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Abstract

The purpose of this article is to introduce the concept of 2-fuzzy n-normed linear
space or fuzzy n-normed linear space of the set of all fuzzy sets of a non-empty set.
We define the concepts of n-isometry, n-collinearity n-Lipschitz mapping in this
space. Also, we generalize the Mazur-Ulam theorem, that is, when X is a 2-fuzzy n-
normed linear space or 3(X) is a fuzzy n-normed linear space, the Mazur-Ulam
theorem holds. Moreover, it is shown that each n-isometry in 2-fuzzy n-normed
linear spaces is affine.
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1. Introduction

A satisfactory theory of 2-norms and #-norms on a linear space has been introduced
and developed by Gihler [1,2]. Following Misiak [3], Kim and Cho [4], and Malceski
[5] developed the theory of n-normed space. In [6], Gunawan and Mashadi gave a sim-
ple way to derive an (n - 1)-norm from the n-norms and realized that any n-normed
space is an (# - 1)-normed space. Different authors introduced the definitions of fuzzy
norms on a linear space. Cheng and Mordeson [7] and Bag and Samanta [8] intro-
duced a concept of fuzzy norm on a linear space. The concept of fuzzy n-normed lin-
ear spaces has been studied by many authors (see [4,9]).

Recently, Somasundaram and Beaula [10] introduced the concept of 2-fuzzy 2-
normed linear space or fuzzy 2-normed linear space of the set of all fuzzy sets of a set.
The authors gave the notion of o-2-norm on a linear space corresponding to the 2-
fuzzy 2-norm by using some ideas of Bag and Samanta [8] and also gave some funda-
mental properties of this space.

In 1932, Mazur and Ulam [11] proved the following theorem.

Mazur-Ulam Theorem. Every isometry of a real normed linear space onto a real
normed linear space is a linear mapping up to translation.

Baker [12] showed an isometry from a real normed linear space into a strictly convex
real normed linear space is affine. Also, Jian [13] investigated the generalizations of the
Mazur-Ulam theorem in F*-spaces. Rassias and Wagner [14] described all volume pre-
serving mappings from a real finite dimensional vector space into itself and Viisélad
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[15] gave a short and simple proof of the Mazur-Ulam theorem. Chu [16] proved that
the Mazur-Ulam theorem holds when X is a linear 2-normed space. Chu et al. [17]
generalized the Mazur-Ulam theorem when X is a linear n-normed space, that is, the
Mazur-Ulam theorem holds, when the n-isometry mapped to a linear #-normed space
is affine. They also obtain extensions of Rassias and Semrl’s theorem [18]. Moslehian
and Sadeghi [19] investigated the Mazur-Ulam theorem in non-archimedean spaces.
Choy et al. [20] proved the Mazur-Ulam theorem for the interior preserving mappings
in linear 2-normed spaces. They also proved the theorem on non-Archimedean 2-
normed spaces over a linear ordered non-Archimedean field without the strict convex-
ity assumption. Choy and Ku [21] proved that the barycenter of triangle carries the
barycenter of corresponding triangle. They showed the Mazur-Ulam problem on non-
Archimedean 2-normed spaces using the above statement. Xiaoyun and Meimei [22]
introduced the concept of weak n-isometry and then they got under some conditions,
a weak n-isometry is also an n-isometry. Cobzas [23] gave some results of the Mazur-
Ulam theorem for the probabilistic normed spaces as defined by Alsina et al. [24]. Cho
et al. [25] investigated the Mazur-Ulam theorem on probabilistic 2-normed spaces.
Alaca [26] introduced the concepts of 2-isometry, collinearity, 2-Lipschitz mapping in
2-fuzzy 2-normed linear spaces. Also, he gave a new generalization of the Mazur-Ulam
theorem when X is a 2-fuzzy 2-normed linear space or 3(X) is a fuzzy 2-normed linear
space. Kang et al. [27] proved that the Mazur-Ulam theorem holds under some condi-
tions in non-Archimedean fuzzy normed space. Kubzdela [28] gave some new results
for isometries, Mazur-Ulam theorem and Aleksandrov problem in the framework of
non-Archimedean normed spaces. The Mazur-Ulam theorem has been extensively stu-
died by many authors (see [29,30]).

In the present article, we introduce the concept of 2-fuzzy n-normed linear space or
fuzzy n-normed linear space of the set of all fuzzy sets of a non-empty set. We define
the concepts of n-isometry, n-collinearity, n-Lipschitz mapping in this space. Also, we
generalize the Mazur-Ulam theorem, that is, when X is a 2-fuzzy n-normed linear
space or 3(X) is a fuzzy n-normed linear space, the Mazur-Ulam theorem holds. It is
moreover shown that each n-isometry in 2-fuzzy n-normed linear spaces is affine.

2, Preliminaries
Definition 2.1([31]) Let n € N and let X be a real vector space of dimension d > n.

. . . Xx---xX .
(Here we allow d to be infinite.) A real-valued function | e, ..., ®| on ~———=" satis-
n

fying the following properties

(1) llx1, %2, .y x4]l = 0 if and only if x;, xy, ..., x,, are linearly dependent,

(2) llx1, %2, ..., %, is invariant under any permutation,

(3) llx1, %2, ooy x|l = || llx1, %2, -y 24| for any o € R,

(4) %1, %25 s 21, ¥ + 2l < X1, %25 v X1, VI + %1, X2, ooy X001, 2]], is called an n-
norm on X and the pair (X, ||e, ..., ®|)) is called an n-normed linear space.

Definition 2.2 [9] Let X be a linear space over S (field of real or complex numbers).
A fuzzy subset N of X" x R (R, the set of real numbers) is called a fuzzy n-norm on X
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if and only if:

(N1) For all t € R with ¢ < 0, N(x1, X9, ..., %, £) = 0,
(N2) For all t € R with ¢ > 0, N(xy, %9, ..., x,,, £) = 1 if and only if xy, x5, ..., x,, are
linearly dependent,

(N3) N(xy, %9, ..., x,,, t) is invariant under any permutation of xy, x5, ..., X,

t
(N4) For all £ e R with ¢t > 0, N(x1,x2,..., A%, t) =N(x1,x2,...,xn, A)’ if A =0,

Ae S,
(N5) For all s, te R
N(x1,%2, ..., Xn + X, $+ ) > min{N(x1,x2, ..., %y, 8), N(x1, %2, ..., %, 1)},
(N6) N(xy, x5, ..., x,, t) is a non-decreasing function of t € R and
lim N(x1, %2, ..., %, ) =1,
t—00

Then (X, N) is called a fuzzy n-normed linear space or in short f-n-NLS.
Theorem 2.1 [9] Let (X, N) be an f-n-NLS. Assume that

(N7) N(x1, %3, ..., x,,,t) > 0 for all £ > 0 implies that x, x5, ..., x,, are linearly
dependent.

Define
[1%1,%2, .., Xnlle = Inf{t : N(x1,%2,...%,,t) > a0, € (0,1)}.

Then {|e, o, ..., o], : &t € (0, 1)} is an ascending family of #-norms on X.

We call these n-norms as o-n-norms on X corresponding to the fuzzy n-norm on X.

Definition 2.3 Let X be any non-empty set and 3(X) the set of all fuzzy sets on X.
For U, Ve 3(X) and A € S the field of real numbers, define

U+V={(x+yvau):(xv)el (yn) eV}

and AU = {(Ax, v): (x, v) € U}.

Definition 2.4 A fuzzy linear space X = X x (0, 1] over the number field S, where
the addition and scalar multiplication operation on X are defined by (x, v) + (y, ) = (%
+y, vAu), Alx, v) = (Ax, v) is a fuzzy normed space if to every (x,v) € X there is asso-

ciated a non-negative real number, [|(x, v)|, called the fuzzy norm of (x, v), in such
away that

(i) [Ix, V)| = 0 iff x = O the zero element of X, ve (0, 1],
(i) IA(x, VI = [A] I(x, V)] for all (x,v) € X andalll e S,

(iil) IGe v) + O ) || < 1 v A @l + 1, v A @)l for all (x,v), (y, i) € X
iv) e, Vol = A l(x, vl for all v, e (0, 1].
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3. 2-fuzzy n-normed linear spaces
In this section, we define the concepts of 2-fuzzy n-normed linear spaces and a-n-
norms on the set of all fuzzy sets of a non-empty set.

Definition 3.1 Let X be a non-empty and 3(X) be the set of all fuzzy sets in X. If f
3(X) then f= {(x, #): x € X and u € (0, 1]}. Clearly fis bounded function for |[flx)| < 1.
Let S be the space of real numbers, then 3(X) is a linear space over the field S where
the addition and scalar multiplication are defined by

frg={(xn)+@n)}={(x+y,uAn):(xu)efand(yn)ecg
and

Af = {(x ) = (x, 1) € f)

where A € S.
The linear space 3(X) is said to be normed linear space if, for every fe 3(X), there
exists an associated non-negative real number ||f]| (called the norm of f) which satisfies

() IAl = 0 if and only if f = 0. For

[Ifll=0
< {ll(x @)l : (epn) efy=0
S x=0,ue(0,1] & f=0.

@ii) A = 1AL Al A € S. For

IIAfIl = (1A (x )l = () € f, 2 €8}
= {21 G I = (1) € 3 = [AIFILL

(i) IIf + gl < I + llgll for every f; g € 3(X). For

If +gll = {1 )+ . mll i xy € X, u,n € (0,1]}
={ll(x+p). (LA %y € X, u,n € (0,1]}
=l A+ 1@ Al () ef, (yn) gl
= [If11 + 11gll.

Then (3(X),||®]|) is @ normed linear space.

Definition 3.2 A 2-fuzzy set on X is a fuzzy set on 3(X).

Definition 3.3 Let X be a real vector space of dimension d > n (n € N) and 3(X) be
the set of all fuzzy sets in X. Here we allow d to be infinite. Assume that a [0, 1]-

J(X) x -+ x J(X)

valued function |e, ..., ®| on satisfies the following properties

n

(D) Ifi, for oo full = 0 if and only if £1, f5, ..., f,, are linearly dependent,
(2) Ifi, for -+ foll is invariant under any permutation,

(3) ”fl’fZ’ o0 /lfn” = Ml "fl’fZ’ ’fn" for any/l €S,

Page 4 of 17
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@) Vo for v furs v + 2l < W oo oo forers Y+ W S oo fens 2l

Then (3(X),||e,...,e||) is an n-normed linear space or (X, ||e, ..., ®|) is a 2-n-normed
linear space.
Definition 3.4 Let 3(X) be a linear space over the real field S. A fuzzy subset N of

J(X) x -+ x JI(X) xR

is called a 2-fuzzy n-norm on X (or fuzzy n-norm on 3(X)) if
n

and only if

(2-N1) for all t € R with ¢ <0, N(fy, fo, .. f £) = 0,

(2-N2) for all £ € R with ¢ > 0, N(fy, f5, ..., [, £) = 1 if and only if f;, f, ..., f,, are line-
arly dependent,

(2-N3) N(f1, f2, - [ B) is invariant under any permutation of f, f, ..., f,,

(2-N4) for all t € R with ¢ > 0, N(f}, fo, ..., Afys £) = N(f1, fo, oo fir El|A]), if A = O,
re S,

(2-N5) for all s, t e R,

N(fl,fz, . /fn +fr/l,S + t) > min{N(fl,fz, - ,fn,S),N(fl,fz, - ’fr/l’ t)},

(2-N6) N(f1, f2, «or frr -): (0, 20) — [0, 1] is continuous,

@-N7) im N(fi,for oo ful) = 1,

Then 3(X), N) is a fuzzy n-normed linear space or (X, N) is a 2-fuzzy n-normed lin-
ear space.

Remark 3.1 In a 2-fuzzy n-normed linear space (X, N), N(f1, f2, ..., f» -) is a non-
decreasing function of R for all f}, f5,...f,, € 3(X).

Remark 3.2 From (2-N4) and (2-N5), it follows that in a 2-fuzzy n-normed linear
space,

(2-N4) for all t € R with t > 0,

t
N(fl,fz,...,)\.ﬁ,...,fn,t) =N(f1,f2,...,ﬁ‘,...,fn, |)»|>I ifA=z0,Ae S
(2-N5) for all s, t € R,

N(fl:er . ,fi +f/i’ .. ,fn,S + t)
> min{N(fl,fz, . rfi/ .. ,fn,S),N(f],fz, . ’f/i’ .. /fn/ t)}

The following example agrees with our notion of 2-fuzzy n-normed linear space.
Example 3.1 Let (3(X),| ®,9,...,8|) be an n-normed linear space as in Definition 3.3.

Define

t
ift>0teR,
N(fl/fZ/--~/fn,t)= t+||f1/f2/-~-/fn||
0if t<0

(fi.f2r - fn) € I(X) x -+ x 3(X)

n

for all

. Then (X, N) is a 2-fuzzy n-normed linear

space.
Solution. (2-N1) For all £ € R with ¢ < 0, by definition, we have N(fi, f3, ..., f;,, £) = 0.
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(2-N2) For all te R with ¢ > 0,

t
N(fi.foro oo fut) =1 & =1
(fl f2 fn ) t+||f1/f2/"'lf7l||

St=t+|lfi,far - fall
=4 ||f1,f2,-~-,fn|| = O
& f1,f2, ..., fn are linearly dependent.

(2-N3) For all t e R with ¢ > 0,

t t
N(fl'f2""'fﬂ't) B L+ ||flrf2!-~-rfn|| B L+ ||f1rf2:---rfnrfn71||

= N(fl!f21~~~lfnlfn71!t) =
(2-N4) Forall te Rwitht>0andAe F,A =0,
t/|A]

A+ 1 far e fall
: ey

€+ A W1 far oo ful /IR

t

T A far e fall

t
Al

N(fi far i fut/IA])

=N, for s ifi ).

(2-N5) We have to prove

N(fl,fz, . ,fn +fr/l,5 + t) > min{f(xl,fz, - ,fn,S),N(fl,f2, . ,f,;, t)}

(i) s+1t<0,

(i) s=¢t=0,

(iii) s + £>0;s>0,£<0;s <0, t >0, then the above relation is obvious. If
(iv) s >0,¢£>0,s + ¢t >0, then

S+t

N(fi.far oo ifu+fl s+t = .
(f n*In s+t+|lfifor o fu+ fll

If

y . t N i far - full - [, 22, - .o, X nll
s+llfifor fall Tt fa e f s t
N Wi far- i full . W far oo f/ull < W1 far e f'ull

s s t
Wi S f'll
+

N

N G Ty

N

N W far oo fu+ 1l - Wi far e fall

S+1 t
NER W faroifa+ fll _ e+ llfiforc ffll
S+t - t
S+t t

= >
sttt llfifor i+ fll T e+ U far o
= N(fl/f2/~~~/fn +f/n,S+ t) > N(fl,fz,...,f/n, I).
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Similarly, if

t S
>
L+ ”flleI-'-lf,n“ TS+ ||f1/f21-'-lfn||
= N(flleI"'lfn+f,nIS+t) > N(fllf2r~-~rfnrt)~

Thus

N(fi,foro o+ frs+8) = min{N(f, for ... fu 8) N(fi f2r o fr )

(2-N6) It is clear that N(fy, fo, ..., fr» ): (0, =) — [0, 1] is continuous.
(2-N7) For all t € R with ¢ > 0,

t
lim N(f1,f, ..., fs t) = lim
B NG L fut) = e e gl
t

S e ful) T

as desired.

As a consequence of Theorem 3.2 in [10], we introduce an interesting notion of
ascending family of a-n-norms corresponding to the fuzzy n-norms in the following
theorem.

Theorem 3.1 Let (3(X), N) is a fuzzy n-normed linear space. Assume that

(2-N8) N(f1, f2, «-r fur 1) > 0 for all £ > 0 implies fi, f5, ..., f,, are linearly dependent.

Define

||f1,f2, . ,fn||a = il’lf(t : N(fl,fz, . /fn/ t) >, c (0, 1)}

Then {||e, o, .., o, : & € (0, 1)} is an ascending family of #-norms on 3(X).

These n-norms are called a-z-norms on 3(X) corresponding to the 2-fuzzy n-norm
on X.

Proof. (i) Let ||f1, - fulle = 0. This implies that inf {¢ : N(fy, ..., f,,, £) = o}. Then, N(fi,
for o S t) 200> 0, for all £ > 0, @ € (0, 1), which implies that fj, f5, ..., f, are linearly
dependent, by (2-N8).

Conversely, assume fj, f5, ..., f, are linearly dependent. This implies that N(fi, f5, ..., i
t) =1 for all £ > 0. For all @ € (0, 1), inf {¢ : N(f}, f5, .., f» £) = &}, which implies that
1o for wor fille = O.

(ii) Since N(fi, f3, ..., f» t) is invariant under any permutation, ||f1, f, ..., fulle = 0 under
any permutation.

(iii) If A = 0, then

||f1,f2, .. .,)Lfn”a = iIlf{S : N(fl,fz, .. .,fn,S) > Ot}

) s
=inf{s: N(fi,f2, - - -, fur

> al.
[A]

s
Let t = , then
2]

||f1,f2, .. -/)\fn”a = 1nf{|A|t : N(fl,fz, .. .,fn, t) > o}
=|A| inf{t : N(fl/f2/~ ..,fn, t) >a) = A ||f1,f2, .. .,fn”Ol.
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If A =0, then

||fllf21~'~r)"fn||a = ||flrf21-"10||a =0= O”fllel'-'rfn“a
= |)‘| ||fllf21 .. -rfn”a,V)\: S S(ﬁeld)

(iv)

Vfiforeeifally + M b £

=inf{t : N(f1.f2, ... . fu 1) = @} +inf(s : N(f1, fo, ... . f s 8) = @}
=inf{t+s:N(fi,far - fut) > o, N(fr. far oo f )y 8) > @}
>inf{t+s:N(fi.fa .- fo+f t+5) > al},
>inf{r:N(fi,for ... futf 1) =l r=t+s

=t fut e

Hence
||f1!f21' --rfn +fr/;||a < I|f1/f2r .. ~rfn||a + I|f1/f2r .. 'lfr/1||a~

Thus {||e, e, .., ®|,: & e (0, 1)} is an a-z-norm on X.
Let 0 <ot; <0,. Then,

it il
I for..fl,,

inf{t N(fl,fz, . /fn/ I) >y},
inf{t : N(f1,f2, .- -, fu 1) = a2}

As 0 <Oy,

{t:N(fi.fa, o fat) =} C{t: N1, f2r .o fart) = 1)
implies that

inf{t : N(f1,fo, ... fu ) = a2} = inf{t : N(f1, fo, ... fu £) = 0}
which implies that

”fller .. ~rfn||otz > ||fllf2/ .. ~rfn||0¢1-

Hence {||e, o, ..., |, : & € (0, 1)} is an ascending family of a-n-norms on x corre-

sponding to the 2-fuzzy n-norm on X.

4. On the Mazur-Ulam problem
In this section, we give a new generalization of the Mazur-Ulam theorem when X is a
2-fuzzy n-normed linear space or 3(X) is a fuzzy n-normed linear space. Hereafter, we
use the notion of fuzzy n-normed linear space on 3(X) instead of 2-fuzzy n-normed
linear space on X.

Definition 4.1 Let 3(X) and 3(X) be fuzzy n-normed linear spaces and ¥ : 3(X) —» 3
(Y) a mapping. We call ¥ an n-isometry if

i —for-- oo fo = folla = 11¥(f1) = ¥(fo), ..., ¥ (fn) — ¥(fo)llg

for all fy, fi, forfyn € 3(X) and @, B e (0, 1).
For a mapping ¥, consider the following condition which is called the n-distance one
preserving property (nDOPP).
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(nDOPP) Let fo, fi, for - fo € S(X) with |[fy = fo, .., fu = fo||, = 1.

Then [¥(f,) - ¥(fo), ... ¥() - Y(Ho)llg = 1.
Lemma 4.1 Let f3, f5,...f, € 3(X), ¢ € (0, 1) and 7z € R. Then,

Wi fioo i fulle = oo fireo o fy + Bfis o flla

foralll<i=j<n
Proof. 1t is obviously true.

Lemma 4.2 For fo,fy € I(X), if f and f; are linearly dependent with some direc-

tion, that is, f; = tfo for some ¢ > 0, then

||f0 +f(;rfll . '-rfn”a = ||f01flr .. ~rfn||a + ||f(;'flr .. ~rfn||a

for all f1, fo,...f, € 3(X) and & € (0, 1).
Proof. Let f} = tfo for some ¢ > 0. Then we have

Wo+fofir i falle = lIfo +tho fr, - fulla
=(L+)lfo f1, - falla
= lfo fr - falle + tlfor frr oo fulla
=Wforfir oo falla +1Uf 0o frr - fulla

for all f1, fo,...f, € 3(X) and o € (0, 1).

Definition 4.2 The elements fy, f1, f2, ..., f of 3(X) are said to be n-collinear if for
every i, {f; - f; : 0 < j # i < n} is linearly dependent.

Remark 4.1 The elements fy, fi, and f; are said to be 2-collinear if and only if f, - fo
= r(f, - fo) for some real number r.

Now we define the concept of n-Lipschitz mapping.

Definition 4.3 We call ¥ an n-Lipschitz mapping if there is a x > 0 such that

N (1) = ¥(fo) -, W) — ¥(o)llg < kllfi —for--- 1 fn — folla

for all fy, fi, for-ofn € B(X) and a, B € (0, 1). The smallest such « is called the n-
Lipschitz constant.

Lemma 4.3 Assume that if f;, fi, and f, are 2 -collinear then ¥(fy), ¥(f;) and Y(f3)
are 2-collinear, and that ¥ satisfies (1DOPP). Then W preserves the n-distance k for
each ke N.

Proof. Suppose that there exist fo, f; € 3(X) with fy = f; such that W(fy) = P(f1). Since
dim3(X) = #n, there are f5,...f,, € 3(X) such that f; - fo, f> - fo, .., fu - fo are linearly inde-
pendent. Since ||fy - fo, f2 - for o S - Jollo # 0, we can set

fr—fo
Wi —forfa—forooifu—folla

Z =f0+

Then we have

1 —forz2 —forfs = for - i fu = folla
- fr—fo

1y = forfo — fore oo fo — folla” =1

f3 _fOI---rfn _fO

o



Park and Alaca Journal of Inequalities and Applications 2012, 2012:14
http://www.journalofinequalitiesandapplications.com/content/2012/1/14

Since ¥ preserves the unit n-distance,

W(f1) = W(fo) W(z2) = W(fo) ..., W(fu) = W (fo)llg = 1.
But it follows from ¥ (fp) = ¥ (f1) that

¥ (f1) — ¥ (fo) ¥(z2) = ¥(fo) .- W(fu) — ¥(fo)llg = 0,

which is a contradiction. Hence, ¥ is injective.
Let fo, fi, f2) - f» be elements of 3(X), k € N and

fi = forfo —for- i fu = folla = k.

We put

i .
gi=fo+ k(fl —fo), i=0,1,...,k
Then
l18iv1 — & f2 = for - - -1 fr — folla

i+1

‘ o

= W —fofo oo fu—folla = =1

W =) o~ for o fo = fo

foralli =0, 1, .., k- 1. Since ¥ satisfies (nDOPP),

W (8ie1) — W(8) W(2) = W(fo) -, W(fu) — W(fo)llg = 1

fo+ k (fi —fo) — (fo + ;(fl —fo)),fz ~for-ooifn—fo

o

(4.1)

forall i =0, 1, .., k - 1. Since gy, g1, and g, are 2-collinear, ¥ (go), ¥(g1) and ¥(g,) are
also 2-collinear. Thus there is a real number ry such that ¥(g,) - ¥(g1) = ro (P(g1) -

W(go)). It follows from (4.1) that

[1W(81) — W (80), W(f2) — ¥(fo) ..., W(fu) — W(fo)llg
= |W(82) — W(81), Y(f2) = ¥(fo), ... W (fu) — V(fo)llp

=70 (W (81) — W(82)), W(f2) — ¥(fo) ..., W(fu) — W (fo)llg

=Irol [1(W(81) — ¥ (), W(f2) — ¥ (fo), ... W (fa) — ¥(fo)llg-

Thus, we have 1y = 1 or -1. If ry = -1, W(g,) - ¥(g1) = -P(g1) + (), that is, ¥(g,) =
W(go). Since VW is injective, g» = g, which is a contradiction. Thus ry = 1. Then we have
Y(gy) - Y(g1) = Y(g1) - Y(go)- Similarly, one can obtain that W(g,,,) - ¥(g,) = P(g) -

W(g;.1) foralli =0, 1, ..., k - 1. Thus W(g;,1) - ¥Y(g) = ¥(g1) - P(go) forall i =0, 1, .., k

- 1. Hence

Y(f1) = ¥(fo) = ¥(8) — ¥(80)

= W(gk) — W(&r-1) + V(&e-1) — V(&r—2) + -+ ¥(81) — ¥(g0)

=k(V(81) — ¥(80))-
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Hence

W (f1) = ¥ (fo) W(f2) = ¥ (fo) .- W(fu) — ¥(fo)llp
= |1k(W(81) — ¥(80)), ¥(f2) — ¥(fo), ..., W(fu) — W (fo)llp
= [1k¥(g1) — W(80), W(f2) = ¥(fo), -, ¥ (fu) — W(fo)llp = .
This completes the proof.

Lemma 4.4 Let , fy, fi, ..., [, be elements of 3(X) and let 4, fo, fi be 2-collinear. Then
||f1 - hlf2 - h,. .. rfn - h”a = ”fl - hle _fOI .. '/fn _f0||0l~

Proof. Since h, fo, fi are 2-collinear, there exists a real number r such that f; - & = r(fy
- h). It follows from Lemma 4.1 that
Wi —hf2—for - oifn = folla = lIr(fo — h). f2 — for - - - . fn — folla
=l llfo—hfa = for - fo = folla
=l llfo—hfa—h....fn = hlla
=|lr(fo —h).fa = h, ... fo — hlla
=|li—hfo—h... fn—hlla.
This completes the proof.

Theorem 4.1 Let ¥ be an n-Lipschitz mapping with the n-Lipschitz constant x < 1.
Assume that if f, f1, ..., f, are m-collinear then Y(fy), Y(f1), ... P(f,,) are m-collinear, m
= 2, n, and that ¥ satisfies (nDOPP), then ¥ is an n-isometry.

Proof. 1t follows from Lemma 4.3 that ¥ preserves n-distance k for all k € N. For f,
fi, < fu € X, there are two cases depending upon whether | - fo, ..., fi, - follo = 0 or

not. In the case ||f; - fo, - [ - folle = 0, fi - fo, .- fu - fo are linearly dependent, that is,

n-collinear. Thus f; - fo, .., fi, - fo are linearly dependent. Thus [|'¥(fi) - ¥Y(f), ... ¥(f) -
Flfolllp = 0.

In the case ||fi - fo, .« fu - folla > O, there exists an n, € N such that
no > |lfi —for - fo — folle-

Assume that

(1) =¥ (fo) - W(fn) = Y(folllg < llfi —for -+ s fu = folla-

We can set

—f 4 no ~
h=to fi—for i fu _f0||m(f1 fo)-
Then we get

||h_f0r~--rfn _f()“l)t

- * " 1= - —
= | ||fl—f0,...,fn—f0||a(f fo) =foro i fu—Jo .
no

T =for o o — folle Wt 0 S = Jolle = mo.

It follows from Lemma 4.3 that

W (h) —¥(fo) ..., ¥(fa) — ¥(fo)llg = no.

Page 11 of 17
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By the definition of /4,

Nno

h=hi= (||f1 ~foreeifuo—folla 1) Ur = fo).

Since

no

U fore oo —folla

h - fi and f; - fy have the same direction. It follows from Lemma 4.2 that

lh—fo.fo—for oo i fu = folla
=llh=fu.fo=for- o ifu = folle + lIft = fo. fo = for - fu = folla-

Since WY(h), Y(f1), Y(f;) are 2-collinear, we have

[IW(h) =¥ (f1), W () —¥(fo) ..., W(fa) — ¥ (fo)llp
=||W(fi) —W(h), V() —V(h), ..., ¥(fn) — V(h)llp
<lh—-hfa=h... fo—hlle
=i =hf2—for- i fn = folla
=no —|lfi —fo.fo—for-- i fo —folla

by Lemma 4.4. By the assumption,

no = [[W(h) — ¥(fo) ¥(f2) — ¥ (fo) ..., ¥(fu) — ¥ (fo)llp
<|[W(h) =¥ (), V() —¥(fo) - V(fu) — ¥ (fo)llg
+[IW(H) — V(). V() — V(o) ... W(fn) — ¥ (fo)lls
<no—Ilfi —fo.fa = for .- fn — folla
+ i =fo.fo = for - i fu — folle

= o,
which is a contradiction. Hence ¥ is an n-isometry.
Lemma 4.5 Let gy, g1 be elements of 3(X). Then v = is the unique element of

3(X) satisfying

8o + &1
2

1
2IIgo — 8181 — 818 —8ni---181-1 — &nlla

=181 — 181 — 88 — 8 ---:18-1— &nlla
=180 — 88 — 1.8 — & ---:181-1 — &ulla

for some g,...g, € 3(X) with llgo - & &1 - & &2 - &w -+ &u1 - Gulla # 0 and v, go, &1 2-
collinear.

Proof. Let |lgo - &w & - & & - & - &1 - Zilla # 0 and
”fO _fnrfl —fn/fz _fnr . 'rfn—l _fn“ot 7(0--

Then v, go, g1 are 2-collinear. It follows from Lemma 4.1 and g, - g = &1 - go - (€1 -
g,) that
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181 —v. 81 — & &2 — 8&nr---&n—1 — &nlla

Hg or & /81 — & 82 — &ns-- -1 8n—1 — &n .

1
= 2|Ig1 — 80,81 — 818 —8ni--18n—1 — &nlla

1
= 2IIgo — 8181 — 882 — 8Gns -/ 8n—1 — &nlla
and similarly
1
||gO_gnrgO —V,82 —8nr---18n—1 _gn”a = 2||g0 —8n: 81— 8,82 —8nsr -+ 1 8n—1 _gn||a~

Now we prove the uniqueness.
Let u be an element of 3(X) satisfying the above properties. Since u, g, g1 are 2-colli-

near, there exists a real number ¢ such that u = tgy + (1 - £)g;. It follows from Lemma

4.1 that

1
2Ilgo — 881 — 8182 — &nr---18n—1 — &nlla
=181 — U, 81 —8n 82 — Gnr- -1 8n—1 — &nlla
=1g1 — (180 + (1 —£)81), 81 — &' 82 — &n/ -+ - &n—1 — &nlla
=[t] 181 — 80,81 — & &2 — &nr -+ -1 &n—1 — &nlla
=tl 180 — 81/ &1 — 8182 — &nr -+ 1 8n—1 — &nlla

and

1
2Ilgo — &8 — 882 — &1 8n—1 — &ulla
=180 — 818 — w8 —8nr---18n—1 — &nlla
= 1|80 — 880 — (t8o + (1 —1)81). 82 — &ns - - - 1 8n—1 — &nlla
=|1—1t 1180 — 8n 80 — 81,82 — &ns- -1 8n—1 — &nlle
=1 -1t 1|18 — 8n 81 — & &2 — &nr -+ -1 8n—1 — &nlla-

1
Since ||go - 2w €1 - L0 &2 - L o L1 - Lulle 2 0, we have - |1 —t| = |t|. Therefore,

1
we get t = ) and hence v = u.
Lemma 4.6 If ¥ is an n-isometry and fy, f, f> are 2-collinear then ¥(fy), ¥(f1), Y(f2)

are 2-collinear.
Proof. Since dim3(X) = n, for any fy € 3(X), there exist gy,...g, € 3(X) such that g; -

Jo» «» 8u - fo are linearly independent. Then

lIg1 = for- -/ & = folla = 11¥(81) = ¥ (fo), -, W(g) — ¥ (fo)llg # 0O

and hence, the set A = {¥(f) -¥(fo) : f€ S(X)} contains # linearly independent

vectors.
Assume that f;, fi, fo are 2-collinear. Then, for any f;,....f,, € 3(X),

||f1 _f01~-~rfn _f0||a = ||"Ij(fl) —‘lf(fo)r-~-,‘1/(fn)—‘1’(fO)||ﬂ =0

ie. Y(f) - (o), -, Y(f,) - P(fo) are linearly dependent.
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If there exist f3, ..., f;,.1 such that W(f1) - ¥Y(fy), ..., Y(f..1) - ¥(fo) are linearly indepen-
dent, then

A= {\I’(fn) — \If(f()) an (S S(X)} C span {\Ij(fl) — \If(fo), ey \I‘I(fn—l) — \I’(fo)},

which contradicts the fact that A contains # linearly independent vectors.

Then, for any f;, ..., f,.1, Y(f1) - Y(fo), ... P(f,.1) - P(fo) are linearly dependent.

If there exist f3, ..., f,,.o such that ¥(f1) - ¥Y(fy), ..., ¥(f,..2) - ¥(fo) are linearly indepen-
dent, then

A={Y(fr1) — Y (fo) : fum1 € I(X)} Cspan {¥(f1) — V¥ (fo), ..., Y(fu-2) — ¥ (fo)},

which contradicts the fact that A contains # linearly independent vectors.

And so on, Y(f1) - Y(fo), Y(f2) - ¥(f) are linearly dependent. Thus ¥(f;), ¥(f1), and
Y(f;) are 2-collinear.

Theorem 4.2 Every n-isometry mapping is affine.

Proof. Let ¥ be an n-isometry and ®(f) = ¥(f) - ¥(0). Then @ is an n-isometry and ®
(0) = 0. Thus we may assume that ¥(0) = 0. Hence it suffices to show that V¥ is linear.

Let fo, i € 3(X) with fy = fi. Since dim3(X) > #, there exist f5,...f, € 3(X) such that

||f0 _fnrfl _fnrfz _fn/ “ee /fn—l _fn“ot ?/O~
Since Y is an n-isometry, we have

||‘1’(fo) - ‘I’(fn)r \I’(fl) - \I’(fn)f ‘I’(fZ) - ‘I’(fn)r s ‘I’(fnfl) - ‘I’(fn)“ﬂ 7 0.

It follows from Lemma 4.1 that

B

o fo S fofa o i~

o

fn = forfr = for f2 = for o) fo1 = folla
) W (fa) — ¥ (fo), ¥ () = ¥(fo) V() — ¥ (fo). ..., U (fa-1) — ¥ (fo)llg
= ¥ (fo) = ¥(fn) W(H) — W), ¥(f2) — ¥ (n) - W (fum1) = ¥ (fa)llp-

1
2
1
1

And we get

lvo—w (P 37) v - w0 v - vt v - w0

B
o (P3) - ve v - w6, ) - v v - w0
B
e A A YA YA S A
1

||f0 _flrfn _flle _fll -~-/fn71 _f1||ot
¥ (fo) =W (f1), W(fn) =V (H), V() —¥(f1) - ¥ (fu-1) — ¥ (F)llp
N (fo) = W (fa) V(1) — V() V(2) =V (fn) - Y(fum1) — U (a)llg.

N PN =N
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By Lemma 4.6, we obtain that ¥ <f0 ;ﬁ), ¥(fo), and ¥(f;) are 2-collinear. By

Lemma 4.5, we get W <f0 ;ﬁ) = V(o) ; v(h) for all f, ge 3(X) and o, B € (0, 1).

Since W(0) = 0, we can easily show that ¥ is additive. It follows that ¥ is
Q — linear-linear.

Let re R" with r # 1 and fe 3(X). By Lemma 4.6, ¥(0), ¥(f) and ¥(rf) are also 2-
collinear. It follows from ¥(0) = O that there exists a real number k such that ¥(rf) =
k¥(f). Since dim3(X) > n, there exist fi, ..., f,.1 € 3(X) such that ||f, fi, fo, - fu-1lla 2 O.
Since Y¥(0) = 0, for every fy, fi, for - fi1 € S(X),

Wo fi fare i fu1lla
=lfo—0,f—=0/2—0,...,fu-1 = Ollg
= 1¥(fo) = W(0), ¥(f1) — ¥ (0), ¥(f2) — ¥ (0),..., W(fu-1) — ¥(0)llp
= [1W(fo), W(f1). ¥(f2), - - - W (Fa1)llp-

Thus we have

W fufar oo fomille = ef frofor oo et e
= [[W(f), W(f1) () ... V(fa1)llp
= [IkV(f), ¥(f1), () - W (fu1)llg
=kl 1), C(H), V() - Y (fam1)llp
=kl If f1 far - fretllae

Since ||, fi, for - fr-ille # 0, |k| = . Then ¥(rf) = r¥(f) or Y(rf) = -r'¥(f). First of all,
assume that k = -r, that is, W(rf) = -r¥(f). Then there exist positive rational numbers
q1, q> such that o <q, <r <gq,. Since dim3(X) > n, there exist Ay, ..., 1,,.; € 3(X) such
that

lIrf —qaf 1 — qof ' ho — qof ..., hue1 — @of 1l # 0.

Then we have

(@2 + DY), W(h1) — V(q2f), ¥ (h2) — Y(qaof ), -+, W(hn1) — W(q2f)lIp
=1(g2 + )W (f), ¥ (M) — W(q2f ), ¥ (h2) — W(qaf ), ..., W (ha1) — ¥ (q2f)lIp
= 1% (f) — (=¥ (), (1) — ¥(q2f ), ¥ (h2) — ¥(q2f ), -, W (hn—1) — ¥ (q21)llg
= () — V(g2 ), W (1) — ¥ (q2f), W(ha) — ¥(qof )i - - ., W (hno1) — W(q2f s
=|Irf — qgaof h1 — qof ho — Gof 1 - - hu1 — Gof e
= (g2 = )If. i — gof ' ho — @of .. 1 — Gaof e
< (G2 = g)lif 1 — Gaof b2 — Gof , ..., hu-1 = @2f |l
=llaif — aof ' = Gof ha — @of oo Hne — @of Nla
=W (q1f) — V(q2f), W(h1) — ¥ (qaf ), ¥ (h2) — W(qaf ), ..., W (hn1) — V(G2 )ll5-

And also we have

lIrf — @of /b1 — qof ho — Gof ... Bt — Gaof e
= 19 (rf) = W (gaf ), W(h1) — W(qaf ), W (h2) — W(qaf), -, W (hn—1) — ¥ (q2f)lIp
= =1¥(f) — ¥ (f), ¥(h1) — V(q2f ), W(h2) — W(qof ), ..., W (ha1) — W (q2f)ls
= (r+ @)IV(f),, Y(hi) — Y(qaf ), W(ha) — V(q2f ) - W (n—1) — W(q2f )ls-
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Since ||1f - qof, 1 - qofs ha - qofs o Byt - @oflle = O,
W (), W(h) = W(qaf ), W(h2) = W(qaf ), ..., W (1) — W(q2f)llp # 0.

Thus we have r + g5 <q» - g1, which is a contradiction. Hence k = r, that is, ¥(rf) =
r¥(f) for all positive real numbers r. Therefore ¥ is R-linear, as desired.

We get the following corollary from Theorems 4.1 and 4.2.

Corollary 4.1 Let ¥ be an n-Lipschitz mapping with the n-Lipschitz constant x < 1.
Suppose that if f, g, i are 2-collinear, then P(f), W(g), W(h) are 2-collinear. If V¥ satisfies
(nDOPP), then V¥ is an affine n-isometry.

5. Conclusion

In this article, the concept of 2-fuzzy n-normed linear space is defined and the con-
cepts of n-isometry, n-collinearity, n-Lipschitz mapping are given. Also, the Mazur-
Ulam theorem is generalized into 2-fuzzy n-normed linear spaces.
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