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A new nonlinear dynamics model of alga-aquatic animal is proposed based on the water ecosystem of 
Three Gorges Reservoir Area. The stability of the equilibria and Hopf bifurcation of the delay are 
studied. The results of the analysis show that with the increasing of the delay, the stability switch of the 
positive equilibrium and the asymptotically stable positive periodic solution resulting from Hopf 
bifurcation will occur. Thus, the time lag is one of the reasons that water quality is fluctuating in the 
water ecosystem of Three Gorges Reservoir Area, which may provide a theoretical basis for the 
oscillation of water quality. 
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INTRODUCTION 
 
Environmental problem is an important challenge of the 
world during the 21st century and the major research 
directions include the project of water environment, the 
control of non-point source pollution and the project of 
water pollution, and so on (Ai et.al., 2002). Ecosystem 
health and ecological risk assessment have become a 
new research topic and a bridge to connecting 
geoscience, environmental science, ecology, economics 
and social science (Chen et al., 2006; Wu and Niu, 2006). 
Since the 1990s, there is an intensified research on 
marine ecosystem and one of the important directions is 
the ocean ecosystem dynamics model (Feng et al., 2007; 
Liu et al., 2003), which has been applied in the research 
on complexity of freshwater ecosystem widely (Shen and 
Cai, 2003).  

This paper considers a simple aquatic ecosystem 
based on Three Gorges Reservoir Area including the 
species of algae (for example, diatom) and aquatic 
animals (for example, fish). Algae species breed massive 
mainly due to environmental pollution and aquatic 
animals purify water quality because of preying algae 
(Kuang et al., 2000). So the simple aquatic ecosystem 
can simulate the water quality of Three Gorges Reservoir 
Area. On this basis, in order to explain the oscillation 
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of water quality of Three Gorges Reservoir Area, we 
proposed a new nonlinear dynamics model of the alga-
aquatic animal ecosystem, and analyzed the dynamical 
behavior of the model based on the nonlinear dynamics 
theory. 
 
 
MATERIALS AND METHODS 
 
Model description 
 
Considering the predator-prey relationship between the species of 
algae and aquatic animals, we proposed the following aquatic 
ecosystem dynamics model: 
 





−−−=

−−=

).()()()('

),()()())(()('

tuytytkxty

tytxtxtdxrtx

ττβ

β
                                (1) 

 

where )(),( tytx  is the number of alga and aquatic animals at 

time t  ,respectively, dr,  represents the intrinsic growth rate and 

the density constraint coefficient of alga, respectively, dr /  is the 

environmental carrying capacity of alga, β  represents the 

predation coefficient of aquatic animals, k  is the feed conversion 

efficiency ratio of aquatic animals, u  expresses the sum of natural 

mortality rate and the fishing intensity of aquatic animals, τ  is the 

delay time between aquatic preying alga and translating to effective 
biomass. All parameters are positive constants due to the biological  
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Dynamic analysis 

 
We first present the preliminary results for system (1) as follows: 
 
 
Theorem 1 

 
Under the aforementioned initial conditions, all solutions of system 
(1) are nonnegative, and system (1) is dissipative.  

This theorem is clear to be seen, thus, the process of proving is 
omitted.  

From the work of van den Driessche et al. (2002), the basic 
reproductive number of aquatic animals is given by 

dukrR /
0

β= . It is easy to see that the extinction equilibrium 

)0,0(
0

=E  and the elimination equilibrium of aquatic 

)0,/(
1

drE =  always exist. If 1
0

<R , system (1) has no 

positive equilibrium; if 1
0

>R , system (1) has a unique positive 

equilibrium ),( **

2
yxE = , where kux β/* = , 

kdukry 2* /)( ββ −= .  

When the delay time is ignored, system (1) is changed to the 
following ordinary differential equations: 
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For system (2), taking a Dulac function xyD /1= , we can easily 

obtain the following results by Dulac criterion and Poincaré-
Bendixson Theorem (Zhang and Feng, 2000). 
 
 
Theorem 2 

 
For system (2), the following conclusions are always valid. 
 

ⅰ) Boundary equilibrium 
0

E  is always unstable. 

ⅱ) If 1
0

<R , boundary equilibrium 
1

E  is globally asymptotically 

stable. 

iii) If 1
0

>R , positive equilibrium 
2

E  is globally asymptotically 

stable. 
 

Now we discuss the dynamics of system (1) when 0>τ . First, 

we have: 

 
 
 
 
Theorem 3 

 
For system (1), the following conclusions are always valid: 
 

ⅰ) Boundary equilibrium 
0

E  is always unstable; 

ⅱ) Boundary equilibrium 
1

E  is globally asymptotically stable if 

1
0

<R  and is unstable if 1
0

>R . 

 
 
Proof 1 

 

The linearization of Equation 1 at 
0

E  and 
1

E  are: 
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Thus, boundary equilibrium 
0

E  is always unstable and the 

characteristic equation at equilibrium 
1

E is given by: 
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Suppose that 0, >+= abiaλ , is a root characteristic of 

Equation 3, if 1
0

<R . Substituting it into Equation 3, we have: 
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Which leads to a contradiction. Thus, boundary equilibrium 
1

E  is 

locally asymptotically stable if 1
0

<R . When 1
0

>R , since there 

must be an intersection point in the first quadrant for 

uf += λλ)(  and 
λτβλ −= edkrg )()( , boundary 

equilibrium 
1

E  is unstable if 1
0

>R . 

Now, we prove 
1

E  is globally asymptotically stable if 1
0

<R . 

Note that it is locally asymptotically stable. We only need to prove 

drtx
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. Using Theorem 1 and the 

second equation of Equation 1, we have: 
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Here kkrdu ββε )(0 −<<  is a constant. Thus, by the basic 

theory of stability of functional differential equations (Zheng, 1994) 

and the comparison theorem, we have 0)(lim =
+∞→

ty
t

. In order to 

prove drtx
t

=
+∞→

)(lim , we split this proof into two cases. 

 

ⅰ) Suppose that )(tx  is ultimately monotone. Since )(tx  is 

bounded, there exists a positive constant x  such that 

xtx
t

=
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)(lim . By the fluctuation lemma (Wolkowicz et.al., 1997), 

we have 0)(lim =′
+∞→

tx
t

. Note that 0)(lim =
+∞→

ty
t

. Based on the 

first equation of Equation 1, we have xxdr )(0 −= , which 

means that drx = . 

(ⅱ) Suppose that )(tx  is always oscillatory. Let 

∞
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)(slim . By the fluctuation 

lemma (Wolkowicz et.al., 1997), we know that there exists a 

sequence { } ∞↑
m

t  such that 
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Based on the first equation of Equation 1, we have: 
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Letting +∞→m , we deduce that )(0
∞∞ −= dxrx , which 

means that drx =∞
. Similarly, we can prove drx =∞ . 

Thus, according to (ⅰ) and (ⅱ), we know that drtx
t

=
+∞→

)(lim  is 

always valid. This completes the proof.  

Next, we analyze the dynamics of system (1) when 1
0

>R  and 

obtain the following result of uniform persistence based on the 

persistence theory for infinite dimensional systems. Let X  be a 
complete metric space. Suppose that

Φ=⊂⊂
0

0

0

0
,, XXXXXX I . Assume that )(tT  is a 

0
C -semigroup of X  satisfying: 
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Then the following lemma is the persistence theory for infinite 
dimensional systems in Wang and Chen, (1997). 
 

 
Lemma 1 

 

Suppose that )(tT  satisfies Equation 4 and we have the following: 

 

ⅰ)  there is a 0
0

≥t
 
such that )(tT  is compact for 

0
tt > ; 

ⅱ) )(tT
 
is point dissipative in X ; 
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Then 
0

X  is a uniform repellor with respect to 
0

X , that is, there is 

an 0>ε  such that for any 
0

Xx ∈ , 
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),)((inflim 0XxtTd
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xtT )(  from 
0
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Theorem 4 

 

If 1
0

>R , then system (1) is uniformly persistent. 

 
 
Proof 2 

 
Let: 
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+−= RCX τ , it is easy to 

show that 
0

0
, XX  are positive invariant set, so Equation 4 is 

satisfied. Since )(tT  is dissipative in 
0

0
XXX ∪=  by 

Theorem 1, conditions (ⅰ) and (ⅱ) of Lemma 1 are satisfied. Note 

that the system (1) only has two boundary equilibria
10

, EE , and 

1
E  is a global attractor of

2
C . The condition (ⅲ) of Lemma 1 is 

satisfied. Next, we show that condition (ⅳ) of Lemma 1 is also 

satisfied. 

It is easy to prove Φ=∩ 0

0
)( XESω . Now we begin to 

prove Φ=∩ 0

1
)( XESω . Assume that it is not satisfied. Then 

there is a positive solution ))(~),(~( tytx  such that 

)0,/())(~),(~( drtytx →
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0
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choose a sufficiently small kdukr ββε /)(0 −<<  such that
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It is clear that the zero solution is unstable when udrk >− /)( εβ . 

Thus 0)(~lim ≠
+∞→

ty
t

, which is a contradiction. So the condition 

(ⅳ) of Lemma 1 is satisfied. Therefore, all positive solutions of 

system (1) are uniform repellor with respect to
0

X , that is, there is 

0>δ  such that for any solution ))(),(( tytx  of system (1) with 

initial conditions, δδ ≥≥
+∞→+∞→

)(inflim,)(inflim tytx
tt

. The 

proof is completed. 
Now, we focus on the stability of the unique positive equilibrium 

of system (1) when 1
0

>R . The linearization of Equation 1 at the 

positive equilibrium 
2

E
 
is: 
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Its characteristic equation is: 
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Calculating characteristic equation (5), we have: 
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So 0)( =bF  has not positive root when 31
0

<< R ; 

0)( =bF  has a unique positive root when 3
0

>R . Therefore, 

using Theorem 2 and Lemma 1 in Wang et al. (2007), we have 
Theorem 5. 

 
 
Theorem 5  

 

For system (1), if 31
0

<< R , then the positive equilibrium 

2
E  is asymptotically stable for all 0≥τ ; if 3

0
>R , then 

stability switches will occur, i.e., there exists a positive number 
*τ  

such that 
2

E  is unstable for all 
*ττ >  and there are at most a 

finite number of stability switches occur when τ  changes from 0 to 

*τ .  

 
 
 
 

Furthermore, we determine 
*τ  and analyze the dynamical 

behavior of system (1) near 
*τ . Based on the Hopf bifurcation 

theorem in Kuang (1993), we have: 

 
 
Theorem 6 
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And 
0

ττ −
 
is sufficiently small, then there is asymptotic stability 

positive periodic solution near the positive equilibrium 
2

E , which is 

induced by Hopf bifurcation, where ib±=λ , 0>b  is a pair of 

pure imaginary roots of characteristic equation (5). 

 
 
Proof 3 

 

Suppose that 0,i >±= bbλ
 
is a pair of pure imaginary roots of 

characteristic equation (5). Substituting it into Equation 5 and 
separating the real and imaginary parts, we have: 
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From Equation 6, we obtain 0)( =bF . So 0)( =bF  has a 

unique positive root when 3
0

>R . Taking λ  is a function of delay 

τ  and derivating on both sides of Equation 5, we have: 
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And the transversality condition of Hopf bifurcation is satisfied, that 
is, the pure imaginary characteristic roots will cross the imaginary 

axis from left to right when τ  increase. Furthermore, from Equation 

6, we can obtain that: 
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Table 1. Parameters and its range. 

 

Parameters Meaning Range 

r  The Intrinsic growth rate of alga 0.5 h
-1

 

d  The density constraint coefficient of alga 0.05 mg/L 

β
 

The predation coefficient of aquatic animals  0.04 h
-1
 

k  The feed conversion efficiency ratio of aquatic animals 0.6 

u  The sum of natural mortality rate and the fishing intensity of aquatic animals  0.02 - 0.5 h
-1
 

τ  The delay time between aquatic preying alga and translating to effective biomass 0.1 - 12 h 

 
 
 

 
 

Figure 1. Phase diagram of system (1) when 0=τ . A ) 3.0=u  and B) 05.0=u . 

Note that 18.0
0

<=R  in (A) and the extinct equilibrium of aquatic animal )0,10(
1

=E  is globally asymptotically 

stable; 18.4
0

>=R  in (B) and the survival equilibrium of aquatic animal )8958.9,0833.2(
2

=E  is globally 

asymptotically stable. Here the initial condition is )2.0,6.0(),(
00

=yx . 
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Summarizing the aforementioned analysis, when 3
0

>R , we can 

obtain that the positive equilibrium 
2

E  is stable if 0=τ . When 

τ  increases to 
0

τ , characteristic equation (5) will has a pair of 

pure imaginary eigenvalues. There is an eigenvalue with positive 

real part if τ  continues to increase and the positive equilibrium 

2
E  becomes unstable. Because 0)( =bF  only has one positive 

real root, the root of Equation  will across the imaginary axis and will 
not go back to the complex plane left plane with the increasing of 

τ . Thus, the positive equilibrium 
2

E  will always be unstable and 

0

* ττ = . According to Theorem 4 and the Hopf bifurcation 

theorem, 
0

τ
 
is the Hopf bifurcation values of system (1). When 

0
ττ >

 
(

0
ττ −  is sufficiently small), system (1) has an 

asymptotically stable periodic solution near the positive equilibrium 

point 
2

E  and its period is bπ2 . 

 
 
RESULTS 
 



Parameters 
 
The range of parameters and its meaning are shown in 

Table 1. Note that these parameter values are within the 
similar ranges as those ones employed by Feng et al. 
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Figure 2. Phase diagram of system (1) when 0≠τ . A) 3.0=u , 5.10=τ ; B) 
5.10,1.0 == τu

; C) 

5.1,05.0 == τu
 and D) 

5.10,05.0 == τu
. 

Note that 18.0
0

<=R  in (A) and the extinct equilibrium of aquatic animal )0,10(
1

=E  is globally 

asymptotically stable; 14.2
0

>=R  in (B) and the survival equilibrium of aquatic animal 

)2917.7,1667.4(
2

=E  is asymptotically stable; 38.4
0

>=R  in (C) and the survival equilibrium of 

aquatic animal )8958.9,0833.2(
2

=E  is asymptotically stable; 38.4
0

>=R  in (D), the survival 

equilibrium of aquatic animal is unstable, Hopf bifurcation occurs and a stable periodic solution bifurcates from 

2
E . Here the initial condition is ]0,[),2.0,6.0())(),((

21
τθθϕθϕ −∈= .  

 
 
 
(2007) for their plankton ecosystem. Because the 
exploitation of aquatic animals (for example fish) is a 
regular direct interference on the ecosystems, in order to 
analyze its effect on dynamical characteristics, we focus 
on the variety of parameters u  andτ . 
 

 
Numerical simulations 
 

First, we fix the parameter 0=τ . Let 3.0=u  and 

05.0=u , respectively. The phase diagram of system (1) 

has been obtained (Figure 1). Based on Figure 1A, we 
can obtain that the basic reproductive number of aquatic 
animal  10 <R   implies  that  the  extinct  equilibrium  of  

aquatic animal 
1

E  is globally asymptotically stable, 

whereas Figure 1B shows that 1
0

>R  imply that the 

survival equilibrium of aquatic animal 
2

E  is globally 

asymptotically stable. These conclusions are consistent 

with the results of Theorem 2. Since 
0

R  is inversely 

related tou , we can conclude that a small fishing 

 



intensity of aquatic animals will be benefit for aquatic’s 
consumption for alga in the water ecosystems. Therefore, 
the proper reduce of fishing intensity can relieve the 
water pollution and improve the water quality.  

Figure 2 shows that the dynamical behaviour of 

system(1) when 0≠τ . If 1
0

<R , the extinct equilibrium 
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Figure 3. The global bifurcation diagram when 05.0=u . With model (1) integrated over [0, 2000], the 

maximum value (solid line), the minimum value (dash line) of the last 150 iterations and the value of 
survival equilibrium of aquatic animal (dot line) are plotted.      

 
 
 

of aquatic animal 
1

E  is always globally asymptotically 

stable although the delay τ  is sufficient large (Figure 

2A); if 31
0

<< R , the survival equilibrium of aquatic 

animal 
2

E  is always globally asymptotically stable for 

any delay τ  (Figure 2B); if 3
0

>R , small delay τ  

implies that the survival equilibrium of aquatic animal 
2

E  

is globally asymptotically stable (Figure 2C). However, 
when the delay time become large, the survival 
equilibrium of aquatic animal is unstable, Hopf bifurcation 

occurs and a stable periodic solution bifurcates from 
2

E  

(Figure 2D). These conclusions are consistent with the 
conclusions of Theorems 3, 5 and 6. Furthermore, fix 

05.0=u  and τ  changes from 0.1 to 12, the global 

bifurcation diagram is given in Figure 3. 
From Figure 3, we can find that the process of survival 

equilibrium of aquatic animal 
2

E  change from stable to 

unstable with the increase of delay τ , and the period of 

the periodic solution is gradually increase.      
 
 
DISCUSSION 
 
Currently, water quality deterioration has become a 
worldwide public problem and mathematical model has 
been used to study the oscillation of water quality. Feng 
et al. (2007) and Wang et al. (2009) explored the 
conditions of the oscillation of water quality based on the 
nonlinear dynamics model of planktonic ecosystem 
without delay time. In the present paper, we proposed a 

new nonlinear dynamics model of alga-aquatic animal 
based on the water ecosystem of Three Gorges 
Reservoir Area, which contains the delay time between 
aquatic preying alga and translating to effective biomass. 
The theoretical and simulated results indicate that the 
delay time may lead to the oscillation of water quality 
under proper conditions.  

According to measuring data in Three Gorges 
Reservoir Area, Liu et al. (2005) studied algal growth 
mechanism and found some strong interactions and 
inherence rules when nitrogen (N) and phosphorus (P) 
concentration absorbed by algae body varied with the 
different N and P concentration. However, for simplicity, 
model (1) does not directly contain the essential nutrients 
(such as N and P) for the growth of alga. Furthermore, 
the parameter values in our simulations are artificial. To 
conquer the above-mentioned limitations, using the idea 
of Cabrera (2011), we will collect the real monitoring data 
of water quality of Three Gorges Reservoir Area and 
discuss these cases in mathematics to understand these 
topics in future work. 
 
 
CONCLUSIONS 
 
Note that the survival equilibrium of aquatic animal 
becomes unstable only when the delay time is sufficient 
large and the basic reproductive number of aquatic 
animal is greater than three. If there is a large delay time 
between aquatic preying alga and translating to effective 
biomass, the mild fishing intensity may cause the 
fluctuation of the water quality due to the inversely-
proportional relationship between the basic reproductive 

 



number and the fishing intensity of aquatic animals. 
However, excessive fishing intensity will induce the 
aquatic animal tends to extinction, that is, the extinct 
equilibrium of aquatic animal is globally asymptotically 
stable, which acts inimical to water purification. 
Therefore, based on the theoretical analysis and 
numerical simulations, we can conclude that the delay 
time   and   fishing   intensity   together   may  induce  the  
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oscillation of water quality. Thus, in order to keep the 
good ecology function of the aquatic ecosystem of Three 
Gorges Reservoir Area, the administrative office will 
careful to work out measures for fishing intensity. 
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