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Abstract

The propose of this article is to consider the strong convergence of an iterative
sequences for finding a common element of the set of fixed points of an infinite
family of nonexpansive mappings, the set of solutions of the variational inequalities
for inverse strongly monotone mappings, and the set of solutions of system of
equilibrium problems in Hilbert spaces by using a hybrid steepest descent methods.
Our results improve and generalize many known corresponding results.
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1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by (-,-) and
||-||, respectively. Let C be a nonempty closed convex subset of H and let F: C x C —
R be a bifunction, where R is the set of real numbers. The equilibrium problem for F:
C x C— Ris to find x*e C such that

F(x*,y) >0, VyeC. (1.1)

The set of solutions of (1.1) is denoted by EP(F).

Let {F;, i = 1, 2,..., N} be a finite family of bifunctions from C x C into R, where R is
the set of real numbers. The system of equilibrium problems for {F}, F,,..., Fy} is to
find a common element x* € C such that

Fi(x*,y) >0, VyeC(C

Fo(x*,y) >0, VyeC
) (1.2)

Fn(x*,y) >0, VyeC.

We denote the set of solutions of (1.2) by ﬂfilSEP(F,'), where SEP(F)) is the set of

solutions to the equilibrium problems, that is,
Fi(x*,y) =0, VyeC. (1.3)
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If N = 1, then the problem (1.2) is reduced to the equilibrium problems.
If N =1 and F(x*y) = (Bx* y - x*), then the problem (1.2) is reduced to the varia-
tional inequality problems of finding x* € C such that

(Bx*,y—x*)>0, VWyeC. (1.4)

The set of solutions of (1.4) is denoted by VI(C, B).

Many problems in applied sciences, such as monotone inclusion problems, saddle
point problems, optimization problems, variational inequality problems, Nash equili-
brium problems, and equilibrium problems as special cases. Some methods have been
proposed to solve VI(C, B), EP(F), and SEP(F)); see, for example [1-22] and references
therein. The above formulations (1.2) extends this formulism to such problems, cover-
ing in particular various forms of feasibility problems [23,24].

Let Pc be the metric projection of H onto the closed convex subset C. Let S: C — C
be a nonexpansive mapping, that is, ||Sx - Sy|| < ||x - y|| for all x, y € C. The set of
fixed points of S is denoted by F(S) = {x € C: Sx = x}. If C € H is nonempty, bounded,
closed and convex and S is a nonexpansive mapping of C into itself, then F(S) is none-
mpty; see, for example, [25,26]. A mapping f: C — C is a contraction on C if there
exists a constant 17 € (0,1) such that ||fix) - Ay)|| < n||x - y|| for all x, y € C.

Definition 1.1. Let B: C — H be nonlinear mappings. Then B is called

(1) monotone if (Bx - By, x - y) 20, Vx,y€ C
(2) &-inverse-strongly monotone if there exists a constant ¢ > 0 such that

(Bx — By, x —y) > &||Bx — By|",

Vx,y € C.

(3) A set-valued mapping Q: H — 2 is called monotone if for all x, y € H, fe Qx
and ge Qy imply (x - y, f- g) > 0. A monotone mapping Q: H — 2" is called max-
imal monotone, if it is monotone and if for any (x, ) € H x H

(x—y.f—g) =0, VY(.8) € Graph(Q)

(the graph of mapping Q) implies that fe Qx.

A typical problem is to minimize a quadratic function over the set of fixed points of
a nonexpansive mapping defined on a real Hilbert space H:

xeF

. 1
min [2 (Ax, x) — (x, b)] ,

where F is the fixed point set of a nonexpansive mapping S defined on H and b is a
given point in H.
A linear bounded operator A is strong positive if there exists a constant y > 0 with
the property
(Ax,x) > 7|lx|>, VxeH.

Marino and Xu [27] introduced a new iterative scheme by the viscosity approxima-
tion method:

Xne1 = EnVf(%n) + (1 — ,A)SXy. (1.5)
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They proved that the sequences {x,} generated by (1.5) converges strongly to the
unique solution of the variational inequality:

(vfe—Az,x—2z) <0, VxeF(S),

which is the optimality condition for the minimization problem:

1
min Ax, x) — h(x) |, 1.6
xeF(S) |:2 ( ) ( )] (1.6)
where /1 is a potential function for f.
In order to find a common element of the set of fixed points of a nonexpansive map-
ping and the set of solutions of variational inequalities for a &-inverse-strongly mono-
tone mapping, Takahashi and Toyoda [28] introduced the following iterative scheme:

{xo € C chosen arbitrary, L.7)

Xn+1 = VYnXn + (1 - Vn)SPC(xn - aann)r vn >0,

where B is a ¢-inverse-strongly monotone mapping, {¥,} is a sequence in (0, 1), and
{o,} is a sequence in (0,2¢). They showed that if F(S) n VI(C,B) is nonempty, then the
sequence {x,; generated by (1.7) converges weakly to some z € F(S) n VI(C, B).

In order to find a common element of F(S) n VI(C, B), let S: H — H be a nonexpan-
sive mapping, Yamada [29] introduced the following iterative scheme called the hybrid
steepest descent method:

Xpe1 = Sxy — ayuBSx,, VYn=>1, (1.8)

where x, = x € H, {o,} < (0,1), let B: H — H be a strongly monotone and Lipschitz
continuous mapping and  is a positive real number. He proved that the sequence {x,}
generated by (1.8) converges strongly to the unique solution of the F(S) n VI(C, B).

Let C be a nonempty closed convex subset of H. Given r > 0 the operators
JE': H — C defined by

]f(x)={zeC:F(z,y)+ 1(y—z,z—x>20, VyeC},

is called the resolvent of F (see [3]). It is shown in [3] that under suitable hypotheses
on F (to be stated precisely in Section 2), Jf' : H — C is single-valued and firmly non-

expansive and satisfied
F(F) = EP(F), Vr>o0.

Using the result, in 2009, Colao et al. [10] introduced and considered an implicit
iterative scheme for finding a common element of the set of solutions of the system
equilibrium problems and the set of common fixed points of an infinite family of non-
expansive mappings on C. Starting with an arbitrary initial xy € C and defining a
sequence {z,} recursively by

Xn = enyf(n) + (1 = eaAYW, I Ji1 iz o J52 I (1.9)

T™Mn” TM—1,n" TM=2,n T2,n" T1n

where {¢,} be a sequences in (0,1). It is proved [10] that under certain appropriate
conditions imposed on {¢,} and {r,}, the sequence {x,} generated by (1.9) converges
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strongly to z € N2, F(T,,) N (MM, SEP(Fy)), where z is the unique solution of the varia-
tional inequality and which is the optimality condition for the minimization problem.
In 2010, Colao and Marino [30] introduced the following explicit viscosity scheme

with respect to W-mappings for an infinite family of nonexpansive mappings
Xns1 = En¥f (Xn) + Bnxn + ((1 — Bu)l — gnA)WrJf;xn- (1.10)

They prove that sequence {x,} and {]fn } converge strongly to z € N2, F(T,) N EP(F),
where z is an equilibrium point for F and is the unique solution of the variational
inequality:

(vfe — Az, x —2) <0, Vx e N2, F(T,) NEP(F)

or, equivalently, the unique solution of the minimization problem

min |:l (Ax, x) — h(x)] ,
xen, F(T,)NEP(F) | 2

where / is a potential function for yf. Recently, Chantarangsi et al. [11] introduced
some iterative processes based on the viscosity hybrid steepest descent method for
finding a common solutions of a generalized mixed equilibrium problem, the set of
fixed points of a nonexpansive mapping and the set of solutions of variational inequal-
ity problem in a real Hilbert space.

In this article, motivated by above results, we introduce an iterative scheme for find-
ing a common element of the set of solutions of system of equilibrium problems, the
set of fixed points of an infinite family of nonexpansive mapping, and the set of solu-
tions of variational inequality problems for inverse strongly monotone mapping in a
real Hilbert space by using a new hybrid steepest descent methods. The results shown
in this article improve and extend the recent ones announced by many others.

2. Preliminaries

Let H be a real Hilbert space, when {x,} is a sequence in H, we denote strong conver-
gence of {x,} to x € H by x, — x and weak convergence by x, - x. Let C be nonempty
closed convex subset of H. The nearest point projection Pc: H — C defined from H
onto C is the function which assigns to each x € H its nearest point denoted by Pcx
in C. Thus, Pcx is the unique point in C such that ||x - Pex|| < ||x - ||, Vy e C. It
easy to see that Pc is nonexpansive and

x* € VI(C,B) & x* = Pc(x* — ABx*), A > 0. (2.1)

Lemma 2.1. [26]Let H be a Hilbert space, let C be a nonempty closed convex subset
of H. Let ¢ >0 and let A: C — H be &-inverse strongly monotone. If 0 <p < 2& then I -
OB is a nonexpansive mapping of C into H.

Lemma 2.2. [26]Let H be a real Hilbert spaces, there hold the following identities:

(i) for each x € H and x*€ C, x*=Px & (x - x%y-x% <0 forallye C

(ii) Pc: H — C is nonexpansive, that is, ||Pcx - Pcy|| < ||« - y|| for all x, y € H;
(iii) Pc is firmly nonexpansive, that is, ||Pcx - Pcy||* < (Pex - Pey, x - y) for all x,y
e H;
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(iv) |ex + (1 - t)y||2 = t||x||2 + (1 - t)||y||2 -1 - D)||x - y||2, Vt e [0,1], for all x,y
e H;
M) [z + 311> < [Ix]]* + 2% + ).

Lemma 2.3. [31]Each Hilbert space H satisfies Opial’s condition, that is, for any
sequence {x,} © H with x,, — x, the inequality

’

liminf|lx, — x|| < liminf ||xn —y
n—o0 n—oo

hold for each y € H with y = x.
Lemma 2.4. [27]Let C be a nonempty closed convex subset of H and let f be a con-
traction of H into itself with n € (0,1), and A be a strongly positive linear bounded

operator on H with coefficient y > 0. Then, for 0 <y < y,
n

2, Vx,y € H.

=y A=y x—(A-yY) =G —ny)|x—y

That is, A - yf is a strongly monotone with coefficient y — yn.

Lemma 2.5. [27]Assume A be a strongly positive linear bounded operator on H with
coefficient 7 > Oand 0 <p < ||A||™. Then ||l — pA|| < 1 — py.

Throughout this article, we assume that a bifunction F : C x C — R satisfies the fol-

lowing conditions:

(A1) F(x, x) = 0 for all x € C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) <0 for all x, y € C;

(A3) for each «x, y, ze C, lim, o F(tz + (1 - t)x, y) < Fx, y);

(A4) for each x € C, y » F(x, ) is convex and lower semicontinuous.

Then, we have the following lemmas.

Lemma 2.6. [1]Let C be a nonempty closed convex subset of H and let F be a bifunc-
tion of C x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then, there exists z€ C
such that

1
Fay)+ (r-zz-x=0 WeC

Lemma 2.7. [3]Assume that F : C x C — R satisfies (A1)-(A4). For r > 0 and x € H,
define a mapping J& : H — Cas follows:

1
JE(x) = {ze C:F(zy) + . y—zz—x)=0, Wye C}
for all z € H. Then, the following hold:

(1) JEis single-valued;

(2) JEis firmly nonexpansive, that is, for any x,y € H,

[Ex = JEy|” < ffx—JFyx =)
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(3) F(JY) = EP(F);
(4) EP(F) is closed and convex.

Lemma 2.8. [32]Let {x,} and {l,} be bounded sequences in a Banach space X and let
{B,} be a sequence in [0,1] with 0 < lim inf,_,., B, < lim sup,_,.. B, < 1. Suppose x,.1 =
(1 - B)L, + Bx, for all integers n > 0 and lim sup,_yeo (||Lic1 - Lil] - ||%0e1 - %4]]) < O.
Then, lim,_,.. ||, - x,|| = 0.

Lemma 2.9. [33]Assume {a,} is a sequence of nonnegative real numbers such that

an+1 = (1 - bn)an +Cp,n >0,

where {b,;} is a sequence in (0,1) and {c,} is a sequence in R such that

(l) ZZZI bn =00,

. C
(2) lim SUPy_ 0 b” =< Oor Zzil lenl < 00,
n

Then, lim,,_,., a,, = 0.

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T,,}5; be a
family of infinitely of nonexpansive mappings of C into itself and let {un}5o; be a
sequence of nonnegative numbers in [0,1]. For any # > 1, define a mapping W,: C —> C

as follows:

U‘rl,‘rl+1 = I/
Upp = nTnUn 1 + (1 — pn)l,
Un,nfl = l/LnflTnflun,n + (1 - Mnfl)Ir

Upnje = e TeUn e + (1 — )1, (3.1)
Upp—1 = =1 T U + (1 — pr—1)1,

Upo = poTolps + (1 — )l
Wy = Un,l = MITIUn,z + (1 - MI)I/

such a mappings W,, is nonexpansive from C to C and it is called the W-mapping
generated by T4,T5,..,T, and y;, o, ..., 4, (see [34]).

Lemma 3.1. [34,35]Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T1,T>,..., be an infinite family of nonexpansive mappings of C into itself such that
N F(Tyn) # 9, let yy, o, ... be real numbers such that 0 < y,, < b < 1 for every n > 1.
Then,

(1) for every x € Cand k e N, the limit lim,, .. U, ;x exists;
(2) the mapping W of C into itself as follows:

Wx = lim W,x = lim U,1x, x€C (3.2)

n—oo
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is a nonexpansive mapping satisfying F(W) = N2, F(T,), which it is called the W-
mapping generated by T, T, ... and py, s, ..;
(3) F(Wy) = NX,F(Ty), for each n > 1;

(4) If E is any bounded subset of C, then ,}gglo ngg [Wx — Wax|| = 0.,

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H, let
Fi, ke {1, 2, 3,..., M} be a bifunction from C x C to R satisfying (A1)-(A4), let {T,} be
an infinite family of nonexpansive mappings of C into itself and let B be ¢-inverse
strongly monotone such that

® := N2, F(T,) N (N, SEP(Fy)) N VI(C, B) # @.

Let f be a contraction of H into itself with n € (0,1) and let A be a strongly positive
linear bounded operator on H with coefficient y > Oand 0 < y < )/‘ Let {x,}, {y,.} and
n

{u,} be sequences generated by

x1 = x € C chosen arbitrary,
=1 —Fén)an+ 3nPc(xy — anBxy), (3.3)
tn = P T T2 JE T v, ‘

X1 = EnVf(Un) + Bnxn + (1 — Bn)I — e4A)Pc(Wytty — AnBWyuy), Vn>1,

where {W,} is the sequence generated by (3.1) and {e,}, {8} are two sequences in (0,1)
and {ry .}, k€ {1,2,3,.... M} are a real sequence in (0, «) satisfy the following conditions:

(C1) lim,, s €6, = 0 and Y oo &n = 00,

(C2) 0 < lim inf,_,.. B, < lim sup,. .. B, < 1,

(C3) {a,}, M) < e gl < (0, 28), lim,,_,.. ¢, = 0 and lim,,_,.. X, = 0,

(C4) {9,; < [0, b], for some b e (0,1) and lim,,_,.. 0,11 - 9,,] = 0,

(C5) lim inf,, ,c, 7¢,, > 0 and im,, e, |7gps1 - Tin| = O for each ke {1, 2, 3,..., M}.

Then, {x,} and {u,} converge strongly to a point z € ©, which is the unique solution of
the variational inequality

((A —vflz,x —z) >0, VxeO. (3.4)

Equivalently, we have z = Po(I - A + Y)(2).

Proof. From the restrictions on control sequence, without loss of generality, that €, <
(1 - B)||A]|™ for all # > 1. From Lemma 2.5, we know that if 0 < p < ||A||, then
Il — pAll <1 — py. We will assume that ||l —A|| < 1 — y. Since A is a strongly positive
bounded linear operator on H, we have

lAIl = sup {|[{Ax, x)| : x € H, [|x]| = 1}.

Observe that

(1= B — gA)x,x) = 1 — By — 0 (Ax,x) = 1 — By — &4 Al = O,
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this show that (1 - 8,)I - €,A is positive. It follows that

[(1 = Ba)I — enA| = sup {|(((1 — Bu)I — enA)x,x)| : x € H, |Ix]| = 1}
=sup{l — B, —en (Ax,x) : x € H, ||x]| = 1}
<1—pBn—eny.

We divide the proof of Theorem 3.2 into seven steps.
Step 1. We show that the mapping Pg()f + (I - A)) has a unique fixed point.
Since f'be a contraction of C into itself with coefficient 17 € (0,1). Then, we have

[Po(yf + (I = A)(x) = Po(vf + (I =AW < [(vf + T = A)E) = (vf + T =A) V)]
<y [f) —fO)] + = All |x—y|
<ynlx—y]+(=7)|x—y]
== -m)lx-y|, wxyec

Since 0 < 1 — (y —ny) < 1, it follows that Pg (f + (I - A)) is a contraction of C into
itself. Therefore, by the Banach Contraction Mapping Principle, has a unique fixed
point, say z € C, that is,

z=Po(yf+ (I —A))(2).

Step 2. We show that W, - A,,BW,, is nonexpansive.
For all x, y € C, let W, is the sequence defined by (3.1) and A, € (0, 2¢&), we obtain

W, - A,BW,, is a nonexpansive. Indeed,

[ (Wa = 2 BWa)x = (Wo = 2,BW, )y
= [(Wx — Way) = 2n(BWyx — BW,p) |
= [Wax — Way|* = 2200 (Wox — Wiy, BWyx — BWyy) + 32| BW,x — BW,p ||
| = ¥||* = 2208 | BWox — BW,y|| + 22| BW,x — BW,y |

||x — y||2 — An(An — ZE)HBan — BWny”2
2

’

(3.5)

] IA

IA

|lx—y

which implies that W), - A,,BW,, is a nonexpansive.
Step 3. We show that the sequence {x,;} is bounded.
In fact, let ¥ € ®, then

% = Po(¥ — aBR).

Setting v, = Pc(x, - a,,Bx,) and I - o,,B is a nonexpansive mapping (Lemma 2.1), we

obtain
|vn — %|| = | Pc(xn — anBxn) — Pc(% — anBX) ||
=< H (%0 — anBxy) — (X — anbix) H (3.6)
= |(I = anB)xn — (I — axB)X|
< | -3
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and

lvn =% = (1 = 80) [0 = %] + 0 v — 7|
< (1= 82) [t — & + 8 [ — | (3.7)
= [l — %]

Let 3k = Jit il iz B

P L rz,n]fll,n for ke {1, 2, 3,.., M} and 39 = for all n. Because

]fk’fn is nonexpansive for each k = 1, 2, 3,.., M, ¥ = 3% and (3.7), we note that

un = IMyp. 1t follows that
i — 51 = 550 — 5] = o — 3] = ea 3] 69

Let e, = Pc(W,u,, - ,BW,u,), we can prove that

len — X = | Pc(Wntn — AaBWyuy) — Po(Wax — 1,BW,X) |
< | (Watty — 1nBWptty) — (Wnk — 2 BW,X) | 3.9)
= || (Wn — AuBW)un — (W — AnBW,)E| )
< =51 < o~ ¥,
which yields that
”xml - 55” = ||5n(1/f(“n) — AX) + Bu(xn — X) + ((1 — Bn)l — enA)(en — X) ”
< e[| 7f (un) = AX] + B [0 = X[ + | (1 = Bu)] = nA]| en — %]
< ey [ (un) = F@)| + e [/ () — AF[ + B [xn = 5] + (1= Bu = eu7) e — |
< eny [un = %[+ en [f(R) = A%] + B [en = %[ + (1= Bu = e07) |50 — 7]
< ényn ”xn 75&” +&n H)’f(i) 7A56H + P ”xn 756” + (1 — Bn— gn);) ”xn - 3~C||
= (=G = ymen) =]+ 7 i) - .
By induction, we have
) — AR
||xn - 5c|| < max : ||x1 —Xx|, ” yf_(x) x|| }, vn e N. (3.10)
v —=rn

This implies that {x,} is bounded, and hence so are {u,}, {e,}, .}, {BW,u,.}, {Bx,},
{Aen}r {Vn - xn}r and {ﬂun)}
Step 4. We show that lim [xp.1 —xall = 0,
n—oo
We claim that if w, be a bounded sequence in C, then

~k

lim (5w, — %Eﬂwn

n—o0

=0, (3.11)

for every k € {1, 2, 3,..., M}. From Step 2 of the proof of Theorem 3.1 in [10], we
have that for k e {1,2,3,...,M},

Fre
Th,n+l

lim = 0. (3.12)
n—oo

Fie
Wy — ]Tknw"

Page 9 of 22



Onjai-uea et al. Journal of Inequalities and Applications 2012, 2012:101 Page 10 of 22
http://www.journalofinequalitiesandapplications.com/content/2012/1/101

Note that for every k € {1,2,3,..,M}, we obtain

]Fk ]Fk 1 ]Fk 2 ]Fz ]Fl ]F,( mk 1

Tkn? Tk=1,n" The—2,n * 20" Tn rkn
Thus,
k k
Sna)n - sn+1wn
F, mk 1 _ 1B k-1
]rkn ]rk,m-l \§n+1 C()n
F ~k— 1 F & k—1 F, (wk 1 F, fwk 1
< R R
—= ]Tk,n’\s ]Tkn+1 ]Tkn+l n ]Tkn+l n+1 @n
F xk-1,, k—1 k—1 k—1
< | st a, — g @ﬂ+snam—slm
(3.13)
Fkt\»kl <\»k1 F;lz\»k2 Fr—1 <\»k2
= ]Tk,n“" ]Tkn+1 n ]Tkgl ]Tk L Sn @n
+ S‘Z*zwn — Sk fa),,
kakl mkl F;lmkz Fr—1 mkz
< R—
— ]Tk,n“g ]Tkn+1 n ]Tk 1n ]Tk Ll ~Sn
Fy 1 F ol Fy R
]T Sp®n — ]Tz,n+1'\g”w” ]Tl,nw” ]Tl,n+1w”
Now, apply (3.12) to conclude (3.11).
Since T, and U,,,, are nonexpansive, we have
[Whs1xn — Waxull = ||H1T1 Uns1,2%0 — n1Th Un,zxn”
= M1 ” Uni1,2%n — Up,2%n ”
= p1 |2 Talner 3% — 2 Ta Uy, 3%, |
< w12 ||Une1,3%n — Uy 3% ||
(3.14)
<.
<

H12 .. Un ” Upi1,ne1Xn — Uppe1Xn H

n
<M H His
i=1

where M; > 0 is an appropriate constant such that ||U,,1 1%, - U, u01%,|| < M; for
all # = 0. From [ - ¢,,B is nonexpansive, we have

Vi1 —wvnll = ”PC(erl — ne1Bxyi1) — Pe(xn — O‘ann)”
= “ (-xn+1 - Oln+1an+1) - (xn - aann)”
“ (xn+1 - O5n+len+l) - (xn - Oln+1an)|| + |otne1 — anl [1Bxyll

< xns1 — Xull + lotper — anl |Bxy| .

A

(3.15)

IA

From (3.3) and (3.15), we have

[Yner = vu| = [ (1 = 8ne1) (Rne1 — Xn) + St (Vs — Vi) + (Bne1 — 80) (v — %) |

< (1 = 8pe1) Iner — Xnll + Snt 101 — vall + 81 — Sul lvn — x4l

< (1= 8ps1) 1%ne1 — xnll + S {lxner — Xnll + lotns1 — ot | Bxll} (3-16)
+[8n — Snerl %0 — vnll

= %1 — Xnll + Sns1 |1 — atn| 1Bxyll + 180 — Spar | lln — vall .
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Now, we compute ||u,,; - u,|| and ||e,,1 - €,||- Consider the following computation:

luner = unll = | Sy yner — Sy'va|
< [3navme = Saval + [ vn = 35w
< yner = yull + [ ¥501vn — 35y (3.17)
< %1 = Xnll + 8ot It — @l (1Bl + 185 — S | 10 — vl

+ ”51:11)’71 - Sﬁ\ld)’n ”
and

lenss = enll = [ pc(Waithna = Ani BWisitinar) = Po(Wattn — AnBWotiy) |
< || (Wit — Apat BWiiitin ) — (Wauy — A, BWouy) ||
| (Waitttner = Aps1 BWiiatina1) — (Wasrtin — Ane1 BWina1ttn)
+(Wasttln — Anet BWartty) — (Watky — AnBWoiiy) |
[ (Whstttner = Apst BWiirtina1) — (Wil — Ane1 BWiaaun) |
+ I Wasatin = Watin|l + 12nBWnttn — Ant BWia th | (3.18)

IA

n
< Mutner — il + My [ | st + An IBWittnl + At |BWossytay|
i=1

= Nxpe1 — Xnll + Spe1 lotner — ol [1Bxnll + 185 — Spet |l — vl
n
My — M M i + A |IBW, Ans1 [IBW,
+ ”\3n+1}’n NSpVn ” + M Mi+ A |l ntnll + Ansr || a1 lnl.
i=1
Setting

I = Xne1 — BnXn _ Snyf(un) + ((1 - ,Bn)I - lcJnA)en

1— 8, 1— B
we have x,,,., = (1 - B,)l, + B,x,, n > 1. It follows that

5n+1yf(un+1) + ((1 - ,3n+1)1 - 5n+1A)en+1

ln+l B ln i 1- ﬁn+1
ey (un) + (1= Ba)] — enA)en 510)
1- /3"
Entl &n
) 1- ﬂn+1 (Vf(uml) B A€n+1) * 1-—- ﬁn (Aen N yf(u”)) + (en+1 - en).

It follows from (3.18) and (3.19) that

Entl
Hln+l - ln” - Hxn+l _xn” =
1- .Bn

+ 8n+1 |an+1 - an' ”an“ + |8n - 8n+1| ”xn - Un”

”Vf(urul) - Aen+1 ” + 1 in ”Aen — yf(un)”
+1 '671

n
[Ny — Syl + My [ T i + 2 IBWinl
i=1

+ Ans1 IBWosruy || (3 20)

= f";j;l (I7f Q)| + 1Aenal) + | ™" 5, (1Aenl + [vftw)])

+8ne1 lans1 — ol 1 Bxall + 180 — Sna1 | 20 — vl

n
M ~M
[y — Sy + My T T i + 2 IBWginl
i=1
+ }“n+l ”BWrHlun” .
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This together with conditions (C1)-(C4) and (3.11) imply that

limsup(llln+1 — Inll = %41 — xall) < 0.
n—oo

By Lemma 2.8, we obtain

lim ||, — x,|| = 0.
n—-oo

Consequently,
lim |41 — %, [l = lim (1 — By) Iln — x4l = 0. (3.21)
n— 00 n—00

Applying (3.11), (3.21) and conditions (C3), (C4) to (3.15) and (3.17), we obtain that

lim [[upe1 — upll = lim [[vgeq — vyl = 0. (3.22)
n—oo n—oo

Step 5. We show that nlgglo [When —enll =0,
For any X € ® and (3.5), we obtain
|vn = %|% = | Pc(n — @nBxs) — Po(% — aBR) |
< || (x0 — nBxa) — (& — @aBR)|? (3.23)
< |xn — %] + (¢ — 2008)| Bx, — BE|”.
By Lemma 2.2(iv) and (3.23), we have
lvn = %17 = (1 = 80) 0 — %7 + 80w — %[
< (1= 8a)]xn = &|* + 8ul |0 — X||* + (@2 — 2008) | Bxa — BE||*}  (3.24)
= ||xn — 56”2 + (ozi — 20p€)8, ||an — B5€|| 2
So, from (3.8) and (3.24), we derive
len = %7 < Jun =% < [y = %|° < [0 — & + (@2 — 2008)8,, | Bx, — BE[| 2 (3.25)
From (3.3), we have
[ = &% = [ ((1 = Ba)l — £nA)(en — &) + Bu(n — %) + £a(yf (ua) — AD)|”
= (1 = B = ent)(en — %) + Buloen — )|
+ 8;5 ” Vf(“n) - A5CH2 + 2Bnenxy — X, Vf(un) — AX)
+2en{((1 = Bu)I — enA)(en — X), yf(un) — AX)
= ((1 — Bn — &n¥) ”en _5CH + Bn Hxn _&H)z +&nln
< (1= Bo—ea?)|en —Z| + B2| %0 — F|°
+ 2(1 — Bn— 5n)7)/3n Hen *55” ”xn - J~C” +é&nly
< [(1 — ) = 2(1 — £n7 ) + ,3,%] len — %
(1= Bu = en?)u {en = % + vu = Z} + 8250 — 77 + enL
= (1= &7)(1 = B — &n7) | en — %|* + (1 = £a7)Bu] 0 — &|* + £nLn

< (1= 7)1 = Bu = ea?) {50 = %7 + (03 = 2006)8, B, — B

(3.26)

+(1— enf)ﬂn”xn - 5(”2 +éenly
= (1 — &) — %]
+ (1= £aP)(1 = B — en?) (02 — 200 )80 | Bty — BX| + enLn
< [ —F]* + (1 = 7)1 = Bu — en?) (@2 — 2088, | By — BE|” + L.
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It follows that

(1= &a?)(1 = Bu — £a7) (285 — €)b]| Bx, — B’
< (1= en?)(1 = B — £a7)(20n — 02)8, | By — B’
~12 ~112
< o =27 = o = 2] + L

< llxn — xpea |l (”xn - 5‘7” + ||xn+l - 56”) +&nLn,
where

Ly = en]|yf (un) — AZ|)* + 2Bu(xn — &, £ (1) — AR)
+2(((1 = Ba)I = £nA)(en — X), f(un) — AR).

By conditions (C1), (C2) and (3.21), we obtain

lim | Bx, — Bx| = 0. (3.27)
n—oo
Since Pc is firmly nonexpansive mapping, we have

v —%|* = |Pc(xn — @nBxs) — Po(& — a,BR) ||
< ((%n — @nBxs) — (& — 0xBX), vy — %)

1
- 5 I = o) = = )|+, — 5[

]|t — ctuBan) — (& — 0uBR) — (v, — ¥) \\2}

IA

1 - - -
5 o =3 o = " = | G = ) — n(Brs — B

IA

1
o =3+ ow = 2" = s — vl

—o2 By — BE[* + 20 6y = vl | B — B }

Hence, we have

lvn = %% < %0 = Z|* = 10 — vall? + 2000 1% — vl || Bxn — BE|

and so

v =2 = (1= 8) foow = %[ + 8 — 7
< (1= 82)[n = &[* + 80l 00 — &[* = llxw — vall® + 20 Nl — vall | Bx, — BX[}  (3.28)

= ltw = & = 8allx = vall? + 280 l1xs — vall | B — B .
Using (3.26) and (3.28), we also have

[t =& = (1 = ea?) (1 = B — ea?)|en = &|” + (1 = £7)Bull 0 — % + L
< (1= ea?)(1 = Bu — en?) |t = &|* + (1 = 7D 50 = &|” + enl
< (1= &)1 = Bu— ea?)yw = " + (1 = £07) B30 — 5| + 0L
= (1= ea?)(1 = Bu = ea?) {50 = %7 = ullva = vall® + 260000 %0 = vl | Bo — B }
+ (1= en?)Bullxn — %] + enln

< o = &]* = (1 = u?) (1 = Bu = eu?)8nlln — v
+ 2(1 - 871]7)(1 —Bn— sn);)anan [l — vl Han - BECH +&nLy.
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It follow that

(1 - 8"?)(1 — Bn— Sn);)an”xn - Vn”2
< xn — Xpe1 (”xn - 5C|| + ||Xn+1 — JNC”)

+2(1 — &37)(1 — Bn — &0V )8nctn 1%y — vl | Bxy — BX|| + euLy.
From conditions (C1), C(4), (3.21) and (3.27), we obtain

lim ||x, — uqll = 0. (3.29)
n—oo

Observe also that if e, = Pc(W,u,, - A,BW,u,), then
len = %|* = |Pe(Wattn — AuBWiity) — Po(% — 2,B%) ||*
< [(Wattn — 2nBWiitn) — (% — 2,B%) |*
= || (Watty = 2aBWotty) — (Wi — 1y BW,i3)|? (3.30)
< [lun — %[ + (A2 = 2408) | BWytt, — BE||”
< [0 = &|* + (A2 = 20:08) | BWyui, — Bx|”.
Substituting (3.30) in (3.26), we have
Hxn+1 _an <(1—e)1—Bu— 87,)7)”67, - &”2 +(1- Sn);)ﬂonn _5‘7”2 +é&nly
= (1= ea?)(1 = Bu = eu?) { 0w = 2" + (42 = 2208) | BWosn — B3}
+(1— enf)ﬂn”xn — 5c||2 +&nLy
< = &[* + (1 = ea?) (1 — Bu — en?) (A2 — 200) | BWistty — BE|” + L.
It follows that
(1 —e27)(1 = B — £27)(285 — )| BWyui,, — B[

< (1= ea?)(1 = B — 27) (2hnE — A2) | BWuiy, — B[

< l1xn = Xnar | ([0 — &[] + [ona1 — &[] + €L
Since ||%,,11 - x,|| = 0 (n — o) and conditions (C1) and (C2), we obtain

lim | BWyuy — B[ = 0. (3.31)
Since Pc is firmly nonexpansive (Lemma 2.2 (iii)), we have

len = %|* = |Pc(Wattn — AnBWpity) — Po(% — 2,B%) ||*
< ((Wyu, — AnBWyu,) — (X — AyBX), e, — X)

1 - - -
X {1 Wat = 20BWott) = (& = BB + e — 7

[ (Wt = 3uBWotn) = (& = 3nB7) — (0 — )]}

IA

1 - - ~
o A = F o+ e =& = [ (Wattn = ) = 2 (BWy — BE) |}

T i
b =7+ e =77 = 1Watn — enl?

32| BWattn — BR[| + 220 [ Wathy = el | BWon — BE]]

Page 14 of 22



Onjai-uea et al. Journal of Inequalities and Applications 2012, 2012:101 Page 15 of 22

http://www.journalofinequalitiesandapplications.com/content/2012/1/101

Hence, we have

”en - 56”2 = ”xn - 5C||2 - ”Wnun - en”2 + 2)¥n ”Wnun - en” ”BWnun - B%” . (3'32)

Using (3.26) and (3.32), we also have

[ner = %[% < (1 = £a?) (1 = B — en?)| ew — X|* + (1 — en?)Bu|xn — X[ + £uLs
< (1= ea?)(1 = B = ea?) { |50 = &|° — 1 Woto — enll®
#2000 | Wtk — eull [|BWitty — BE||} + (1 = £a7)Ba |20 — %[ + £l

< o = 77 = (1 = £a?)(1 = o — n?) | Watty — eall®
+2(1 — &37)(1 = Bn — n¥)An |Watty — el | BWytiy — BX| + &nLn.

It follow that

(1 - 8n77)(1 — Bn — En);)”Wnun - en”2
< llxp — Xpe |l (”xn _56” + ||xn+1 - 5C||)
+2(1 — &27)(1 = Bn — &0V )n | Wty — el | BWyuiy — BX| + &L

From conditions (C1), (3.21), and (3.31), we obtain

lim [W,u, — e,| = 0. (3.33)
n—oo

For any X € ©®, note that ]f;'fn is firmly nonexpansive (Lemma 2.7(2)) for k € {1, 2, 3,..,,
M}, then we have

2
I Sy — 15 7|

2
~k ~ =
N

Fp, ~k—1 Fr ~ ~k—1 =
<]n:n S ¥n =Ty X Sy e — x>

IA

~k ~ k-1 fvt
= <‘Snyﬂ — X, Yn— x>

ol

2
~k—1 = ~k ~k—1
3] = [l — 3

)

2
~k =
ST

So, we obtain

Sy, — tz < ||y, - tz ety =l k=1,2,3,..M
which implies that for each ke {1, 2, 3,.., M - 1},
i -2 ) _
R I e
- "Sz71Yn - 3,:172% o T Hsiyn - S;Ynuz - H‘%:lyn - 3‘32)/,, H2
< o =77 = [y = 1]
2

~k k—1
Sa¥n — Sn Vn

< P -
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Consequently, from (3.26) we derive that

[ = %] < (1 = £a7)(1 = B — &a)||€n — X[ * + (1 = £7) B %0 — &[> + L
< (1= n?)(1 = Bu — ea?) un — Z|* + (1 = £a7) B0 — F|* + enLs

= (1 —en7)(1 = B —&n¥)

Thus, we have

(1=eny)(1=Bn—en¥)

< (1= en?)(1 = Bn— en?) {len —&|" -

= Hx” _5CH2 - (1 - Snf)(l —Bn— 5n]7)’

~k ~k—1
SpVn — S, Yn

]
+(1— snf)ﬂnwxn — 5c”2 + &Ly

~k ~k—1
Sp¥n =Sy

2

~k k—1
Sp¥n — “Ngn Vn

By liminfB, > 0, & — 0 as # — « and (3.21), so we deduce that
n—oo

lim
n—oo

that is,

k k—1
Snyn - Sn Vn

=0, k=1,2,.... M—1,

Huf,k) - uf,k_l) H — 0asn— oo.

Therefore, we have

[¥n =

IA

~0 ~k
\Vnyn — r\snyn

”32)/11 - S:lYﬂ” + ”3;11)/11 - 3%)’11 “ +oeee 4t ||S¢1/171Yn - Sff)’n “ .

From (3.34), we have

lim ||y, —us| = 0.

n—o0

Since x,,,1 = €, u,,) + Bx, + (1 - B)I - €,A)e,, we have

”xn - en”
that is,
”xn - en”

<

IA

10 — Xnsa [l + lxne1 — enll

%0 — Xns1 | + | €0y f () + Buxn + ((1 — Bu)I — enA)en — en|
%0 — Xpa1 Il + [ en (v f (un) — Aen) + Bu(xn — €n) |

%0 = Xnar | + £n([| S () | + 1ACal) + B 10 — enll,

1
L g b mmmalle 2 () |+ el

By conditions (C1), (C2), and (3.21) it follows that

lim [|x, — eyl = 0.
n—oo

On the other hand, from (3.3), we have

Iy = x|l = 80 llvn — xall -

2
+ &Ly

2
S}:lyn - ECH +(1—&,7)Bn ”xn - 3~CH2 +é&nly

=< ”xn — Xn+1 ” (”xn - 5C||+”xn+l - EC“)“'San

(3.34)

(3.35)

(3.36)
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Since lim [1x, — vyl = 0, we get
n—oo
Jim [Jyn — x| = 0. (3.37)

We observe that
When — enll < [Whew — Whuyll + Wiy, — eyl
= ||en —Xn+tXn —YntVn— un” + [|Wyuy — enll

< llen — xnll + ”xn _)/n” + ”)/n - un” + [[Wyun — enll .
Consequently, we obtain

lim ||Wye, —e,| = 0. (3.38)
n—o00

Let W be the mapping defined by (3.2). Since {e,} is bounded, applying Lemma 3.1(4)
and (3.38), we have

[We, —enll < [[We, — Wyegll + [Whe, —eull = 0asn — oo. (3.39)

Step 6. We show that g € ©, where © := N2, F(T,) N (MY, SEP(F;)) N VI(C, B).
Since {x,} is bounded, we see that there exits a subsequence {xy,} of {x,} which con-
verges weakly to g. It follows from (3.37) and (3.36) that ¥», = q and e, — ¢. From

(3.35), we obtain that %ﬁiyni —~qfork=1,2,.M
First, we show that g € N, SEP(Fy). Since u, = 3y, for k = 1, 2, 3,.., M, we also
have

1
By y) + (y = Sy Supn = 37y 20, Wy e C

n
If follows from (A2) that,
1

Tn

k—1

(y = Sy, Sy — 351y > —Fu(Syn,y) = Fu(y, Shyn).

Replacing 7 by n;, we have

Th;

~k k-1
Sy Vi — Sy Ve
~k ni/Mi n; i k
<y — S Ynis > > Fi(y, S, vn,)-

xk k-1
~ny Yn; o Vnj

"

Since — 0 and Sﬁiyni — ¢, it follows by (A4) that

F.(y,.q) <0 Vye(C,

for each k = 1,2,3, ..., M.
FortwithO<t<landye H,lety, =ty + (1 - t)q Since ye Cand g € C, we have
y; € C and hence Fi(y, q) < 0. So, from (Al) and (A4) we have

0 = Fe(ye, 1) < tFr(ye, y) + (1 = 0)Fie(ye, q) < tFr(y1,y)

and hence Fi(y,y) = 0. From (A3), we have Fi(g,y) = 0 for all y e C and hence g €
SEP(Fy) for k = 1, 2, 3,.., M, that is, ¢ € )X, SEP(F}).

Next, we show that ¢ € N2, F(T,). By Lemma 3.1(2), we have F(W) =N, F(T,).
Assume g ¢ F(W). Since e, = q and g = Wq, it follows by the Opial’s condition
(Lemma 2.3) that
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liminf|e,, — | < liminf |e, — Wq|
1—>00 1—> 00
< lim inf{ He,,i — Wey, || + || We,, — W, H}
1—0Q
< liminf Heni — q||
1—> 00
which derives a contradiction. Thus, we have g € F(W) = N>, F(T,).

Finally, now we prove that g € VI(C, B).

We define the maximal monotone operator

_ ) Bg1+Ncqr, g1 € C,
Q= {@, i ¢ C.

For any given (q1, ¢2) € G(Q), hence g, - Bq; € Ncq;. Since e, € C we see from the
definition of N that

(ql —€n 42 — Bth) > 0.
On the other hand, from e,, = Pc(W,u,, - 0,,,BW,u,), we have
(ql —€én,en — (Wnun - OlnBWnun)) > 0,

that is

e, — Wy
<q1—en, " e +BWnu,,>20‘

Uy
Therefore, we obtain

(QI - el’lf' q2> > (QI - el’lf' Bq1>

en, — Whiy,
= {dv = en, Bqn) — <Q1 —en, w T +BWnuni>
nj
= Wauy,
= <671 — ey, Bg1 — BWyuy,, — en; nunl>
oy,
(3.40)

{(q1 — en,, Bq1 — Bey,) + {1 — ep;, Bey, — BWyuy,)

en, — Wy,
_<q1_en” n; n ‘le>
oy,
en, — Whly,
> (g1 _enf/Benf _BWnunf> —<IJ1 — €n;s " o " n1>/
ni

Since ||enl. — Wk, H — 0 as i = o and B is Lipschitz continuous we obtain that

(91 —4q,q2) = 0.

Notice that Q is maximal monotone, we obtain that 4 € Q'0 and hence g € VI(C,B).
This implies g € ©. Since z = Pe(yf + (I - A))(z), we have

limsup {x, — 2 yf() = Az) = lim (v, — 2, yf(c) = A2) = 4 — 2, ¥f(2) = A2) < 0. (3.41)

On the other hand, we have

(en — 2, vf(2) — Az) = (en — xn, Y[ (2) — Az) + (xn — 2, Y[ (2) — AZ)
< llex — xull “Vf(z) _AZ” + <xn —2z,vf(2) —A.Z).
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From (3.36) and (3.41), we obtain that

lim sup <en —z,yf(2) —Az) <0.

n—o0

Step 7. Finally, we show that {x,} converges strongly to z = Pg(l - A + ¥)(2). Indeed,

from (3.3), we have

lner — 202 = [ ((1 = Bu) — £nA)(€n — 2) + Baln — 2) + ea(yf(un) — AZ) |

= (1 = B = enA)(en — 2) + Buon — 2)|°
+ 82|y f (1) — Az|) + 2Bunixn — 2, ¥f (un) — A2)
+2ep(((1 = Bn)] — &nA)(en — 2), vf(n) — Az)
< ((1 = Bu — &) llen — 2ll + Bu llxn — 2l1) + 2| vf (un) — Az|*
+ 2Bneny (6n — 2, f (tn) — F(2)) + 2Buen(tn — 2, ¥f(2) — Az)
+2(1 = Bu)eny (en — 2. f(un) — f(2)) + 2enlen — 2, yf(z) — Az)
— 2Bnenlen — 2z, vf(z) — Az) — 285((1‘\(6" —2z), vf(un) — Az)
< (1= Bu— en?)?llew — 2l + B2lxn — 21 + 2(1 — B — ea?)Bu llen — 2l llxn — 2
+ &2 yf(un) — Az|)* + 2Bueny ln — Il [ f (ua) — f(2)
+2(1 = Bu)eny llen — 2l [f (un) = f(2)| + 2Bnen Ixn — 2l | vf(2) — Az]|
= 2Bnenllen — 2l | vf(2) — Az| — 265 [Alen = 2)| [ vf(un) — Az]
+2¢,(en — z, yf(z) — Az)
= [ =ea?)? =201 = ea?)Ba + B2 llew = 211 + B1a — 2112
+ (1= Bu = ea?)Bu{llen — 217 + llxa — 217} + e |y () — Az]”
+ 2Bneny 1 1%n — 2l llun — 21l + 2(1 = Bu)eayn llew — 2l lln — 2|
+ 2Bnen %0 — 2l | vf(2) — Az — 2Buen llen — 2l |vf(2) — Az
— Zsﬁ HA(en —z) || ||yf(u,,) —Az|| +2en(en — 2z, vf(2) — Az)
< (1 —en?)(1 = B — &n7)llen — 2l + (1 — ea?) Bullxn — 21>
+ 2]y f(un) — Az|* + 2Buenynllxn — 2l + 2(1 = Ba)eny nllxn — 2112
+2Buen %0 — 2l | ¥f(2) — Az|| — 2Buen llen — 2l | vf(2) — Az
+ 26§ ||A(e,, —z) || || yf(un) — Az” +2en{en —z, vf(z) — Az)
< (1= en?)(1 = Bu — &n?)lxn — 21 + (1 = ea?) Bullxn — zI1?
+ 2]y f (un) — Az|)* + 2eny nllxn — 2|12
+2Butn I — 2l | vf(2) — Az|| — 2Bnen Ixn — 2l | ¥f(2) — Az
+ 28,2, ||A(en —2z) || || yf(u,) —Az|| +2¢e,(en — z, yf(z) — Az)
=(1—2¢&7 + si)?z + 28y ) llxn — zlI? + sﬁ Hyf(u,,) fAz”z
+ 285 ||A(e,, —2z) || || yf(un) —Az|| +2en{en — 2z, vf(2) — Az)
=[1-2(7 — yn)enlllxn — 2l + &n {2{en — 2, ¥f(2) — Az) + £,K} .

where K is an appropriate constant such that

K > max [ig;; {7210, =217 + [f (ua) = A2]* + 2 | ACen = )| [ (un) — 42] } ] ,

Set b, = 2(y — yn)en and ¢, = €, {2(e, - 2Yz) - Az) + €,K}. Then we have

2 2
lxne1 — 2| < (1 — bn)”xn —z|[|“+cy, Yn=0.

From the conditions (C1) and (3.42), we see that

o0
lim b, = 0, an =ooand limsupc, < 0.
n—oo

n—oo
n=0

(3.42)

(3.43)
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Therefore, applying Lemma 2.8 to (3.43), we get that {x,} converges strongly to z €
@. This completes the proof.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H, let
F, ke {1, 2, 3,..., M} be a bifunction from C x C to R satisfying (A1)-(A4) and let B be
&-inverse strongly monotone such that

® := (M, SEP(F)) N VI(C, B) # .

Let f be a contraction of H into itself with n € (0,1). Let {x,}, {y,} and {u,} be
sequences generated by

x1 =x € C chosen arbitrary,

Yn = (1 — 8n)xn + 8nPc(xn — nBxy),
_ 1Fy 1PM-1 {Pum-2 F, 1F

Up = ]r,xn "™—-1,nTM—=2,n * * ']r;”]rll,”yn'

Xne1 = Enf (Un) + Bnxn + (1 — By — €n)Pc(uy — AnBuy,), Vn > 1,

where {€,}, {B,} are two sequences in (0,1) and {ri .}, k € {1,2,3,....,M} are a real
sequence in (0, =) satisfy the following conditions:

(C1) lim, s €, = 0 and Y oo &n = 00,

(C2) 0 < lim inf,_,.. B, < lim sup,.. B, < 1,

(C3) {a,}, M) < e gl < (0, 29), lim,,_,.. &, = 0 and lim,,_,.. X, = 0,

(C4) {0, <€ [0, b), for some b € (0,1) and lim,,_,.. |0,41 - .| = 0,

(C5) lim inf, ,.. 7, > 0 and lim,, e |Fips1 - Tin| = O for each k € {1, 2, 3,..., M},

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of
the variational inequality

(fe) —zx—2)=0, Vxe®.

Equivalently, we have z = Pgf(z).

Proof. Put T, =Iforallm > 1 and forallx € C. Then W,, =1, A = and y = 1. The
conclusion follows from Theorem 3.2. This completes the proof.

If 6, = 0 and M = 1, in Theorem 3.2, then we can obtain the following result
immediately.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H, let
Fy ke {1, 2, 3,..., M} be a bifunction from C x C to R satisfying (A1)-(A4), let {T,} be
an infinite family of nonexpansive mappings of C into itself and let B be &-inverse
strongly monotone such that

® := N, F(T,) N EP(F) N VI(C, B) # #.

Let f be a contraction of H into itself with n € (0,1) and let A be a strongly positive
linear bounded operator on H with coefficient y > Oand 0 <y < ’7; Let {x,}, {y,} and

{u,,} be sequences generated by
x1 =x € C chosen arbitrary,
1
F(up, y)+ (y—upty—x,) >0, VyeC,
Tn
Xns1 = en¥Vf(Un) + Bukn + ((1 = Bu)l — SnA) Pc(Whun — M BWyuy), V¥n>1,
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where {W,} is the sequence generated by (3.1) and {e,}, {B,} are two sequences in (0,1)
and {r,} are a real sequence in (0,) satisfy the following conditions:

(C1) lim,, yee €, = 0 and Y 72, &y = 00,

(C2) 0 < lim inf,_,., B, < lim sup,,. B, < 1,

(C3) {hu} < [e gl € (0, 28) and lim,,_,.. A, = 0,
(C4) lim inf,,_,., r,, > 0 and lim,,_,., |7,.1 - 1| = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of
the variational inequality

(A=yf)z,x—2)>0, Vxe®.

Equivalently, we have z = Po(I - A + Y)(2).
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