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INTRODUCTION 
 
Rayleigh distribution is a special case of the Weibull 
distribution. It has been used to study the scattering of 
radiation, wind speeds or to make certain transformation. 
The Rayleigh distribution is a suitable model for life 
testing experiments and clinical studies which age with 

time as its hazard rate  is a linear function of 
time. Polovko (1968) and Dyer and Whisenand (1973) 
demonstrated the importance of this distribution in electro 
vacuum devices and communication engineering. 
Ariyawansa and Templeton (1984) have also discussed 
some of the applications. Howlader and Hossian (1995) 
obtained Bayesian estimators for the scale parameter 
and the reliability function in the case of type-II censored 
sampling. The origin and order aspects of this distribution 
can be found in Siddiqui (1962) and Hirai (1966 and 
1972). Abd Elfattah et al. (2006) studied the efficiency of 
the maximum likelihood estimates of the parameter under 
three cases, namely, type-I, type-II and progressive type-
II censored sampling schemes. 

The probability density function of the Rayleigh 

distribution with parameter of  is given by: 
 

.     (1) 

The maximum likelihood estimator (MLE) of  is 

 with large sample variance . The reliability 

function  and the failure rate function (or hazard 

function)  at miss time  are: 
 

 
 

. 
 
Consider spread from a point source, for example, which 
might be a small plot of plants. During favourable weather 
conditions, the plants release their pollen and it disperses 
according to exponential distribution with distance from 
the source. However, in less favourable condition, light, 
rain or mist, not only are the plants less likely to release 
pollen, but that which is released still falls with a uniform 
distribution. Dixit et al. (1996), considered the above 
example in the context of spread of disease amongst 
plants of viral spores such as barley yellow mosaic dwarf  
virus (BYMDV). 
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According to Dixit et al. (1996), we assume that a set of 

random variables ( nXXX ,...,, 21 ) represent the distance 
of an infected sampled plant from a plot of plants 
inoculated with a virus. Some of the observations are 
derived from the airborne dispersal of the spores and are 
distributed according to the Rayleigh distribution. The 
other observations out of n random variables (say k) are 
present because aphids which are known to be carriers 
of BYMDV have passed the virus into the plants when the 
aphids feed on the sap. These k aphids are considered to 
be exponentially distributed, that is a special case of the 
Gamma distribution, however in this paper we will 
consider these k aphids to be distributed by the Gamma 
distribution. 

We assume that the random variables are (X1 , X2 , … , 
Xn) such that k of them are distributed with p.d.f 

, 
 

  (2) 
 
and the remaining (n-k) random variables are distributed 

with p.d.f , the Rayleigh distribution, as 
mentioned in Equation (1). 

In “Methods of Estimation”, first we have obtained the 

joint distribution of ( nXXX ,...,, 21 ) and also the marginal 
distribution of  in the presence of k outliers. After that, 
we deal with the methods of estimation such as the 
methods of moment, maximum likelihood and mixture of 
the estimators of moment and maximum likelihood in 

estimating  and . Thereafter, we compare the Bias 
and MSE of both the estimates empirically. 
 
 
METHODS OF ESTIMATION 
 
Here, we deal with the methods of moment and maximum likelihood 

in estimating  and ; thereafter mixture of the estimators of 
moment and maximum likelihood are derived. 

The joint distribution of 
),...,,( 21 nXXX

 in the presence of k 
outliers can be expressed as: 
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2001; Nasiri and Pazira, 2010). 
It  is  easy  to   show   that   the   marginal   distribution   of   X   is 

 

        .(4) 
 
 
Method of moment 
 

Consider,  and let 

.  
 
Under (4) 
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From (5), we have  
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if  is non-negative then the roots are real. 
Therefore  
 

  
 
and then 
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Since from (5) we also have  
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then we can replace  in (6) to obtain  
 

    (8) 
 

with solving (8),  is obtained. Then we replace  in (7) to find 

. Thus, we can obtain the moment estimator of  by using 

Equation (8) and the moment estimator of  by using Equation 
(7). 

Here, we shall show that  and θ̂  are asymptotically unbiased 

estimators. Let 
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 as a function of W1, 
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Expand the function  around  by Taylor series, 
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By using (10), let , , , and 
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According to the previous procedure 
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Hence,  and θ̂  are asymptotically unbiased. 
 
 
Method of maximum likelihood 
 

From (3), the likelihood of ( nXXX ,...,, 21 ) is  
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To solve for our MLEs of  and  we take the derivative of the 

log likelihood ( ) with respect to each parameter set the 
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partial derivatives equal to zero and solve for  and : 
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There is no closed-from solution to this system of equations, so we 

will solve for  and  iteratively, using the Newton-Raphson 
method, a tangent method for root finding. In our case we will 

estimate  iteratively: 
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and G is the matrix of second derivatives 
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Here, the initial solution  should be selected from (6) and (8). 

The Newton-Raphson algorithm converges, as our estimates of  

and  change by less than a tolerated amount with each 
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Table 1. Bias and MSE α̂  for: 2 , 0.5 1and kα θ= = = . 

 

n 
Bias  MSE 

MLE Mom Mix  MLE Mom Mix 

10 0.383 -0.011 -0.689  1.257 1.634 0.961 
20 0.339 -0.009 -0.541  0.976 1.143 0.747 
30 0.270 -0.005 -0.449  0.562 0.825 0.448 
40 0.225 -0.003 -0.391  0.518 0.665 0.402 
50 0.207 -0.003 -0.278  0.427 0.562 0.377 
100 0.138 -0.001 -0.192  0.194 0.287 0.179 
200 0.097 -0.000 -0.130  0.083 0.109 0.056 

 
 
 

Table 2. Bias and MSE θ̂  for: 2 , 0.5 1and kα θ= = = . 

 

n 
Bias  MSE 

MLE Mom Mix  MLE Mom Mix 

10 0.982 0.126 0.250  0.151 0.469 0.112 
20 0.740 0.082 0.147  0.096 0.189 0.080 
30 0.580 0.089 0.111  0.075 0.120 0.066 
40 0.506 0.078 0.118  0.064 0.091 0.057 
50 0.427 0.065 0.108  0.054 0.072 0.049 
100 0.390 0.024 0.096  0.051 0.066 0.046 
200 0.278 0.012 0.060  0.029 0.035 0.019 
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with solving (26),  is obtained. Then we replace  in (24) to 

find . 
 
 

NUMERICAL RESULTS AND DISCUSSION 
 

In this paper, we have addressed the problem of 
estimating parameters of Rayleigh distribution in 
presence of k outliers. The moment, maximum likelihood 
and mixture estimators of the parameters are derived and 
have been shown that the moment estimators of the 
parameters are asymptotically unbiased estimators. In 
order to have some idea about Bias and Mean Square 

Error (MSE) of methods of moment, MLE and mixture of 
these estimators, we perform sampling experiments 
using a MATLAB. The results are given in Tables 1, 2, 3 

and 4, for ,  and , with samples 
size n=10(10)50, 100 and 200. We report the average 
estimates and the MSEs based on 1500 replications. 

From Tables 1 to 4, we conjecture that the moment 
estimates are asymptotically unbiased. It is difficult to 

show   analytically   that   mixture    estimate    of        is 
asymptotically unbiased. But from simulation of study, 

Tables 2 and 4, we conjecture that mixture estimate of  
is asymptotically unbiased. On the other hand, for , the 
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Table 3. Bias and MSE α̂  for: 2 , 0.5 2and kα θ= = = . 

 

n 
Bias  MSE 

MLE Mom Mix  MLE Mom Mix 

10 1.322 -0.105 -0.432  2.238 2.862 1.893 
20 1.072 -0.090 -0.343  1.926 2.317 1.584 
30 0.987 -0.066 -0.299  1.628 1.954 1.175 
40 0.943 -0.079 -0.281  1.501 1.844 0.901 
50 0.797 -0.070 -0.232  1.279 1.579 0.793 
100 0.486 -0.017 -0.131  0.863 1.263 0.459 
200 0.267 0.009-  -0.109  0.479 0.781 0.232 

 
 
 

Table 4. Bias and MSE θ̂  for: 2 , 0.5 2and kα θ= = = . 

 

n 
Bias  MSE 

MLE Mom Mix  MLE Mom Mix 
10 1.687 0.128 0.230  0.257 0.393 0.177 
20 1.209 0.102 0.197  0.173 0.237 0.130 
30 0.938 0.101 0.150  0.149 0.189 0.120 
40 0.973 0.086 0.151  0.118 0.144 0.099 
50 0.856 0.083 0.099  0.115 0.136 0.099 

100 0.531 0.058 0.082  0.089 0.105 0.071 
200 0.490 0.033 0.067  0.049 0.070 0.036 

 
 
 
moment and mixture estimators are underestimation, but 
the maximum likelihood estimator is overestimation; also 
for , all of the estimators are overestimation. The MSEs 
of any three estimators are tending to zero and when n 
increases then the MSEs decrease. Meanwhile, when k 
increases then the MSEs increase. 

Tables 1, 2, 3 and 4 show that the mixture estimators 
have the smallest estimated MSEs as compared with the 
moment and maximum likelihood estimators. We strongly 
feel mixture estimator is better and easy to calculate than 
the maximum likelihood and moment estimations. 
Therefore, we conclude that mixture estimate should be 
used always. 
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