compressive loading and periodic axial loading (m=1, n=1,

N, =0.5N_,, UR=1.0, T=300K, ®=1.0, h/R=0.01).

cr’

the ratio of thickness to radius, the amplitude of static
axial load, thermal environment and volume fraction

exponent.
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