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Abstract

In this article, the well-known monotone iterative technique is extended for
impulsive fractional evolution equations. Under some monotone conditions and
noncompactness measure conditions of the nonlinearity, some existence and
uniqueness results are obtained. A generalized Gronwall inequality for fractional
differential equation is also used. As an application that illustrates the abstract results,
an example is given.
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1 Introduction
In this article, we use the monotone iterative technique to investigate the existence and

uniqueness of mild solutions of the impulsive fractional evolution equation in an

ordered Banach space X:⎧⎪⎨
⎪⎩
Dαu(t) + Au(t) = f (t, u(t)), t ∈ I, t �= tk
�u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = x0 ∈ X,

(1:1)

where Da is the Caputo fractional derivative of order 0 <a < 1, A: D(A) ⊂ X ® X is a

linear closed densely defined operator, - A is the infinitesimal generator of an analytic

semigroup of uniformly bounded linear operators T(t) (t ≥ 0), I = [0, T], T > 0, 0 = t0
<t1 <t2 < ... <tm <tm+1 = T , f: I × X ® X is continuous, Ik : X ® X is a given continu-

ous function, �u|t=tk = u(t+k ) − u(t−k ), where u(t+k ) and u(t−k ) represent the right and left

limits of u(t) at t = tk, respectively.

Fractional-order models are found to be more adequate than integer-order models in

some real-world problems. Fractional derivatives describe the property of memory and

heredity of materials, and it is the major advantage of fractional derivatives compared

with integer-order derivatives. Fractional differential equations have recently proved to

be valuable tools in the modeling of many phenomena in various fields of science. For

instance, fractional calculus concepts have been used in the modeling of neurons [1], vis-

coelastic materials [2]. Other examples from fractional-order dynamics can be found in

[3-7] and the references therein. A strong motivation for investigating the initial value

problem (1.1) comes from physics. For example, fractional diffusion equations are

Mu and Li Journal of Inequalities and Applications 2011, 2011:125
http://www.journalofinequalitiesandapplications.com/content/2011/1/125

© 2011 Mu and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:mujia88@163.com
mailto:mujia88@163.com
http://creativecommons.org/licenses/by/2.0


abstract partial differential equations that involve fractional derivatives in space and

time. The time fractional diffusion equation is obtained from the standard diffusion

equation by replacing the first-order time derivative with a fractional derivative of order

a Î (0, 1), namely

∂α
t u(y, t) = Au(y, t), t ≥ 0, y ∈ R, (1:2)

where A may be linear fractional partial differential operator. For fractional diffusion

equations, we can see [8-10] and the references therein.

It is well known that the method of monotone iterative technique has been proved to

be an effective and a flexible mechanism. Du and Lakshmikantham [11] established a

monotone iterative method for an initial value problem for ordinary differential equa-

tion. Later on, many articles used the monotone iterative technique to establish exis-

tence and comparison results for nonlinear problems. For evolution equations of

integer order (a = 1), Li [12-16] and Yang [17] used this method, in which positive

C0-semigroup play an important role.

The theory of impulsive differential equations has an extensive physical background

and realistic mathematical model, and hence has been emerging as an important area

of investigation in recent years, see [18]. Correspondingly, the existence of solutions of

impulsive fractional differential equations has also been studied by some authors, see

[19-23]. They used the contraction mapping principle, Krasnoselskii’s fixed point theo-

rem, Schauder’s fixed point theorem, Leray Schauder alternative.

To the best of the authors’ knowledge, no results yet exist for the impulsive frac-

tional evolution equations (1.1) by using the monotone iterative technique. The

approach via fractional differential inequalities is clearly better suited as in the case of

classical results of differential equations and therefore this article choose to proceed in

that setup.

Our contribution in this work is to establish the monotone iterative technique for

the impulsive fractional evolution equation (1.1). Inspired by [12-17,24-27], under

some monotone conditions and noncompactness measure conditions of nonlinearity f,

we obtain results on the existence and uniqueness of mild solutions of problem (1.1).

A generalized Gronwall inequality for fractional differential equation is also applied. At

last, to illustrate our main results, we examine sufficient conditions for the main results

to an impulsive fractional partial differential diffusion equation.

2 Preliminaries
In this section, we introduce notations, definitions and preliminary facts which are

used throughout this article.

Definition 2.1. [4] The Riemann-Liouville fractional integral of order a > 0 with the

lower limit zero, of function f Î L1(ℝ
+), is defined as

Iαf (t) =
1

�(α)

∫ t

0
(t − s)α−1f (s)ds, (2:1)

where Γ(·) is the Euler gamma function.

Definition 2.2. [4] The Caputo fractional derivative of order a > 0 with the lower

limit zero, n - 1 <a <n, is defined as
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Dαf (t) =
1

�(n − α)

∫ t

0
(t − s)n−α−1f (n)(s)ds, (2:2)

where the function f(t) has absolutely continuous derivatives up to order n - 1. If 0

<a < 1, then

Dα f (t) =
1

�(1 − α)

∫ t

0

f ′(s)
(t − s)α

ds. (2:3)

If f is an abstract function with values in X, then the integrals and derivatives which

appear in (2.1) and (2.2) are taken in Bochner’s sense.

Let X be an ordered Banach space with norm || · || and partial order ≤, whose posi-

tive cone P = {y Î X | y ≥ θ} (θ is the zero element of X) is normal with normal con-

stant N. Let C(I, X) be the Banach space of all continuous X-value functions on

interval I with norm ||u||C = maxtÎI ||u(t)||. Then, C (I, X) is an ordered Banach space

reduced by the positive cone PC = {u Î C (I, X) | u(t) ≥ θ, t Î I}. Let PC (I, X) = {u: I

® X | u(t) is continuous at t ≠ tk, left continuous at t = tk, and u(t+k ) exists, k = 1, 2,

..., m}. Evidently, PC (I, X) is an ordered Banach space with norm ||u||PC = suptÎI ||u

(t)|| and the partial order ≤ reduced by the positive cone KPC = {u Î PC (I, X) | u(t) ≥

θ, t Î I}. KPC is also normal with the same normal constant N. For u, v Î PC (I, X), u

≤ v ⇔ u(t) ≤ v(t) for all t Î I. For v, w Î PC (I, X) with v ≤ w, denote the ordered

interval [v, w] = {u Î PC (I, X) |v ≤ u ≤ w} in PC (I, X), and [v(t), w(t)] = {y Î X | v(t)

≤ y ≤ w(t)} (t Î I) in X. Set Ca,0 (I, X) = {u Î C (I, X) | Dau exists and Dau Î C (I,

X)}. Let I ’ >= I\{t1, t2, ..., tm}. By X1 we denote the Banach space D (A) with the graph

norm || · ||1 = || · || + ||A · ||. An abstract function u Î PC (I, X) ∩ Ca,0 (I ’, X) ∩ C (I

’, X1) is called a solution of (1.1) if u(t) satisfies all the equalities of (1.1). We note that

- A is the infinitesimal generator of a uniformly bounded analytic semigroup T(t) (t ≥

0). This means there exists M ≥ 1 such that

||T(t)|| ≤ M, t ≥ 0. (2:4)

Definition 2.3. If v0 Î PC (I, X) ∩ Ca,0 (I ’, X) ∩ C (I ’, X1) and satisfies inequalities⎧⎪⎨
⎪⎩
Dαv0(t) + Av0(t) ≤ f (t, v0(t)), t ∈ I, t �= tk,

�v0|t=tk ≤ Ik(v0(tk)), k = 1, 2, . . . ,m,

v0(0) ≤ x0,

(2:5)

then v0 is called a lower solution of problem (1.1); if all inequalities of (2.5) are

inverse, we call it an upper solution of problem (1.1).

Lemma 2.4. [28-30]If h satisfies a uniform Hölder condition, with exponent b Î (0,

1], then the unique solution of the linear initial value problem (LIVP){
Dαu(t) + Au(t) = h(t), t ∈ I,

u(0) = x0 ∈ X
(2:6)

is given by

u(t) = U(t)x0 +
∫ t

0
(t − s)α−1V(t − s)h(s)ds, (2:7)
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where

U(t) =
∫ ∞

0
ζα(θ)T(tαθ)dθ , V(t) = α

∫ ∞

0
θζα(θ)T(tαθ)dθ , (2:8)

ζα(θ) =
1
α

θ
−1− 1

α ρα(θ
− 1

α ), (2:9)

ρα(θ) =
1
π

∞∑
n=0

(−1)n−1
θ−αn−1 �(nα + 1)

n!
sin(nπα), θ ∈ (0,∞),

ζa(θ) is a probability density function defined on (0, ∞).

Remark 2.5. [29,31-33]ζa(θ) ≥ 0, θ Î (0, ∞),
∫ ∞
0 ζα(θ)dθ = 1,

∫ ∞
0 θζα(θ)dθ =

1
�(1 + α)

.

Definition 2.6. By the mild solution of IVP (2.6), we mean that the function u Î C

(I, X) satisfying the integral equation

u(t) = U(t)x0 +
∫ t

0
(t − s)α−1V(t − s)h(s)ds,

where U(t) and V (t) are given by (2.8).

Form Definition 2.6, we can easily obtain the following result.

Lemma 2.7. For any h Î PC (I, X), yk Î X, k = 1, 2, ..., m, the LIVP⎧⎪⎨
⎪⎩
Dαu(t) + Au(t) = h(t), t ∈ I, t �= tk,

�u|t=tk = yk, k = 1, 2, . . . ,m,

u(0) = x0 ∈ X,

(2:10)

had the unique mild solution u Î PC (I, X) given by

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t)x0 +
∫ t

0
(t − s)α−1V(t − s)h(s)ds, t ∈ [0, t1],

U(t)[u(t1) + y1] +
∫ t

t1
(t − s)α−1V(t − s)h(s)ds, t ∈ (t1, t2],

...

U(t)[u(tm) + ym] +
∫ t

tm
(t − s)α−1V(t − s)h(s)ds, t ∈ (tm,T],

(2:11)

where U (t) and V (t) are given by (2.8).

Remark 2.8. We note that U (t) and V (t) do not possess the semigroup properties.

The mild solution of (2.10) can be expressed only by using piecewise functions.

Definition 2.9. An operator family S (t): X ® X (t ≥ 0) in X is called to be positive if

for any y Î P and t ≥ 0 such that S (t) y ≥ θ.

From Definition 2.9, if T (t) (t ≥ 0) is a positive semigroup generated by - A, h ≥ θ,

x0 ≥ θ and yk ≥ θ, k = 1, 2, ..., m, then the mild solution u Î PC (I, X) of (2.10) satisfies

u ≥ θ. For positive semigroups, one can refer to [12-16].

Now, we recall some properties of the measure of noncompactness will be used later.

Let μ (·) denote the Kuratowski measure of noncompactness of the bounded set. For

the details of the definition and properties of the measure of noncompactness, see
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[34]. For any B ⊂ C (I, X) and t Î I, set B (t) = {u(t) | u Î B}. If B is bounded in C (I,

X), then B (t) is bounded in X, and μ (B(t)) ≤ (B).

Lemma 2.10. [35]Let B = {un} ⊂ C (I, X) (n = 1, 2, ...) be a bounded and countable

set. Then, μ (B(t)) is Lebesgue integral on I, and

μ

({∫
I
un(t)dt|n = 1, 2, . . .

})
≤ 2

∫
I
μ(B(t))dt.

In order to prove our results, we also need a generalized Gronwall inequality for

fractional differential equation.

Lemma 2.11. [36]Suppose b ≥ 0, b > 0 and a(t) is a nonnegative function locally

integrable on 0 ≤ t <T (some T ≤ +∞), and suppose u (t) is nonnegative and locally

integrable on 0 ≤ t <T with

u(t) ≤ a(t) + b
∫ t
0 (t − s)β−1u(s)ds

on this interval; then

u(t) ≤ a(t) +
∫ t
0

[ ∞∑
n=1

(b�(β))n

�(nβ)
(t − s)nβ−1a(s)

]
ds, 0 ≤ t < T.

3 Main results
Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is normal with

normal constant N. Assume that T(t) (t ≥ 0) is positive, the Cauchy problem (1.1) has a

lower solution v0 Î C (I, X) and an upper solution w0 Î C (I, X) with v0 ≤ w0, and the

following conditions are satisfied:

(H1) There exists a constant C ≥ 0 such that

f (t, x2) − f (t, x1) ≥ −C(x2 − x1)

for any t Î I, and v0(t) ≤ x1 ≤ x2 ≤ w0 (t). That is, f (t, x) + Cx is increasing in x for

x Î [v0 (t), w0 (t)].

(H2) The impulsive function Ik satisfies inequality

Ik(x1) ≤ Ik(x2), k = 1, 2, . . . ,m

for any t Î I, and v0 (t) ≤ x1 ≤ x2 ≤ w0 (t). That is, Ik (x) is increasing in x for x Î
[v0 (t), w0 (t)].

(H3) There exists a constant L ≥ 0 such that

μ({f (t, xn)}) ≤ Lμ({xn})

for any t Î I, an increasing or decreasing monotonic sequence {xn} ⊂ [v0 (t), w0 (t)].

Then, the Cauchy problem (1.1) has the minimal and maximal mild solutions

between v0 and w0, which can be obtained by a monotone iterative procedure starting

from v0 and w0, respectively.
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Proof. It is easy to see that - (A + CI) generates an analytic semigroup S (t) = e-Ct T

(t), and S (t) (t ≥ 0) is positive. Let �(t) =
∫ ∞
0 ζα(θ)S(tαθ)dθ,

�(t) = α
∫ ∞
0 θζα(θ)S(tαθ)dθ. By Remark 2.5, F (t) (t ≥ 0) and Ψ (t) (t ≥ 0) are positive.

By (2.4) and Remark 2.5, we have that

||�(t)|| ≤ M, ||�(t)|| ≤ α

�(α + 1)
M � M1, t ≥ 0. (3:1)

Let D = [v0, w0], J
′
1 = [t0, t1] = [0, t1], J

′
k = (tk−1, tk], k = 2, 3, ..., m + 1. We define a

mapping Q: D ® PC (I, X) by

Qu(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(t)x0 +
∫ t

0
(t − s)α−1�(t − s)[f (s, u(s)) + Cu(s)]ds, t ∈ J′1,

�(t)[u(t1) + I1(u(t1))] +
∫ t

t1
(t − s)α−1�(t − s)[f (s, u(s)) + Cu(s)]ds,

t ∈ J′2,
...

� (t)[u(tm) + Im(u(tm))] +
∫ t

tm
(t − s)α−1

�(t − s)[f (s, u(s)) + Cu(s)]ds,

t ∈ J′m+1.

(3:2)

Clearly, Q: D ® PC (I, X) is continuous. By Lemma 2.7, u Î D is a mild solution of

problem (1.1) if and only if

u = Qu. (3:3)

For u1, u2 Î D and u1 ≤ u2, from the positivity of operators F (t) and Ψ (t), (H1),

(H2), we have inequality

Qu1 ≤ Qu2. (3:4)

Now, we show that v0 ≤ Qv0, Qw0 ≤ w0. Let D
av0 (t) + Av0 (t) + Cv0 (t) ≜ s (t). By

Definition 2.3, Lemma 2.7, the positivity of operators F (t) and Ψ (t), for t ∈ J′1, we
have that

v0(t) = �(t)v0(0) +
∫ t

0
(t − s)α−1�(t − s)σ (s)ds

≤ �(t)x0 +
∫ t

0
(t − s)α−1

�(t − s)[f (s, v0(s)) + Cv0(s)]ds.

For t ∈ J′2, we have that

v0(t) = �(t)[v0(t1) + �v0|t=t1 ] +
∫ t

t1
(t − s)α−1�(t − s)σ (s)ds

≤ �(t)[v0(t1) + I1(v0(t1))] +
∫ t

t1
(t − s)α−1

�(t − s)[f (s, v0(s)) + Cv0(s)]ds.

Continuing such a process interval by interval to J′m+1, by (3.2), we obtain that v0 ≤

Qv0.
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Similarly, we can show that Qw0 ≤ w0. For u Î D, in view of (3.4), then v0 ≤ Qv0 ≤

Qu ≤ Qw0 ≤ w0. Thus, Q: D ® D is an increasing monotonic operator. We can now

define the sequences

vn = Qvn−1, wn = Qwn−1, n = 1, 2, . . . , (3:5)

and it follows from (3.4) that

v0 ≤ v1 ≤ · · · vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0. (3:6)

Let B = {vn} (n = 1, 2, ...) and B0 = {vn-1} (n = 1, 2, ...). By (3.6) and the normality of

the positive cone P, then B and B0 are bounded. It follows from B0 = B ∪ {v0} that μ

(B(t)) = μ (B0(t)) for t Î I. Let

ϕ(t) = μ(B(t)) = μ(B0(t)), t ∈ I. (3:7)

From (H3), (3.1), (3.2), (3.5), (3.7), Lemma 2.10 and the positivity of operator Ψ (t),

for t ∈ J′1, we have that

ϕ(t) = μ(B(t)) = μ(QB0(t))

= μ

({∫ t

0
(t − s)α−1�(t − s)[f (s, vn−1(s)) + Cvn−1(s)]ds|n = 1, 2, . . .

})

≤ 2
∫ t

0
μ({(t − s)α−1

�(t − s)[f (s, vn−1(s) + Cvn−1(s)]n = 1, 2, . . .})ds

≤ 2M1

∫ t

0
(t − s)α−1(L + C)μ(B0(s))ds

= 2M1(L + C)
∫ t

0
(t − s)α−1

ϕ(s)ds.

(3:8)

By (3.8) and Lemma 2.11, we obtain that � (t) ≡ 0 on J′1. In particular, μ (B (t1)) = μ

(B0(t1)) = � (t1) = 0. This means that B (t1) and B0 (t1)) are precompact in X. Thus, I1
(B0 (t1)) is pre-compact in X and μ(I1 (B0 (t1))) = 0. For t ∈ J′2, using the same argu-

ment as above for t ∈ J′1,
we have that

ϕ(t) = μ(B(t)) = μ(QB0(t))

= μ
({

�(t)[vn−1(t1) + I1(vn−1(t1))]

+
∫ t

t1
(t − s)α−1�(t − s)[f (s, vn−1(s)) + Cvn−1(s)]ds|n = 1, 2, . . .

)}

≤ M[μ(B0(t1)) + μ(I1(B0(t1)))] + 2M1(L + C)
∫ t

t1
(t − s)α−1

ϕ(s)ds

= 2M1(L + C)
∫ t

t1
(t − s)α−1

ϕ(s)ds.

(3:9)

By (3.9) and Lemma 2.11, � (t) ≡ 0 on J′2. Then, μ (B0(t2)) = μ (I1(B0(t2))) = 0. Conti-

nuing such a process interval by interval to J′m+1, we can prove that � (t) ≡ 0 on every

J′k, k = 1, 2, . . . ,m + 1. This means {vn (t)} (n = 1, 2, ...) is precompact in X for every t Î
I. So, {vn (t)} has a convergent subsequence in X. In view of (3.6), we can easily prove

that {vn (t)} itself is convergent in X. That is, there exist u(t) Î X such that vn (t) ® u

(t) as n ® ∞ for every t Î I. By (3.2) and (3.5), we have that
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vn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(t)x0

+
∫ t

0
(t − s)α−1

�(t − s)[f (s, vn−1(s)) + Cvn−1(s)]ds, t ∈ J′1,

�(t)[vn−1(t1) + I1(vn−1(t1))]

+
∫ t

t1
(t − s)α−1

�(t − s)[f (s, vn−1(s)) + Cvn−1(s)]ds, t ∈ J′2,

...

�(t)[vn−1(tm) + Im(vn−1(tm))]

+
∫ t

tm
(t − s)α−1

�(t − s)[f (s, vn−1(s)) + Cvn−1(s)]ds, t ∈ J′m+1.

Let n ® ∞, then by Lebesgue-dominated convergence theorem, we have that

u−(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(t)x0 +
∫ t

0
(t − s)α−1�(t − s)[f (s, u−(s)) + Cu−(s)]ds, t ∈ J′1,

�(t)[u−(t1) + I1(u−(t1))]

+
∫ t

t1
(t − s)α−1

�(t − s)[f (s, u−(s)) + Cu−(s)]ds, t ∈ J′2,

...

�(t)[u−(tm) + Im(u−(tm))]

+
∫ t

tm
(t − s)α−1

�(t − s)[f (s, u−(s)) + Cu−(s)]ds, t ∈ J′m+1,

and uÎ C (I, X). Then, u= Qu. Similarly, we can prove that there exists ū Î C(I,X)

such that ū = Qū. By (3.4), if u Î D, and u is a fixed point of Q, then v1 = Qv0 ≤ Qu =

u ≤ Qw0 = w1. By induction, vn ≤ u ≤ wn. By (3.6) and taking the limit as n ® ∞, we

conclude that v0 ≤ u≤ u ≤ ū ≤ w0. That means that u, ū are the minimal and maximal

fixed points of Q on [v0, w0], respectively. By (3.3), they are the minimal and maximal

mild solutions of the Cauchy problem (1.1) on [v0, w0], respectively. □
Remark 3.2. Theorem 3.1 extend [[37], Theorem 2.1]. Even if X = ℝ, A = 0 and Ik =

0, k = 1, 2, ..., m, our results are also new.

Corollary 3.3. Let X be an ordered Banach space, whose positive cone P is regular.

Assume that T(t) (t ≥ 0) is positive, the Cauchy problem (1.1) has a lower solution v0 Î
C (I, X) and an upper solution w0 Î C (I, X) with v0 ≤ w0, (H1) and (H2) hold. Then,

the Cauchy problem (1.1) has the minimal and maximal mild solutions between v0 and

w0, which can be obtained by a monotone iterative procedure starting from v0 and w0,

respectively.

Proof. Since (H1) and (H2) are satisfied, then (3.6) holds. In regular positive cone P,

any monotonic and ordered-bounded sequence is convergent. For t Î I, let {xn} be an

increasing or decreasing sequence in [v0 (t), w0 (t)]. By (H1), {f (t, xn) + Cxn} is an

ordered-monotonic and ordered-bounded sequence in X. Then, μ {f (t, xn) + Cxn} = μ

({xn}) = 0. By the properties of the measure of noncompactness, we have

μ({f (t, xn)}) ≤ μ({f (t, xn) + Cxn}) + Cμ({xn}) = 0. (3:10)

So, (H3) holds. Then, by the proof of Theorem 3.1, the proof is then complete. □
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Corollary 3.4. Let X be an ordered and weakly sequentially complete Banach space,

whose positive cone P is normal with normal constant N. Assume that T(t) (t ≥ 0) is

positive, the Cauchy problem (1.1) has a lower solution v0 Î C (I, X) and an upper

solution w0 Î C (I, X) with v0 ≥ w0, (H1) and (H2) hold. Then, the Cauchy problem

(1.1) has the minimal and maximal mild solutions between v0 and w0, which can be

obtained by a monotone iterative procedure starting from v0 and w0, respectively.

Proof. Since X is an ordered and weakly sequentially complete Banach space, then the

assumption (H3) holds. In fact, by [[38], Theorem 2.2], any monotonic and ordered-

bounded sequence is precompact. Let xn be an increasing or decreasing sequence. By

(H1), {f (t, xn) + Cxn} is a monotonic and ordered-bounded sequence. Then, by the

properties of the measure of noncompactness, we have

μ({f (t, xn)}) ≤ μ({f (t, xn) + Cxn}) + μ({Cxn}) = 0.

So, (H3) holds. By Theorem 3.1, the proof is then complete. □
Theorem 3.5. Let X be an ordered Banach space, whose positive cone P is normal

with normal constant N. Assume that T(t) (t ≥ 0) is positive, the Cauchy problem (1.1)

has a lower solution v0 Î C (I, X) and an upper solution w0 Î C (I, X) with v0 ≤ w0,

(H1) and (H2) hold, and the following condition is satisfied:

(H4) There is a constant S ≥ 0 such that

f (t, x2) − f (t, x1) ≤ S(x2 − x1)

for any t Î I, v0 (t) ≤ x1 ≤ x2 ≤ w0 (t).

Then, the Cauchy problem (1.1) has the unique mild solution between v0 and w0,

which can be obtained by a monotone iterative procedure starting from v0 or w0.

Proof. We can find that (H1), (H2) and (H4) imply (H3). In fact, for t Î I, let {xn} ⊂
[v0 (t), w0 (t)] be an increasing sequence. For m, n = 1, 2, ... with m >n, by (H1) and

(H4), we have that

θ ≤ f (t, xm) − f (t, xn) + C(xm − xn) ≤ (S + C)(xm − xn). (3:11)

By (3.11) and the normality of positive cone P, we have

||f (t, xm) − f (t, xn)|| ≤ (NS +NC + C)||xm − xn||. (3:12)

From (3.12) and the definition of the measure of noncompactness, we have that

μ({f (t, xn)}) ≤ Lμ({xn}),

where L = NS + NC + C. Hence, (H3) holds.

Therefore, by Theorem 3.1, the Cauchy problem (1.1) has the minimal mild solution

u and the maximal mild solution ū on D = [v0, w0]. In view of the proof of Theorem

3.1, we show that u = ū. For t ∈ J′1, by (3.2), (3.3), (H4) and the positivity of operator Ψ

(t), we have that

θ ≤ ū(t) − u−(t) = Qū(t) − Qu−(t)

=
∫ t

0
(t − s)α−1�(t − s)[f (s, ū(s)) − f (s, u−(s)) + C(ū(s) − u−(s))]ds

≤
∫ t

0
(t − s)α−1�(t − s)(S + C)(ū(s) − u−(s))ds.

(3:13)
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By (3.1), (3.13) and the normality of the positive cone P, we obtain that

||ū(t) − u−(t)|| ≤ NM1(S + C)
∫ t

0
(t − s)α−1||ū(s) − u−(s)||ds.

By Lemma 2.11, then u(t) ≡ ū(t) on J′1. For t ∈ J′2, since I1(ū(t1)) = I1(u(t1)), using the

same argument as above for t ∈ J′1, we can prove that

||ū(t) − u−(t)|| ≤ NM1(S + C)
∫ t

t1
(t − s)α−1||ū(s) − u−(s)||ds.

Again, by Lemma 2.11, we obtain that u(t) ≡ ū(t) on J′2. Continuing such a process

interval up to J′m+1, we see that u(t) ≡ ū(t) over the whole of I. Hence, u= ū is the

unique mild solution of the Cauchy problem (1.1) on [v0, w0]. By the proof of Theorem

3.1, we know it can be obtained by a monotone iterative procedure starting from v0 or

w0. □

4 Examples
Example 4.1. In order to illustrate our main results, we consider the impulsive frac-

tional partial differential diffusion equation in X⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂α
t u − ∇2u = g(y, t, u), (y, t) ∈ � × I, t �= tk,

�u|t=tk = Jk(y, u(y, tk)), k = 1, 2, . . . ,m,

u|∂� = 0,

u(y, 0) = ψ(y),

(4:1)

where ∂α
t is the Caputo fractional partial derivative of order 0 <a < 1, ∇2 is the

Laplace operator, I = [0, T], Ω ⊂ ℝN is a bounded domain with a sufficiently smooth

boundary ∂Ω, g : �̄ × I × R → R is continuous, Jk : �̄ × R → R is also continuous, k =

1, 2, ..., m.

Let X = L2(Ω), P = {v | v Î L2(Ω), v (y) ≥ 0 a.e.y Î Ω}. Then, X is a Banach space,

and P is a normal cone in X. Define the operator A as follows:

D(A) = H2(�) ∩ H1
0(�), Au = −∇2u.

Then, - A generate an analytic semigroup of uniformly bounded analytic semigroup

T(t) (t ≥ 0) in X (see [29]). T (t) (t ≥ 0) is positive (see [15,16,39,40]). Let u (t) = u(·, t),

f (t, u (t)) = g (·, t, u (·, t)), Ik (u (tk)) = Jk (·, u (·, tk)), then the problem (4.1) can be

transformed into the following problem:⎧⎨
⎩
Dαu(t) + Au(t) = f (t, u(t)), t ∈ I, t �= tk,
�u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,
u(0) = ψ .

(4:2)

Let l1 be the first eigenvalue of A, ψ1 is the corresponding eigenfunction. Then, l1 ≥
0, ψ1(y) ≥ 0. In order to solve the problem (4.1), we also need the following

assumptions:

(O1) ψ(y) ∈ H2(�) ∩ H1
0(�), 0 ≤ ψ(y) ≤ ψ1(y), g(y, t, 0) ≥ 0, g(y, t, ψ1(y)) ≤ l1ψ1(y), Jk

(y,0) ≥ 0, Jk(y,ψ1(y)) ≤ 0, k = 1,2, ..., m.

(O2) For any u1 and u2 in any bounded and ordered interval, and u1 ≤ u2, we have

inequality
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Jk(y, u1(y, tk)) ≤ Jk(y, u2(y, tk)), y ∈ �, k = 1, 2, . . . ,m.

(O3) The partial derivative g′
u(y, t, u) is continuous on any bounded domain.

Theorem 4.2. If O1, O2 and O3 are satisfied, then the problem (4.1) has the unique

mild solution.

Proof. From Definition 2.3 and O1, we obtain that 0 is a lower solution of (4.2), and

ψ1(y) is an upper solution of (4.2). Form O2 and O3, it is easy to verify that (H1), (H2)

and (H4) are satisfied. Therefore, by Theorem 3.5, the problem (4.1) has the unique

mild solution. □
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