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Abstract

In this article, we introduce a new general composite iterative scheme for finding a
common element of the set of solutions of a generalized mixed equilibrium
problem, the set of fixed points of an infinite family of nonexpansive mappings and
the set of solutions of a variational inequality problem for an inverse-strongly
monotone mapping in Hilbert spaces. It is shown that the sequence generated by
the proposed iterative scheme converges strongly to a common element of the
above three sets under suitable control conditions, which solves a certain
optimization problem. The results of this article substantially improve, develop, and
complement the previous well-known results in this area.
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1 Introduction
Let H be a real Hilbert space with inner product (;, ) and induced norm || - ||. Let C
be a nonempty closed convex subset of H and S : C — C be a self-mapping on C. Let
us denote by F(S) the set of fixed points of S and by Pc the metric projection of H
onto C.

Let B: C — H be a nonlinear mapping and ¢ : C — R be a function, and ® be a
bifunction of C x C into R, where R is the set of real numbers.

Then, we consider the following generalized mixed equilibrium problem of finding
x € C such that

O(x, y) + (Bx, y —x) +p(y) —¢(x) >0, VyeC, (1.1)

which was recently introduced by Peng and Yao [1]. The set of solutions of the pro-
blem (1.1) is denoted by GMEP(0®, ¢, B). Here, some special cases of the problem (1.1)
are stated as follows:
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If B = 0, then the problem (1.1) reduces the following mixed equilibrium problem of
finding x € C such that

O y)+o() —e(x) =0, VyeC, (1.2)

which was studied by Ceng and Yao [2] (see also [3]). The set of solutions of the
problem (1.2) is denoted by MEP (®,¢).

If = 0 and B = 0, then the problem (1.1) reduces the following equilibrium pro-
blem of finding x € C such that

O(x, y) >0, VyeC. (1.3)

The set of solutions of the problem (1.3) is denoted by EP(®).
If = 0 and O(x, y) = 0 for all x, y € C, then the problem (1.1) reduces the following
variational inequality problem of finding x € C such that

(Bx, y—x) >0, VyeC. (1.4)

The set of solutions of the problem (1.4) is denoted by V I(C, B).

The problem (1.1) is very general in the sense that it includes, as special cases, fixed
point problems, optimization problems, variational inequality problems, minmax pro-
blems, Nash equilibrium problems in noncooperative games, and others; see [2,4-6].

Recently, in order to study the problem (1.3) coupled with the fixed point problem,
many authors have introduced some iterative schemes for finding a common element
of the set of the solutions of the problem (1.3) and the set of fixed points of a counta-
ble family of nonexpansive mappings; see [7-16] and the references therein.

In 2008, Su et al. [17] gave an iterative scheme for the problem (1.3), the problem
(1.4) for an inverse-strongly monotone mapping, and fixed point problems of non-
expansive mappings. In 2009, Yao et al. [18] considered an iterative scheme for the
problem (1.2), the problem (1.4) for a Lipschitz and relaxed-cocoercive mapping and
fixed point problems of nonexpansive mappings, and in 2008, Peng and Yao [1] stu-
died an iterative scheme for the problem (1.1), the problem (1.4) for a monotone, and
Lipschitz continuous mapping and fixed point problems of nonexpansive mappings.

In particular, in 2010, Jung [9] introduced the following new composite iterative
scheme for finding a common element of the set of solutions of the problem (1.3) and
the set of fixed points of a nonexpansive mapping: x; € C and

O(un, y) + T1n<y —Up, Uy —Xn) 20, VyeC,
Yn = ouf (%n) + (1 — an) Tuy, (1.5)
Xne1 = (1 = Bu)yn + BnTyn, n =1,

where T is a nonexpansive mapping, f is a contraction with constant k € (0, 1), {&,,},
{B,3< [0, 1], and {r,} < (0, ). He showed that the sequences {x,} and {u,} generated
by (1.5) converge strongly to a point in F(T') n EP (®) under suitable conditions.

On the other hand, the following optimization problem has been studied extensively
by many authors:

1
min ’2’“ (Ax, 3) +  llx = ull” = h(x)

xe
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where Q = ﬂool Cn, C1, Cy, ---are infinitely many closed convex subsets of H such
n=

that mool Cy #Pue H,pu 20 is a real number, A is a strongly positive bounded linear
n=

operator on H (i.e., there is a constant y > 0 such that (Ax, x) > y|lx||%> Vx € H) and &
is a potential function for y f (i.e., h’(x) = y fix) for all x € H). For this kind of optimi-
zation problems, see, for example, Bauschke and Borwein [19], Combettes [20],

Deutsch and Yamada [21], Jung [22], and Xu [23] when Q = ﬂ[\jl C; and h(x) = (x, b)

for a given point b in H.
In 2009, Yao et al. [3] considered the following iterative scheme for the problem (1.2)
and optimization problems:

1
O(yn ¥) +9(r) = @) + (K'(yn) =K'(xn), y=yn) 20, Vy e H,
Xne1 = (U + V(%)) + Brxn + (1 — Bu)] — an(I + A))Wpyn, n >1,

(1.6)

where u € H; {o,,} and {,} are two sequences in (0,1), # > 0, r >0, ¥ >0; K'(x) is the
Fréchet derivative of a functional K : H — R at x; and W, is the so-called W-mapping
related to a sequence {T,} of nonexpansive mappings. They showed that under appro-
priate conditions, the sequences {x,} and {y,} generated by (1.6) converge strongly to a
solution of the optimization problem:

n

1
(Ax, x) + _||lx — ul|* — h(x).
xeM2, F(T,) N MEP(©,9) 2 2

In 2010, using the method of Yao et al. [3], Jaiboon and Kumam [24] also introduced
a general iterative method for finding a common element of the set of solutions of the
problem (1.2), the set of fixed points of a sequence {T,} of nonexpansive mappings,
and the set of solutions of the problem (1.4) for a o-inverse-strongly monotone map-
ping. We point out that in the main results of [3,24], the condition of the sequentially
continuity from the weak topology to the strong topology for the derivative K of the

function K : C — R is very strong. Even if K(x) = ”’“2”2, then K’ (x) = x is not sequen-

tially continuous from the weak topology to the strong topology.

In this article, inspired and motivated by above mentioned results, we introduce a
new iterative method for finding a common element of the set of solutions of a gener-
alized mixed equilibrium problem (1.1), the set of fixed points of a countable family of
nonexpansive mappings, and the set of solutions of the variational inequality problem
(1.4) for an inverse-strongly monotone mapping in a Hilbert space. We show that
under suitable conditions, the sequence generated by the proposed iterative scheme
converges strongly to a common element of the above three sets, which is a solution
of a certain optimization problem. The results of this article can be viewed as an
improvement and complement of the recent results in this direction.

2 Preliminaries and lemmas

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. In
the following, we write x,, - x to indicate that the sequence {x,} converges weakly to
x. %, — « implies that {x,} converges strongly to x.
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First, we know that a mapping f: C — C is a contraction on C if there exists a con-
stant k € (0, 1) such that ||fix) - fiy)|| < k||x - y||, », ye€ C. A mapping T: C — Cis
called nonexpansive if ||Tx - Ty|| < ||x - y||, x, y € C.

In a real Hilbert space H, we have

[+ (1= 2)y[* = 2+ (1= )y = 20 = 2) =

for all x, y e H and A € R. For every point x € H, there exists the unique nearest
point in C, denoted by Pc(x), such that

llx = Pe(x)Il = [lx —ylI

for all y e C. Pc is called the metric projection of H onto C. It is well known that Pc
is nonexpansive and P satisfies

(x =y, Pe(x) = Pe(r)) = [Pe(@) = P’ 2.1)
for every x, y € H. Moreover, Pc (x) is characterized by the properties:

lx=7" =[x = Pe@)|* + [y - P’
and

u=Pe(x) & (x—u, u—y)>0forallxeH, yeC.

In the context of the variational inequality problem for a nonlinear mapping F, this
implies that

ueVIC, F) < u=DPc(u—AFu), foranyx > 0. (2.2)

It is also well known that H satisfies the Opial condition, that is, for any sequence
{x,,} with x,, — x, the inequality

liminf|x, — x| < lim inf||xﬂ — yH
n—00 n—00

holds for every y € H with y = «.
A mapping F of C into H is called o-inverse-strongly monotone if there exists a con-
stant & >0 such that

(x—y, Fx—Fy) > a|Fx— Fy|’,

Vx, y € C.

We know that if F = I - T, where T is a nonexpansive mapping of C into itself and
is the identity mapping of H, then F is )-inverse-strongly monotone and V' I (C, F) =
F(T ). A mapping F of C into H is called strongly monotone if there exists a positive
real number 1 such that

2, Vx, y € C.

(x —y, Fx — Fy) Zn”x—y

In such a case, we say F is n-strongly monotone. If F is 1-strongly monotone and
k-Lipschitz continuous, that is, ||Fx - Fy|| < k||« - y|| for all x, y € C, then F is
L-inverse-strongly monotone. If F is an @-inverse-strongly monotone mapping of C
into H, then it is obvious that F is Oll—Lipschitz continuous. We also have that for all x,
ye Cand A >0,

Page 4 of 23



Jung Journal of Inequalities and Applications 2011, 2011:51 Page 5 of 23
http://www.journalofinequalitiesandapplications.com/content/2011/1/51

|1 = 2F)x— (1 =2F)y|* = ||(x = y) = A(Fx — Fp)|*
= |x=y)* = 2rx =y, Fx = Fy) + 22 |Fx - By|?
< ||x—y||2 +A(A —2a) ||Fx—Fy||2.

Hence, if A < 2a, then I - AF is a nonexpansive mapping of C into H. The following
result for the existence of solutions of the variational inequality problem for inverse-
strongly monotone mappings was given in Takahashi and Toyoda [25].

Proposition Let C be a bounded closed convex subset of a real Hilbert space, and F
be an a-inverse-strongly monotone mapping of C into H. Then, V I(C, F) is nonempty.

A set-valued mapping Q : H — 2 is called monotone if for all x, y € H, fe Qx and
g€ Qyimply (x -y, f- g) > 0. A monotone mapping Q : H — 2" is maximal if the
graph G(Q) of Q is not properly contained in the graph of any other monotone map-
ping. It is known that a monotone mapping Q is maximal if and only if for (x, f) € H
x H, (x -y, f- g > 0 for every (y, g) € G(Q) implies f € Qx. Let F be an inverse-
strongly monotone mapping of C into H, and let Ncv be the normal cone to C at v,
that is, Nev = {we H:{v-u, w)>0, for all u e C}, and define

_JFv+Ncy,veC
Q"‘{@ Vg C.

Then, Q is maximal monotone and 0 € Qv if and only if ve V I(C, F); see [26,27].

For solving the equilibrium problem for a bifunction ® : C x C — R, let us assume
that ® and ¢ satisfy the following conditions:

(A1) O(x, x) =0 for all x € C;

(A2) © is monotone, that is, O(x, y) + ® (y, x) <0 for all x, y e C;

(A3) for each x, y, ze C,

lgfg)l O(tz+ (1 —t)x, y) < O(x, y);

(A4) for each x € C, y o O (x, y) is convex and lower semicontinuous;

(A5) For each y e C, x o O (x, y) is weakly upper semicontinuous;

(B1) For each x € H and r >0, there exists a bounded subset D, € C and y, € C
such that for any ze C\D,,

1
O 1)+ o) ~9(@) + (=7 2=2) <0;

(B2) C is a bounded set;

The following lemmas were given in [1,4].

Lemma 2.1 ([4]) Let C be a nonempty closed convex subset of H, and ® be a bifunc-
tion of C x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then, there exists ze C
such that

1
Oz y)+ (y—z z—x>0, VyeC.
T

Lemma 2.2 ([1]) Let C be a nonempty closed convex subset of H. Let ® be a bifunc-
tion form C x C to R satisfying (A1)-(A5) and ¢ : C — R be a proper lower semicontin-
uous and convex function. For r >0 and x € H, define a mapping S, : H — C as follows:
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Si(x)={z € C:0(z, y) +o(y) — ¢(z) + :(y—z,z—x) >0, VyeC}

for all z e H. Assume that either (B1) or (B2) holds. Then, the following hold:
(1) For each x € H, S/(x) = &;
(2) S, is single-valued;

(3) S, is firmly nonexpansive, that is, for any x, y € H,
[IS;x = SplI* < (Srx = Syy, x = p);
(5) MEP (O, ¢) is closed and convex.

We also need the following lemmas for the proof of our main results.
Lemma 2.3 ([23]) Let {s,} be a sequence of non-negative real numbers satisfying

Spv1 = (1 - )\n)sn +Bn, n=x=1,

where {1,} and {B,} satisfy the following conditions:

(i) A} € [0, 1] and Y72, Ay = ocor, equivalently, l_[:zl (1—-2,) =0,

. ] ﬁn
(i) lim sup f* < 0or 5, 16, < o5,

Then, lim,,_,.. s, = 0.

Lemma 2.4 In a Hilbert space, there holds the inequality
e+ yI1> < 1Ix1? + 2(y, x+y),  Vx, y € H.

Lemma 2.5 (Aoyama et al. [28]) Let C be a nonempty closed convex subset of H and
{T,} be a sequence of nonexpansive mappings of C into itself. Suppose that

o0
Zsup{||Tn+1z — Tyzl| 1z € C} < oo.
n=1
Then, for each y € C, {T,y} converges strongly to some point of C. Moreover, let T be
a mapping of C into itself defined by Ty = lim,,_,.. T,y for all y € C. Then, lim,,_,., sup
{||Tz - T,z|| : z€ Cy = 0.
The following lemma can be found in [3](see also Lemma 2.1 in [22]).
Lemma 2.6 Let C be a nonempty closed convex subset of a real Hilbert space H and
g: C > R Ufeo} be a proper lower semicontinuous differentiable convex function. If x* is
a solution to the minimization problem

8(x") = infg(x),
xeC
then
gx), x—x>0, xeC.

In particular, if x* solves the optimization problem

1
minZ(Ax, x) + 2||x —u||* = h(x),

xeC
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then
+ (vf— (I +pA)x", x—x") <0, x€C,
where h is a potential function for y f.

3 Main results
In this section, we introduce a new composite iterative scheme for finding a common
point of the set of solutions of the problem (1.1), the set of fixed points of a countable
family of nonexpansive mappings, and the set of solutions of the problem (1.4) for an
inverse-strongly monotone mapping.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H such
that C £ C € C. Let ® be a bifunction from C x C to R satisfying (A1)-(A5) and ¢ : C —>
R be a lower semicontinuous and convex function. Let F, B be two o, B-inverse-strongly

monotone mappings of C into H, respectively. Let {T,} be a sequence of nonexpansive
mappings of C into itself such that Q, := ﬂool F(T,) N VI(C, F) N GMEP(®, ¢, B) # 0.
n=

Let > 0 and y> 0 be real numbers. Let f be a contraction of C into itself with constant k
€ (0, 1) and A be a strongly positive bounded linear operator on C with constant

y €(0,1)such that0 <y < “*{fﬁ Assume that either (B1) or (B2) holds. Let u e C,
and let {x,},{y,.}, and {u,} be sequences generated by x, € C and
O(utn, ¥) + (Bxn, ¥ — ) + () — @(un) + | (y = thn, thy —xa) 20, VyeC,
Yu=an(u+vf(xs)) + (I — an(I + pA))TPc(uy — AnFuy), (1s)
Xn+l = (1 - ﬂn))’n + ,BnTnPC(Yn — )LnFYn)r n>1,
where {0}, {8} € [0, 1], 4, € [a, b] € (0, 200) and r,, € [c, d] < (0, 2B). Let {e,.}, L.}
and {B,,} satisfy the following conditions:
o0
(C1) &, =0 (= )y~ aw =00

(C2) B, € [0, a) for all n = 0 and for some a € (0, 1);
oo oo
(C3) Zn:1 laner —apl < 00, Zn:1 [Brs1 — Bnl < o0, ZZZI [Ans1 — Anl < 00,

> I —ml <o

Suppose that Z:l sup{||Ty+12 — Tpzl| : z € D} < oo for any bounded subset D of C.
Let T be a mapping of C into itself defined by Tz = lim,, ,.. T,z for all ze€ C and sup-
pose that F(T) = ﬂ:zl F(Ty). Then {x,} and {u,} converge strongly to q € 4, which is
a solution of the optimization problem:

1
min';(Ax, %)+ Il = ull” = h(x),  (OP1)

xeR

where h is a potential function for v f.

Proof First, from o, — 0 (1 — ) in the condition (C1), we assume, without loss of
generality, that o, < (1 + u||A|])" and 2((1 + u)7 — yk)an < 1for n > 1. We know
that if A is bounded linear self-adjoint operator on H, then

IIAIl = sup{|(Au, u)| :u € H, [lu]| =1}.
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Observe that
(I —an(I+pA))u, u) =1 — oy — anp(Au, u)
> 1 —ay —auu|lAll
Z 0/
which is to say I - o,(I + pA) is positive. It follows that
I —an(I+pnA)|| =sup{{(I —on(I+pnA))u, u) : ueH, |lul| =1}
=sup{l — oy —oyuf{Au, u) : ue H, |jul| =1}
<1- an(l + /v”;)
<1—ay(1+pu)y.
Let us divide the proof into several steps. From now on, we put z,, = P¢c (u,, -A,.,Fu,,)
and w,, = Pc (yn - /’LnFyn)
Step 1: We show that {x,} is bounded. To this end, let
pe = ﬂool F(T,) N VI(C, F)N GMEP(®, ¢, B) and {S;,} be a sequence of map-
n=
pings defined as in Lemma 2.2. Then p=Typ =S, (p — r:Bp) and p = Pc (p - 1,Fp)

from (2.2). From z, = Pc (u, - 1,Fu,) and the fact that Pc and I - A,,F are nonexpan-
sive, it follows that

llzn —pIl < 11 (I — ApFup — (I — XuF)pll < Nlun — pll.

Also, by u, = S, (xn — 7Bxy,) € C and the S-inverse-strongly monotonicity of B, we
have with r, € (0, 28),

llun — plI* < |1xn — 1aBxy — (p — 1aBp)II
%2 — plI* — 27 (X — p, Bxy — Bp) +12/|1Bx,, — Bpl|?
[ — P||2 + rn(rn - 2ﬂ)/3||an - BP||2

2
< llxn —pII%,

IA

IA

that is, ||u, - p|| < ||%, - p||, and so

llzn —pII = llxn — pII. 3.1)
Similarly, we have

[lwn =PIl < lyn — pII. (3.2)
Now, set A = (I + uA). Then, from (IS) and (3.1), we obtain

llyn — plI
< (1= (1 + pp)an)lzn — pll +anllull
+any [If (xn) = F(P)I] + anllyf(p) — Apll

< (1= (1 +p19)an)llzn — pll + anllull + @nykllxa — pll + anllyf(p) — Apll (3.3)
< (1= ((1+ )7 — yR)an)llxa — pll + an(llyf(p) — Apl| + [ull)
Ilyf(p) — Apl| +lull

=(1—=((1+u)7 —yR)an)llxn —pll + ((1+n)y — yk)an (1+0)7 — vk
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From (3.2) and (3.3), it follows that

[xne1 = pll < (1 = Ba)llyn — Pl + Bullwn — plI
=< (l_ﬂn)”)’n_f’”"' ﬂnll)’n—Pll
= |lyn — pll (3.4)
Iy f(p) — Apll + [full
< n — , _ .
< max{llx pll (1+1)7 — vk }

By induction, it follows from (3.4) that

n>1.

lyf(p) — Apl| + [full
(Q+p)y—yvk |’

[lxn — pll < maX{llxl —pll,

Therefore, {x,} is bounded. Hence {u,}, {y.}, {z.}, {(w.}, fx,)}, {Fu,}, {Fy,}, and
{AT,z,} are bounded. Moreover, since ||T,z, - p|| < ||*, - p|| and || T,w,, - p|| < ||y, -
pll, {T,z,} and {T,w,} are also bounded, and since ¢, — 0 in the condition (C1), we
have

[1Yn — Tuzall =an||(u+yf(xn))_ATnzn|| — 0 (asn— o0). (3.5)

Step 2: We show that lim,,_,.. ||x,,1 - %,|| = 0. Indeed, since I - A,,F and P are non-

expansive, we have

[1zn — zn—1l| ||PC(un - }LnFun) - PC(un—l - }Ln—IFun—l)”

= ||(I - )\nF)un - (I - }\nF)un—l + ()\n - }\n—l)Fun—l I (3.6)
< lup — up—1ll + Ay — Au—1| [|[Fup—11l.
Similarly, we get
||wn_wn—1|| = ||Yn_yn—1||+|)Vn_)¥n—1|||FYn—l||- (37)

On the other hand, from u,_1 = S;,_, (Xn—1 — 7Bxy—1) and u, = S, (x, — 7,Bxy), it fol-
lows that

O(un—1, ¥) + (Bxn—1, ¥ — Un—1)

1
+ o(y) —o(un-1) + . (y — tUn—1, Up_1 —Xn—1) >0, VyeC,

n—1
and

®(un: )/) + (Bxn, ¥ — up)

1 (3.9)
+ (ﬂ()’) - (p(un) + r ()’ — Up, Up — xn> = 0, Vy eC.

n

Substituting y = u,, into (3.8) and y = u,, _ ; into (3.9), we obtain

1
®(un—1r un)+(an—lr un_un—1)+§0(un)_(/)(un—l)+r (Up —Up—1,Up—1 —Xp—1) = 0
1

n—

and

1
O(tn, Un—1) + (Bxn, Up—1 — Un) + @(Un—1) — @(Un) + . (Un—1 — Up, Up — Xp) > 0.
n

Page 9 of 23
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From (A2), we have

Up—1 — Xn—1 Up — Xn
(Un — uUn—1, Bxn—1 — Bxy + - ) >0,
Tn—1 Tn

and then

Tn—1 (

(Up — Up_1, Tn—l(an—l - an) +Up—1 — Xp—1 — Up — xn)> > 0.

n

Hence, it follows that

(Up — Up_1, U—rn—lB)xn - (I - Tn—lB)xn—l

Tyn— 3.10
+Up_1 — Uy + Uy — Xy — "l(un—xn))zo. ( )
T

Without loss of generality, let us assume that there exists a real number ¢ such that
r, >¢ > 0 for all n > 1. Then, by (3.10) and the fact that (/ - r,.1B) is nonexpansive, we

have
[ty _unfl”2
Th-1
< (Up — Up_1, (I — rnle)xn - (I - Tnle)xnfl + (1 - r; )(un - xn))
n
Th—1
< lun — tp-1l| {||(I —TpoB)xn — (I — rac1 B)xpa |+ |1 — " | [y _xn”}
n
Tn—1
= ||un_unl||{||xn_xnl||+ 1-— ||un_xn||},

n

which implies that

1
||un_un—1|| =< ||xn_xn—1||+r |Tn_rn—1| ||un_xn||

- n 3.11
" 1)
=< ||xn_xn—1||+ c |Tn_rn—1|/
where M; = sup {||u,, - x,|| : n = 1}. Substituting (3.11) into (3.6), we have
M,
zn — zu—1ll < X0 — Xp—1ll + c [Th — Tn—1| + [An — Au—1| [|[Fup—1ll. (3.12)

Simple calculations show that

Yn = Vn—1 = (@n — an—1)(u+yf(xn-1) — AT,,,lz,,,l) +any (f (xn) — f(xn-1))
+( - oen;ﬁ) (Thzn — Thzn—1) + (I — oen/_X)(Tnzn_l —Th-12p-1).
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Hence, by (3.11) and (3.12), we obtain

lyn = yn1ll < lotn — cnt (el + Y 1f Gent) 1] + HAI 1| Tn=12n-111)
+ anYkl[Xn — xn-1ll + (1 — (1 + pw)yom)llzn — zn-1l]
+ (1= (1 + p)yan)Thzn-1 — Tn-12n-1l]
< low — =t [(1ull + ¥ [1f (n=)I] + Al | Tuz120-111)
+ anykllxn = Xpoall+ (1= (1 + p)yan)|lxn — xp-1l|
M,

+ = Taoal + A = Apa| [Fna || + sup |[Toz — To-12],
C zeDy

(3.13)

where D; is a bounded subset of C containing {z,}. Also observe that

Xn+1l — Xn = (1 - ,Bn)()/n - Ynfl) + (ﬂn - ,anl)(Tnflwnfl - Ynfl)

(3.14)
+ ,Bn(ann - annfl) + ,Bn(annfl - Tnflwnfl)-

By (3.7), (3.13) and (3.14), we have

%1 — Xnl|
< (1 = Bu)llyn = ynall + 1Bn = Bu—1l(Tn—1%n—11 + [[yn-11)
+ Bullwn — wp—1ll + BullTawn—1 — Tn—1Wn-1l|
= (1= Ba)llyn = Yn—rll + Ballyn — Yn—1ll + Buldn — An—a| [IFyn—1ll
+Bn — Bn-1l(ITa—1wn—1l + [[yn—111) + Bal | Tawn—1 — Ty—1wn—1|
< yn — Yn=1ll + 1An — An—1l [|Fyn-1ll
+1B0 = Bt | (I Tn—1wn—1 |l + llyn—11l) + I Town—1 — Typ1wy_1]|
< (1= ((1+w)y — vE)an)llxn — xn-1ll

#(otw — ety |2l + ¥ I Gonmt)1| + HAI] [ Tuc120-111) (3.15)

M,
+|An = An—1[(|IFyn—1ll + [|Fun—11]) + c [Tn — Tn—1]

+1Bn = Bno1 (I Tn—awp—1 1] + [lyn—111) + 2 sup{||Tnz — Ty—1Z|

zeD;
- M,
= (l _((l+M)y_yk)an)||xn_xn—l||+ c |Tn_Tn—l|

+ Mooy —ap_1| + M3lAy — Ay_1] + MyglBy — Bn-1l
+2sup ||Thz — Ty-12l],

zeD,

where D, is a bounded subset of C containing {z,} and {w,},
Mo = supd{[[ul] + yIIf ()l + AN 1 Tuzall = 1 > 1), Ms = sup{||[Eyl| + |[Fusl| = 1 2 1},
and My = sup{||T,w,|| + ||y.|| : » = 1}. From the conditions (C1) and (C3) and the
condition Y 72, sup{||Ty.1z2 — T¢|| :z € D} < oo for any bounded subset D of C, it is

easy to see that

Jim (14 07 = yk)an =0, 3 ((1+ )7 = yk)an = oo,

n=1
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and

o0
M,
Z( I = T+ Mal oty — ] + Ml — |

n=2

zeD,

+My|By — Bu—1l + 2sup ||Thz — Tn—IZ”) < 0.

Applying Lemma 2.3 to (3.15), we obtain
lim [[xp1 — x| = 0.
n—o0o
Moreover, from (3.11), it follows that
lim [|upe1 — ugl| = 0.
n—oo
From (3.12) and (3.13), we also have
lim ||z, — 24/l =0 and lim ||y —yull = 0.
n—oo n—oo

Step 3: We show that lim,,_.. ||x, - u,|| = 0. To this end, let p € Q;. Since S;, is
firmly nonexpansive and u, = S;, (X, — r,Bx,), we have

[lun — P||2 < (Sr,, (xn - Tann) — Srn (P — ran)r Xp — TnBxy — (P - 1”an))

1
2{||un - P||2 +||%y — rBxy — (p — Tan)||2}

1
- 2{||xn — 1uBxy — (p — 1uBp) — (tn — P)||2}

1
< 2{||un—p||2+||xn—p||2 — 1xn — un — ra(Bxn — Bp)|I*}
1
< 2{||un—p||2+||xn—p||2 — |lxn — unll?
+ 2rn<an —BP/ Xn _un> _TSHan —BP||2}-
Hence,
|[un — pl|?
< lxn = plI® = [1xn — tnl|® + 27 (Bxn — Bp, xn — un) — 12||Bxy — Bp||? (3.16
< 1xn — plI* = [1%n — unl* + 27 (Bxn — Bp, Xy — )
< xn = plI? = 1% — unl[* + 274]1Bxn — Bpl| |lxn — un]].
On the other hand, since z, = P¢ (u,, - A,,Fu,,), we get
2 2
Zn — < I —A,F)u, — (I — A, F
llzw — pII* < 11 ( nz)n ( WF)pl| (3.17)
< lun — plI*.
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From (3.16), (3.17), and the convexity of || ||*, we obtain

llyn =PI < anlle+ yf(xa) + (I = A)Tuzw — pII* + (1 — )| Tnzn — plI?
< apllu+yf(xn) + (I = A)Tuzn — plI> + (1 — )z — plI®
< apllu+ yf(xn) + (I — A)Tuzg — pII> + (1 — atn)llun — plI?
< apllu+yf(xn) + (I — A)Tnzn — pl|? (3.18)
+ (1 = an){llxn = pII> = 1% — un|* + 27all%n — unl| ||Bxy — Bpll}
< anllu+yf(xn) + (I — A)Tuzn — plI* + 1% — pII?
— (1 = o)l lxn — tnl* + 2(1 — atn)rullXn — tinl| [|Bxn — BplI.

On the another hand, we note that

[luy — P||2 < ||(xn — rann) - (p - ran)||2
|1Xn — pl1> — 27 (xy — p, Bx, — Bp) +12||Bx, — Bp||? (3.19)
— plI* — 2ruBl|Bx, — Bpl|* + 12 ||Bx, — Bpl|*.

IA

IA
=
=

Using the convexity of || || (3.2), (3.18), and (3.19), we have
%1 — pII> < llyn — plI?
< onllu+yf(xn) + (I — A)Tuzn — pII* + (1 — o)l un — plI?
< aullu+ Vf(xn) + (I — A)Tnzn - P||2

20)
+ (1 — an){llxn — pII* — 2ruB1|Bx, — Bpl|* + 15 1|Bxs — Bp||*}
< anllu+yf(xn) + (I — A)Tuza — plI* + llxn — plI
+ (1 = ay)ra(ra — 28)||Bx, — Bp||°.
Hence, we have
(1 — ay)c(28 — d)||Bx, — Bp||*
=< (1 - Oln)rn(z,6 - rn)”an - BP||2
< anllu+yf(xn) + (I — A)Tuzn — plI* + (Ilxn — plI> = |1xXns1 — plI*)
< anllu+yf(xn) + (I — A)Tazn — pII* + 11xn — Xnsr 11 (1160 — Pl + 1xne1 — ).
From the condition (C1), {r,} € [¢, d] € (0, 23) and Step 2, it follows that
lim ||Bx, — Bp||* = 0. (3.21)
n—oo

Also, by (3.16) and (3.20), we have

xne1 =PI < 1lyn — pII?
<apllu+yf(xn) + (I — A)Tuzg — pII” + (1 — on)llun — plI?
< apllu+yf(xn) + (I — ATz, —plI
+ (1 = o) {llxn — Pl = 1160 — unll* + 27| — wnll 1|Bxy — Bpl|}
< anllu+yf(x) + (I — A)Tuzn — plI* + [y — pII?
— (1= )% — tnll® + 27(1 = &tn) 1%y — ta] [|Bxn — Bpl|,
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and so

(1 — o) l1%n — unl® < otnllu+yf(x0) + (I — A)Tuzn — plI* + |lxn — plI?
— [1%n1 = PII* + 27 (1 — o) %0 — unl| |[Bxy — Bpl|
< apMs + [|xg — X |1 (|10 — plI + N1 — pll)
+ 21 (1 — o) 1%y — unll |1Bx, — Bpl|,

where M5 = sup{||u+ yf(x,) + I — A)Tpz, — pl|* : n > 1}. Since |[|x,,1 - x,|| = 0, a0,
— 0, and ||Bx,, - Bp|| — 0 as n — o, we obtain
lim |[|x, — us|| = 0. (3.22)
n—-oo

Moreover, since lim inf,_,.. r,, > 0, we also have

. Xn — U . 1
lim Il = tnll_ lim  ||x, — uql| = 0. (3.23)
n— 00 T n—o00 1,

Step 4: We show that lim,_,.. ||%, - T,2,|| = 0 and lim,, .. ||x, - ¥,|| = 0. Indeed,
since z,, = P¢ (4, - A,Fu,) and w,, = Pc (y,, - 1,,Fy,), we obtain with the condition (C2)

X1 —pull < ,Bn(”Tnzn — Towy|| + [lyn — Tnzn”)
< a(llzn — wall + lyn — Tuzall)

=< a(“un = Vull + llyn — nzn”)

< a(llun — xull + 10 — Xne1 |l + xne1 = Yall + 1lyn — Tuzall),

which implies that

a
[%ne1 — yull < 1_a(“un_xn”+||xn_xn+l||+||)’n_ nZnll).

Thus, from (3.5), Step 2, and Step 3, we have
||xn+1 _)’n“ — 0 as n — oo.

Also we have
[1Xn = ynll = [1%n — Xpar | + [[Xpe1 — yull > 0 as n — oo.
Since lim,, .. ||y, - Tyz,|| = 0 by (3.5) in Step 1, we obtain
[1Xn — Tuzall < %0 = ¥nll + llyn — Tuzall — 0 as n — oo.

Step 5: We show that lim,, ,.. || 7,2, - z,|| = 0. Let p € Q,. Using the convexity of ||
||% we compute



Jung Journal of Inequalities and Applications 2011, 2011:51
http://www.journalofinequalitiesandapplications.com/content/2011/1/51

lyn = pII” < anllu+yf(xa) + (I = A)Tozn — plI> + (1 — )l Tnzn — plI?

< anllu+yf(xa) + (I = A)Tuzn — pII* + (1 = @n)llzn —pII?
= apllu+yf(xa) + (I — A)Tpza — plI®

+ (1 = an)l|Pc(ttn — MnFun) — Pc(p — 2nFp)I?
< agllu+yf(xa) + (I = A)Tyzy — plI?

+ (1= )|t =) = 2 (Futn — Fp) I (3.24)
= ayllu+ yf(xn) + (I = A) Tz, — pl|?

+ (1 = atn){llun — pII> = 22 (un — p, Fup — Fp) + A2||Fuy — Fpl|*}
< apllu+yf(xn) + (I — A)Tuzn — plI?

+ (1= an){llun — pII* — 2Anet|[Fun, — Fpl|> + A2||Fuy — Fp||*}
<apllu+yf(x.)+ (I _A)Tnzn - pllz

+ {160 = plI> + (1 = atn)n(An — 20) |[Fu, — Fp||*.

Using (3.24), we obtain

%1 — DI < llyn — plI?
< anllu+yf(xn) + (I — A)Tuzn — plI?
+ 1160 — P12 + (1 — an)An(An — 2a) ||Fu, — Fp||%.

Hence, we have
(1 —ap)a(2a — b)||Fu, — FP||2
< (1 = an)rn (20 — Ap)l|Fuy —FP||2
< anllu+yf(xn) + (I = A)Tyzn — plI?
+(11n = pll = e — pID(Hxn — plI + a1 — plI)

< ayMs + ||x, _xn+1||(||xn = pll + [|xn41 —P||)

where M5 = sup{||u+ yf(x,) + (I — A)Tpz, — p||> : n > 1}. From the condition (C1),
Ay € la, b] € (0, 20x), and Step 2, it follows that

lim ||Fu, — Fp|| =0. (3.25)
n—oo
On the other hand, using z, = Pc (u,, - A,,Fu,) and (2.1), we observe that

[lzn — P||2 =< ((”n - )VnF”n) - (P - )Van)l Zy — )

1
< 2{||un—p||2+||zn—p||2 — (tn — 20) = An(Fun — Fp)||*}
1
< 2{||xn—p||2+||zn—p||2 —lun — zall?
+ 2hn (U — 2n, Fuy — Fp) — A3 ||Fu, — Fp||?},
and so
2 2 2
Zn — < |lxn — — |lup —z
12w — pII> < 1lxn — pII> = |t — znl| (3.26)

+ 2An(Up — zn, Fu, — Fp) _)\i“Fun —FP||2
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Thus, from (3.26), we have

llyn = pII* < otnllu+ yf(xn) + (I — A)Tuzw — pII> + (1 — tn)l|Tnzn — plI
< ol +yf(xa) + (I — A)Tzn — plI* + (1 — a)llzn — plI?
< anllu+yf(xn) + (I — A)Tpzy —plI?
+ (1= an){l1xn = pII> = llun — zal
+ 2hn (tln — Zn, Fun — Fp) — A7 ||Fuy — Fp||*}
< anllu+yf(xn) + (I —A)Tuzn — plI> + [Ixn — plI?
— (1 = o)ty — zal)* + 220 (1 — ) (U — 24, Fu, — Fp)
— A2||Fu, — Fp||>.
Hence, we obtain
xner =PI < llyn — pII?
< onllu+yf(xn) + (I — A)Tuzn — plI> + 160 — plI?
— (1 — o)ty — zulI* + 240 (1 — 0tn){ttn — 20, Fu, — Fp)
— 22||Fu, — Fpl|?,

(3.27)

which implies that

(1 — an)llun _Zn”z

< anllu+yf(xn) + (I —A)Tnzn — pII* + l1xn — pII* — |1xne1 — pII?
+2hn(1 — o)ty — 2l ||Fun — Fpl|

< anllu+yf(xn) + (I — A)Tzn — pII* + [xne1 — Xl | (110 — plI + |01 — pII)
+2)vn(1 - an)””n — zyl| ||Fuy _FPH

From ||x,,1 - x,|| = 0, o, = 0 and ||Fu,, - Fp|| — 0 as n — oo, it follows that
lim |[un — zn|| = 0. (3.28)
n—oo

Since || Tz, - zul| < | Twzn - %l + ||%0 - tall + ||t - 24||, from Step 3, Step 4, and

(3.28), we conclude that

lim ||Tpzn — 24| = 0. (3.29)
n—oo

We notice that by the assumption on 7, (3.29) and Lemma 2.5,
lim [|Tz, — 24|l < lim ([|T2zn — Taznl| + || Tnzn — 2all)
n— 00 n— 00

. . (3.30)
< lim sup{||Ty — Tyyll : y € C} + lim ||Tyzn — 24| = 0.
n=>00 n=>00

Step 6: We show that

limsup(u + (yf — (I +pA))d, ya— q) = limsup(u + (vf — A)g, yo —q) <0,

n—o0

where ¢ is a solution of the optimization problem (OP1). To this end, first we prove
that

limsup (u + (yf — A)q, Tzn — q) < O.

n—oo
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Since {z,,} is bounded, we can choose a subsequence {zp,} of {z,} such that

limsup (u-+ (7 = A)q, Tz = q) = lim (u+ (f = A)q, Ten, — q). (331)

n—oo

Without loss of generality, we may assume that {z,,} converges weakly to z € C.
From ||7%z, - z,|| — 0 in (3.30), it follows that Tz, — z.

Now, we will show that z € Q. First, we show thatz € mool F(T,) = F(T). Assume
n=

that z ¢ F(T). Since Zn;, = Z and 7z # z, by the Opial condition, we obtain
liminf||z,, — z|| < liminf||z,, — Tz||
1—>00 1—>00
< liminf(||zy, — Tzy,|| + || Tzn, — Tzl||)
1—>00

< liminf||z,, — z||,
1— 00

which is a contradiction. Thus we have z € |oo1 F(T,) = F(T).
n=
Next, we prove that ze V I(C, F). Let

Qv = {Fu+ch,veC

@, v¢C,

where N¢v is normal cone to C at v. We already know that, in this case, the mapping
Q is maximal monotone, and 0 € Qv if and only if ve V I(C, F). Let (v, w) € G(Q).

Since w - Fv € N¢v and z, € C, we have
(v—12z,, w—Fv) > 0.
On the other hand, from z,, = P¢ (u,, - A,.,Fu,,), we have
(v—2n, zn — (Un — AnFun)) = 0,
that is,

Zn — U
(v —zy, " " + Fuy) > 0.

Thus, we obtain

(v —zp, w) > (v —2zy, Fv)

Zp, — Up,
Z(U—Zni,FU)—(U—Zni, ' X‘*‘Funi)
An,
= (v —2zy, Fv — Fzy;) + (v — 2y, Fzy; — Fuy,) (3.32)
< By |
— (v —2z,,
A

i

Zn;, — Up,

i

An,

i

).

= (v_z‘ﬂ,‘IF‘z‘ﬂ,‘ - Fum) - <U_‘Z71f'

Since ||z, - u,|| — 0 in (3.28) and F is at-inverse-strongly monotone, it follows from
(3.32) that

(v—z,w) >0, asi— oo.

Since Q is maximal monotone, we have ze Q0 and hence z e V I(C, F).
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Finally, we show that z€ GMEP(®, ¢, B). By u, = S;, (x, — r,Bx,); we know that

1
O(tn, y) + (Bxn, ¥y — tn) + @(¥) — @(un) + . (y —un,up —x,) =0, VyeC.

n

It follows from (A2) that

1
(Bxn, y — un) + 0(y) — ¢(un) + . Yy — tn, Uy — %) > O(y, up), VyeC.

n

Hence

1
(Bxn;, y — un,) + (@ (¥) — (¢ (un,) + . (y — Un,, Un, — Xp,) = O(y, un,), Vy e d3.33)

nj

FortwithO<zt<landye Clety, =ty + (1-¢)z Since ye Cand ze C, we have
y; € C and hence O(y, z) < 0. Hence, from (3.33), we have

(Ve — tn;, Bye) = (ye — tn,, Bye) — o(ye) + o(un;) — (ve — tn, Bxn,)
=t O )
= (Vi — Un,, By — Buy,) + (yr — tin;, Buy, — Bxy,)
I ()

nj

— o) + o(un) = (Ve — tn,s

Uy, — X,
Since ||up, — Xu,|| = O from Step 3, we have ||Bup, — Bxy,|| = 0 and lr '
n;

— 0,

Also by ||uy — z4|] = 0 in (3.28), we have Un, = Z. Moreover, from the inverse-strongly
monotonicity of B, we have (y; — uy,, By, — Buy,) > 0. Hence, from (A4) and the weak
lower semicontinuity of ¢, if follows that

(Yt —z By:) = —o(y:) + ¢(z) + O(y, 2) asi— oo. (3.34)
From (A1), (A4), and (3.34), we also obtain

0=0(,y)+ey) — o)
=ty y) + (1 =)0y, 2) + te(y:) + (1 — )e(2) — o(y)
=[Oy y) +e(y) — )]+ (1 — )y — 2 By:)
=[Oy, y) +o(y) — o(y)] + (1 — 1)ty — 2, Byr),

and hence

0=0@uy)+e(y) —e) + (1 —1){y —z By, (3.35)
Letting ¢t — 0 in (3.35), we have for each y e C

©(zy) + (Bz,y —2) + ¢(y) — ¢(2) = 0.

This implies that z e GMEP(®, ¢, B). Therefore z € Q;.
Now, from Lemma 2.6 and (3.31), we obtain

lim sup(u + (yf — A)q, Tzn — q) = lim (u + (vf — A)q, Tzy, — q)

= (u+(yf—A)g.z—q)
<o.

(3.36)
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Since lim, o ||x, - T2,|| < ||%n - Tuzul| + || Tuzn - T2,|| = 0, from Step 4 and

Lemma 2.5, and from (3.36), we conclude that

limsup(u + (yf — A)q, yn — q)

n—o00

< limsup(u + (yf — A)q, yn — Tzy) + limsup(u + (yf — A)q, Tz, — q)

n—-oo

<limsup ||u + (yf — A)qll llyn — Tzul| + limsup(u + (yf — A)q, Tzn — q)

n—oo n— 00

<0.

Step 7: We show that lim,, ,.. ||x, - ¢|| = 0 and lim,,_,.. ||u, - g|| = 0, where g is a
solution of the optimization problem (OP1). Indeed, from (IS) and Lemma 2.4, we have

Xne1 — gl < llyn — gl

(I — 0tnA) (Tuzn — @)1 + 200 (1 + Yf (xn) — Ad, yn — q)

(1= (1 + p)pen)llzn — gl + 20y {f (xn) — £(q), yn — )

+20, (4 + f(q) — Ad, yn — 4))

< (1= (1+p)yan)’llxn — qll* + 2anykllxy — gl llyn — 4l
+2ay(u+ (vf — A)q,yn — q)

< (1= (1 +p)7en)?llen — dl1* + 20y kl1xn — ql1(1yn — Xall + 10 — q11)
+2ay(u+ (vf — A, yn —q)

= (1=2((1 + p)y — yk)aw) %0 — qlI?
vo2((1+12)7)* 1% — qI1* + 2aykllxa — il yn — xall

+20,(u+ (vf —A)q, yn — q),

IA

IA

that is,

A

xne1 — ql1> < (1= 2((1 + 1)7 — yR)om) |10 — q117 + 02 (1 + 1) 7)*Ms
+ 2anyk||)’n — Xn||Mg + 2000 (u + (yf - A)q, Vn — q)
(1 — an)llxn — qlI* + Bu,

where Mg = sup{||x, —q|| : n > 1}, = 2((1 + )7 — yk)a, and
Bu = amlam((1 + 1) 7)*Mg + 2y kllyn — xal Mg + 2(u + (vf = A)g, yn = 9)].
From the condition (C1), ||y, - #,|| — 0 in Step 4, and Step 6, it is easily seen that

%) [ ﬁn
E | %n =00, E | %n =00, and Jim sup < 0. Hence, by Lemma 2.3, we conclude
n= n= —_
n—oo 0p

X, = q as n — . Moreover, from Step 3, we obtain that u,, — ¢ as n — 0. This com-
pletes the proof. O

Corollary 3.2 Let H, C, ©, ¢, F, A, f, , v, ¥ and k be as in Theorem 3.1. Let {T,} be
a sequence of mnonexpansive mappings of C into itself such that

Q) = ﬂ:il F(T,) N VI(C,F) N MEP(®, ¢) # 0. Assume that either (B1) or (B2) holds.

Let u € C and let {x,} and {u,} be sequences generated by x, € C and

1
O(un, y) + o(y) — @(un) + . (y —up,up —x4) =0, VyeC,

n
Yo =an(u+vf(x)) + (I — on(I + nA))TwPc(tty — AnFuy),
Xn+1 = (1 - ,Bn))/n + ﬂnTnPC(Yn — )\nFYn)/ n>1,
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where {a,.}, {B,} € [0, 1], 1, € [a, b] € (0, 20x), and r, € [c, d] < (0, 2f3). Let {c,},
B}, A}, and {r,} satisfy the conditions (C1), (C2), and (C3) in Theorem 3.1. Suppose
that Y o2, sup{||Tn1z2 — Tazl| : z € D} < ocfor any bounded subset D of C. Let T be a
mapping of C into itself defined by Tz = lim,,_,.. T,z for all z € C and suppose that

F(T) = ﬂool F(T,). Then {x,} and {u,} converge strongly to q € Q,, which is a solution
n=
of the optimization problem:

1
min 121« (Ax, x) + ) llx — ul|> — h(x), (OP2)

xe)

where h is a potential function for yf.

Proof Putting B = 0 in Theorem 3.1, we obtain the required result. O

As direct consequences of Theorem 3.1, we can also obtain the following new strong
convergence theorems for the problem (1.1) and fixed point problem.

Corollary 3.3 Let H, C, ©, ¢, B, A, f, i, v, ¥, and k be as in Theorem 3.1. Let T be a
nonexpansive mapping of C into itself such that Qs := F(T) N GMEP(®, ¢, B) = Q.
Assume that either (B1) or (B2) holds. Let u € C and let {x,} and {u,} be sequences
generated by x; € C and

1

O(un, y) + (Bxn, y — tn) + 0(y) — @(un) + . (y —tp,up —x,) =0, VyeC,
n

X1 = (U + Yf(xn)) + (I — on(I + pA))Tu,, n=>1,

where {ot,} € [0, 1], and r, € [c, d] € (0; 2f). Let {a,,} and {r,} satisfy the following
conditions:

o0
(i) o, > 0 (n — o0); anl ay = 0%;

(o] o0
(i) ) lome =l <00 ) [ran =1l < o0
Then {x,} and {u,} converge strongly to q € Qs, which is a solution of the optimiza-
tion problem:
min ¥ (Ax,x) + Il —ul? — h(x), (OP3)
xeQs 2 2
where h is a potential function for yf.
Proof Putting F = 0, 8, =0, and 7, = T for n > 1 in Theorem 3.1, we obtain the
required result. O

A mapping S : C — C is called strictly pseudocontractive if there exists r with 0 < r
<1 such that

[1Sx — Sy|I> < |lx —y|1> +r]|(I = S)x — (I — S)y||* forallx,yeC.

Such a mapping S is called r-strictly pseudocontractive. Putting F = I - S, we know
that

(x —y, Fx — Fy) > ) T||Fx—Fy||2 forall x,y € G

see, for instance, [12,29]. Hence, we have the following result.

Corollary 3.4 Let H, C, ©, ¢, B, A, f, i, v, ¥, and k be as in Theorem 3.1. Let S be a
r-strictly pseudocontractive mappings of C into itself. Let T be a nonexpansive mapping
of C into itself such that Qg := F(T) n F(S) n GMEP(©,¢, B) = @. Assume that either
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(B1) or (B2) holds. Let u € C and let {x,} and {u,} be sequences generated by x; € C
and

1

O(up, y) + (Bxn, y — tn) + @(y) — ¢(un) + . (y — tn, upn — %) =0, VyeC,
n

Xnp1 = AU+ vf(xn)) + (I — an(I + pA)T(uy — An(up — Suy)), n=>1,

where {,,},{A,} € [0, 1], 4, € [a, b] € (0, 1 -r), and r,, € [¢, d] € (0, 2[). Let {,},
A}, and {r,} satisfy the following conditions:

00
(1) o, —> 0 (I’l i °°); Zn:l oy = 00

[o.¢] [o.¢]
(ii) Zn:l lope1 — an| < 00 Zzil [Ane1 — Anl < 00 Zn:l [The1 — Tnl < 00
Then {x,} and {u,} converge strongly to q € Q, which is a solution of the optimiza-
tion problem

1
min ‘2‘ (Ax2) + I —ul” = h(x), (OP4)

x€Qy

where h is a potential function for yf.

Proof Putting F=1-S,3,=0,and T, = T for n > 1, from Theorem 3.1, we obtain
the required result. O

Remark 3.1

(1) Theorem 3.1, Corollary 3.2, Corollary 3.3, and Corollary 3.4 improve and
develop the corresponding results, which were obtained recently by many authors
in various references, for example, see [2,3,7-9,11-18,24,30]. In particular, we men-
tion that the iterative scheme (3.1) in Theorem 3.1 of [24] is not well defined with-
out the assumption C + C € C on a nonempty closed convex subset C of H.

(2) The condition Zool |one1 — aon| < oo imposed on {e,} can be replaced by the
n=

perturbed control condition |1 - ¢, <0(¢,;1) + O Zzl on < oo or the condi-
tion o, € (0, 1], # > 1, and lim,,_,., &, /0,1 = 1.
(3) Some special cases of the generalized mixed equilibrium problem (1.1) are
known as follows:
(i) If ¢ = 0, then the problem (1.1) reduced the following generalized equili-
brium problem (GEP ) of finding x € C such that

O(x,y) + (Bx,y —x) =0, VyeC, (3.31a)

which was studied by Takahashi and Takahashi [30].
(ii) If O(x, y) = 0 for all x, y € C, then the problem (1.1) reduces the following
generalized variational inequality problem (GVI) of finding x € C such that

(Bx,y —x) +9(y) —¢(x) 20, VyeC. (3.32a)

(iii) If B = 0 and ®(x, y) = O for all w, y € C, then the problem (1.1) reduces the
following minimization problem of finding x € C such that
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o(y) —e(x) =0, VyeC. (3.33a)

Applying Theorem 3.1 together with the one in the following assumptions instead of
(B1), we can also establish the new corresponding results for the above mentioned
problems:

(B2) C is a bounded set;

(B3) For each x € H and r >0, there exist a bounded subset D, € C and

y, € C such that for any ze C\D,,

1
o(yx) — o(z) + . (yr—z,2—x) <0;

(B4) For each x € H and r >0, there exist a bounded subset D, € C and y, € C such
that for any z € C\D,,

1
O(z, yx) + T(Vx—z,z—x) <0.
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