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ANALYSIS OF A NON-STANDARD FINITE ELEMENT METHOD BASED ON
BOUNDARY INTEGRAL OPERATORS *

CLEMENS HOFREITHER, ULRICH LANGER?, AND CLEMENS PECHSTEIN

Abstract. We present and analyze a non-standard finite element methed baglement-local boundary inte-
gral operators that permits polyhedral element shapes ags/elieshes with hanging nodes. The method employs
elementwise PDE-harmonic trial functions and can thus begprgeed as a local Trefftz method. The construction
principle requires the explicit knowledge of the fundaméstdution of the partial differential operator, but only
locally, i.e., in every polyhedral element. This allows ustdve PDEs with elementwise constant coefficients. In
this paper we consider the diffusion equation as a model enopbut the method can be generalized to convection-
diffusion-reaction problems and to systems of PDEs such asirtkar elasticity system and the time-harmonic
Maxwell equations with elementwise constant coefficients. phvide a rigorous error analysis of the method un-
der quite general assumptions on the geometric propertiée @léments. Numerical results confirm our theoretical
estimates.

Key words. Finite elements, boundary elements, BEM-based FEM, Treffthauks, error estimates, polyhedral
meshes.

AMS subject classifications.65N30, 65N38

1. Introduction. In some important practical applications one wants to disoe partial
differential equations (PDEs) or systems of PDEs on polydiedeshes without further de-
composition of the polyhedra into simplices. For instatmtegservoir simulation, polyhedral
elements appear naturally. Their use also gives greatdmneed automatic mesh manipula-
tion: elements can be split, joined and manipulated freathaut the need to maintain a
particular element topology. For instance, this freedoardigantageous in adaptive mesh re-
finement: straightforward subdivision of individual elemgusually results in hanging nodes
that are often eliminated by introducing additional edige®'s to retain conformity. This can
be avoided if one can compute directly on polyhedral mesligshanging nodes.

One established approach for this kind of problems is thelyaoh so-called mimetic
finite difference (MFD) methods. They are based on the coastm of discrete spaces and
operators which mimic properties of the continuous probl&mD schemes for polygonal
or polyhedral meshes have been investigated by Kuznetsprjkiov, and Shashkovlp],
Brezzi, Lipnikov, and Simonciniq], and others. A convergence analysis has been provided
by Brezzi, Lipnikov, and Shashkov]. The realization of these methods requires the con-
struction of a mesh-dependent inner product on a space aktksvelocities, which can be
difficult for general polyhedral meshes.

Another approach that allows general meshes is the classaafrdinuous Galerkin (DG)
methods which have been intensively developed during stediecade; see, e.g2][ As an
example for a DG method on polyhedral meshes (albeit forineal convection-diffusion
problems), we refer to the work by Dolejsi, Feistauer, andi&ova [L2]. A DG approach
generally necessitates the duplication of degrees of émeetross neighboring elements and
thus an increase in the number of unknowns.

In this paper we analyze a discretization method for polyhletieshes which has been
proposed by Copeland, Langer, and PusiihThe method employs local boundary integral
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operators and has its roots in the symmetric boundary eletio@main decomposition method
proposed by Hsiao and Wendlard. The latter has been developed into an efficient solution
technique on parallel computers 6y [L9].

As in the finite element method (FEM), the stiffness matrixtef scheme we are going
to discuss is assembled from local element matrices. Hawewmeeach polyhedral element
the corresponding element matrix is generated by using adaoy element method (BEM)
approach. For this reason, we refer to the method as a BERHWEEM, or BBFEM for
short. Since we use a symmetric BEM discretizati@f, [L5], the element matrices and
consequently also the global stiffness matrix are symmethile the numerical realization
of the element matrices is not straightforward, existingplementations from established
BEM software packages likesTBEM[28] can be leveraged for this task. In the special case
of the Laplace problem on a purely simplicial mesh, the olatdistiffness matrix is identical
to that of a standard FEM with linear simplicial elementswiduwer, since the local assembly
procedure via boundary element techniques is applicalderneral Lipschitz polyhedra, the
BBFEM can treat a much larger class of meshes naturally.isrstinse, it may be viewed as
a generalization of the FEM. As soon as more general PDE®andishes come into play,
a major difference to the FEM is that the trial functions ao¢ piecewise polynomial, but
rather piecewise PDE-harmonic, i.e., they fulfill the PDEally in every element.

The main aim of this paper is to give a rigorous error analgsihe BBFEM. We note
that the error estimates for the domain decomposition nagaven in [L4, 15] are not ex-
plicit in the shapes and diameters of the individual domairreey are thus not applicable to
the present case where we are interested in families of reeghese element diameters uni-
formly tend to zero. Furthermore, the estimates given isghgorks bound the error only on
the boundaries of the elements and are thus inherently oegsdrdent. In order to establish
the relationship to the FEM, we derive estimates for the ggnaorm of the error over the
whole computational domain.

We approach the analysis using a Strang lemma for the déseaeiational formulation.
Then, we derive approximation results for Dirichlet and Mamn data on the boundaries
of general polyhedral elements. Some mesh-dependentitiggmare bounded using recent
results on explicit constants for boundary integral opmsaR6].

The remainder of this paper is organized as follows. In a&iwe derive the skele-
tal variational formulation that will be the starting poifar the discretization. Sectiof
introduces the BBFEM. The error analysis is performed irtiee. The results of some nu-
merical experiments are reported in Sectipmnd Sectiorb gives a conclusion and outlook
on further work. The proofs of some technical intermedietilts are moved to Appendix

2. A skeletal variational formulation. The BBFEM method which we analyze in this
paper can directly be applied to diffusion problems of thenfo

—div(a(x)Vu(z)) = f(z), =z €Q,

with suitable boundary conditions on the boundBry 92 of a bounded domaif? provided
that the coefficient(-) is piecewise (more precisely elementwise) constant anfbruaniy
positive. Indeed, due to the nature of the constructionnddmental solution for the differ-
ential operator has to be explicitly known, however, onlyally on each element. In practice,
this means that we can treat problems with piecewise constefficients, i.e.q(x) = a; in
thei-th element. Since we are using boundary integral techsiguéy locally, the incorpo-
ration of an inhomogeneous right-hand siflez 0 requires the evaluation of element-local
Newton potentials.

Only for sake of simplicity of our presentation we conside inhomogeneous Dirichlet
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boundary value problem for the Laplace equation
(2.1) —Au=0 inQ and u=g onl =09,

whereQ) ¢ R¢ is a bounded Lipschitz domaid,= 2 or 3, andg is the given Dirichlet data.
The variational formulation of the above boundary valuebpgm reads as follows: for given
Dirichlet datag € H'/2(I"), findu € H'(Q) such that

(2.2) Wu = ulp = g, /Vu-Vvdw =0 Vv € Hy (),
Q

wherey? : H'(Q) — H'Y?(T) denotes the Dirichlet trace operator BnFor the definition
of the usual Sobolev spacés' (2), H} (), H'/?(T) etc., and the trace operators, we refer
the reader to1], 30.

Finite element methods typically use the variational fdatian (2.2) as their starting
point. In our approach, however, we first introduce a mestdanige a skeletal reformulation
of (2.2). Later on, we will restrict to discrete trial spaces.

Consider a family of non-overlapping decompositi¢is) Y ; of ©,

ﬁ:

C=

Ti, Tiﬂszw Vi # j.
1

We assume that eaelement; is a Lipschitz polygon/polyhedron whose boundByy= 0T;

is composed ofd—1)-simplices, i.e., line segments in two dimensions and ¢fiesiin three
dimensions. In the following, we refer to these boundaryptices asfacets We assume
that the mesh isonformingin the sense that the intersection of the closure of two rdiffe
boundary facets of any two elements is either empty, or a comvartex, or a common edge
of these facets (in three dimensions). A mesh with hangirdgs@an be made conforming
by integrating the hanging nodes as vertices into neighbaiements.

We call such a decompositidfi;)¥., ameshof €. In the following we will frequently
refer to thelocal mesh sizes,; := diam T; and theglobal mesh sizé := max; h;. In this
work, we are interested in families of such meshes wherelémeent diameters; uniformly
tend to zero, while the number of facets of every element mesnaniformly bounded by
a small constant. Within this framework we can treat typelaiment shapes like triangles
or quadrilaterals in two dimensions, tetrahedra, hexahquhisms or pyramids in three di-
mensions, as well as other, less standard shapes. In parti®e do not necessarily assume
convexity of the elements. We also retain the freedom to rithase types of elements
within one mesh; see Figuglfor an example. Finally, we do not require the meshes within
the family to be nested.

We define a restricted trial space by requiring that the taattions fulfill the homoge-
neous form of the PDE locally in every element, while beingbglly continuous. For the
Laplace equation, this means locally harmonic trial fusrsi

Vi = {ve H(Q) vy, e H(T;) Vi=1,...,N},
Vio = Vi N Hg(Q),
with the spacé+(T;) of harmonic functions on the elemeHtdefined by

H(T}) = {uEHl(Ti):/

Vu-Vugdr =0 Yuy € H&(n)}.
T;
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Figure 2.1: A heterogeneous polygonal mesh.

Noting thatVz, € H'(Q) andVy o C H{(£2), we state a restricted version of the variational
problem @.2) as follows: findu € V3, which satisfies

(2.3) ulr = g, /Vu-Vvdx =0 Yo € Vip.
Q

Owing to Viy € H'(Q), the usual boundedness and coercivity properties of theehil
form in (2.2) carry over to 2.3). It follows that .3) is a well-posed variational problem.
Furthermore, the two formulations are equivalent sincestiletionu € H* () of (2.2) lies
in V3. This is easily seen by choosing, for arbitrary but fixed {1,... N}, an arbitrary
functionv; € H{(T;), extending it by zero ta € H}(Q), and testing in Z.2) with this
particular choice of.

Following McLean P3, Lemma 4.3], we define thdeumann trace operatoy; = 7%1’,

VL, H(T;) — H~/*(T;) by the relation
(yiu, wir, = / Vu - Vwdz Yw e HY?(T),
T;

wherew € H'(T;) is an arbitrary extension af into 7; and (-, -)r, denotes the duality
product betweerd ~*/2(T;) and H'/?(T;). It follows from the definition ofH(7}) that the
Neumann trace,« does not depend on the actual choicevofin other words, if we denote
by 7 =4 : H'(T;) — H'/?(I;) the usual Dirichlet trace operator @h, then we have
for anyu € H(T;)

(2.4) (vu, Yv)r, = / Vu-Voudz Yo € HY(T;).
T;

We recognize this as Green'’s first identity for harmonic fiors. This also shows that, in
case of sufficient regularity,! = n; - V with the outward unit normal vectar; onT);.

Green'’s identity 2.4) allows us to rewrite the variational problerd.§) as follows: we
seeku € Vi 4 := {u € Vi : u|r = ¢} satisfying

N

(2.5) > (ru, Ao, =0 Vo€ V.
i=1
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The only values of: occurring in this formulation are the Neumann traces on tament
boundaries. This gives rise to the idea of representisglely via its values on thekeleton
I's =Y, I

LetH,; : H'/?(I';) — H(T;) denote the local harmonic extension operator for the ele-
mentT;. It mapsg; € H'/?(I';) to the solutiorw; € H'(T;) of the local variational problem

Yu; = gi, / Vu; - Vo;dex = 0 Yu; € Hy(Ty).
T;

It is easy to see thak(; is bijective, with its inverse given by?. Denoting byH'/?(T's)
the trace space aff*(£2) onto the skeleton, we introduce tskeletal harmonic extension
operator

Hs: HY?(s) — Vi,

(Hsv)lr, = Hi(v
From the above, we can infer thats is a bijection betweeitl '/?(I"s) and V3, its inverse
being theskeletal Dirichlet trace operatofys : H'(Q) — H'/?(I's). Similarly, with the
subspacél, and the manifold¥, given by, respectively,
Wo == {ve HY?(Ts) :vjr =0} and W, := {ve HY*(Ts):v|r = g},

the operatofi{s is a bijection betweem, and V3, as well as betweel/; and V3 4. In
other words, we can represent any piecewise harmonic imete V3, o uniquely asH svg
with some skeletal functiong € Wy, andu € Vy 4, asHgug with someug € W,,. If we
define the locaDirichlet-to-Neumann maps
S;: HY2(Iy) — HY(Iy),

vyl (M)

Fi) V’LE{].,7N}

(2.6)

and introduce the short-hand notation:= vg|r,, we can rewrite the formulatior2(5) as
seekingu = Hsugs with a skeletal functiomn.g € W, satisfying

N
(27) Z(Siui, Ui)Fi =0 Yug € Wy.

i=1
Since @.7) is nothing but an equivalent rewriting o2.3), which in turn we have above
demonstrated to be equivalent to the standard variati@naiulation .2), we have proved
the following proposition.

PROPOSITION2.1. Letg € H'/?(T") be given. The variational formulations to find

u € HY(Q) with u|r = g such that

/Vu~Vvdm =0 Yve H(Q),
Q

andug € H'/?(T's) withug|r = g such that

N
D (Siui, viyr, = 0 Vug € W,

=1
whereu, = ug|r,, v; = vg|r,, are both well-posed. They are equivalent in the sense that
their unique solutions andu g are related by

us =ysu and u = Hgug.

For brevity, we will drop the subscrigt for skeletal functions in the remainder of this work
and instead denote functions defined within the domain bguhscript.
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3. A BEM-based finite element method.In this section we derive the BBFEM dis-
cretization of the skeletal variational formulatich?). Since we work with skeletal functions
spaces which only incorporate boundary values of the imgRanctions on every element,
it is natural to use a representation of the Dirichlet-taiann magb; in terms of boundary
integral operators. We use symmetric approximations ofb&l Steklov-Poincaré operators
in order to obtain a symmetric stiffness matrix.

3.1. Boundary integral operators. We can only give a brief summary of some standard
results on boundary integral operators here and refer tiderdo, e.g.,16, 23, 27, 30] for
further details.

Forz,y € R4, let

U (2,y) = —loglz—y| ifd=2,
ﬁ\x—yrl if d=3,

denote thefundamental solutiomf the Laplace operator. Following, e.g., McLe&$§][ or
Steinbach 30], we introduce the boundary integral operators

Vi: HYX(,) — HYX(1), K;: HY*(T;) — HY2(T)),
K!:H Y2(;) - H-Y(I;), D;: HY*(I;) — H Y(T,).
They are called, in turn, thsingle layer potentialdouble layer potentialadjoint double

layer potentia) andhypersingularoperators. For sufficiently regular functions, they hawe th
integral representations

V) = [ U @aota) s, Kado) = [ G @uta) ds.

T, 877,35
0 oU*

any T; 8nm

(Diu)(y) =

(z,9) (u(@) — u(y)) dso.

In the present settind; andD; are self-adjoint operators, wherdgsand K} are adjoint
to each other. The bilinear forfn, V; -) induced by the single layer potential operator can be
shown to be coercive oH ~'/2(T';). In two dimensions, this requires the additional technical
condition that the diameter of the domd&ihbe less than one.

We also introduce the subspaces

H, Y21y = {we H V2T (w, 1)r, =0},
HY2(Ty) = {ve HV2T;) : (V. v, D, =0} = Imy, (H, 72(T))).

(2

The bilinear form induced by, is coercive onHi/Q(Fi). Furthermore, orHi/Q(Fi), we

have the contraction propert$Q
(1= cx)lvlly— < 1B+ Kl < exillvly-r o e HI*(Ty),

with the contraction constants
<D1U7 U>1",i

Co,i = inf T

—————— € (0,1) and cg,; = F4+4/t—coi € (3,1
’UEHi/Q(FZ) <V;— v, U>1"i ( 4) K,i 2 4 0,7 (2 )7

s

where||v||,,-: = y/(V; 'v, v). Here and in the following we implicitly exclude = 0 in
infima and suprema of the above form.
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Following [23, 30], the Dirichlet-to-Neumann mag; defined in 2.6) is identical to the
Steklov-Poincaré operatayiven by

S; = V7N A+ K)).

Using the contraction properties @}I + K;) above and the Cauchy-Schwarz inequality, we
can easily derive the following estimates (cf1] 24)):

(1—cx) (Vi o, v, < (Siv,o)r, < exalVi o, v, Vo € HIY(T).

i

The constant functions form the kernel of bo#Y + k) andS;, and for every € H'/2(T;)

there is a unique splitting = v, + vy With vy constant and, € H+/*(T';). Making use of

these facts, we can derive the following inequality that vilkmake use of later:

G1) NG+ EKolly- = (3] + Kivi]ly -

KL o, Ly
— |U4|g, = ———— |V|g,.
V1—ck; % V1—ck 5
Above we have used the seminofiis, = +/(S;v, v).

3.2. Approximation of the Steklov-Poincaré operator. The Steklov-Poincaré operator
S; has the non-symmetric and symmetric representations

< excallonly- <

Spui = Vi N3+ Ki)u; = Dyuy+ (31 + KDV (3 + K;)u,.

Both representations are of course self-adjoint in theisoaotis setting. However, discretiz-
ing the first one yields a non-symmetric matrix. The secoreldoes not immediately permit
a computable Galerkin discretization due to the occurramidq_l. To obtain a symmetric
discretization, we first rewrit§; as

with w;(u;) = Vi ' (AT + Ki)u; = S;u; € H7Y2(Ty). Let nowwy, ;(u;) € Z,; be the
Galerkin projection ofw; (u;) onto some finite-dimensional spaZg ; C H~Y2(T;). That
is, wy, s (u;) is determined locally of; by the variational problem

(3-2) (zn,i, Viwni(ui))r, = (2n, (%I + K;)ui)r, V2ni € Zny-
The outer symmetric BEM approximation §f is then defined as
S;: HY?(Dy) — H-Y2(1y),
u; — Diju; + (%I + K;)wm(ui),

see, e.g.,10, 29, 30]. One natural choice foZ}, ; is the space of piecewise (per boundary
facet) constant functions dry, which we adopt here.
We observe that for all;, v; € H/?(T;),

<§iui7 UL‘> = <D,~u7;, ’U,’> + <(%I + K{)wm(uL), ’Ui>
= (Dyui, vi) + (wni(wi), (514 K;)vi)
= (Diu;, vi) + (Wi (v;), Viwpi(us)),
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where the last expression is clearly symmetric with resfeet andv;. This shows thas;
is indeed a self-adjoint operator, and this property caroieer directly to its (now natural)
Galerkin discretization. B

The symmetric approximatiofi; of the Steklov-Poincaré operat6 fulfills the spectral
equivalence relation (cf2§, 29))

(3.3) 20, (Sivi, vi)r, < <§ﬂ)¢, viyr, < (Sivs, vi)r

Yo, € HY2(Ty).
CK,i

i

Note that the bilinear forms induced by bathandS; are positive semidefinite.

3.3. Discretization. Let us restate the skeletal variational formulati@r/ derived in
Sectior?. Itis always possible to extend the given Dirichlet data H'/(I") to the skeleton,
and we therefore assumgec H'/?(I's) without loss of generality. After homogenization
with this g, we seeks € W := W, = {v € H'/?(I's) : v|r = 0} such that

(3.4) a(u,v) = (F, v) YoeW

with the symmetric bilinear form and the linear functional

N N

a(u,v) = Z<Siui, vi)r, and (F,v) := ZFSiQi, vi)r, = —a(g,v),

i=1 i=1

respectively. The solution of the boundary value problethés given byH s (u,), where we
denote byu, := u + g the skeletal solution incorporating boundary conditions.

Approximating S; by S;, we get an approximate bilinear form and linear functional,
respectively, as

N N

a(u,0) == Y (S, v, and (F,v) ==Y (=Sigs, vi)r, = —alg,v).

i=1 =1

As a finite-dimensional trial spadd’, ¢ W, we choose the space of piecewise lin-
ear (per facet of's) and continuous functions on the skeleton. This yields tikerdtized
variational formulation: find:;, € W}, such that

(3.5) A(un,vn) = (F,va)  You € Wi

As basis functions fofV;,, we choose the skeletal nodal basis functions which are one
at a designated vertex of the skeleton and zero at all othieite aeing piecewise linear on
the skeletal facets. To assemble the stiffness matrix sporeding to §.5), we only need a
means of computing the local stiffness matrices arisinmf&y. The resulting linear system
is symmetric and positive definite.

It is interesting to note that, in the case of a purely simalimesh,

¢ the locally harmonic trial functions are just the piecewisear functions,
o the spaceZ,, ; of piecewise constant boundary functions can represeiN¢aenann
derivatives of the piecewise linear functions exactly,
e the local Galerkin projections of the Neumann derivative thius just the identity,
i.e.,wy,; = w; and therefore alss; = S;.
This means that in this special case, the scheme can beegtabactly and is equivalent to
a standard nodal FEM with piecewise linear trial functiohsdeed, the resulting stiffness
matrices from the BBFEM and this standard FEM are then idehti
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4. Error analysis. The aim of this section is to derive rigorous error estimébeshe
numerical scheme described 8/5). Recall that the discretization of the variational formu-
lation (2.7) proceeded in two steps: we chose a finite-dimensionalspatelV;, ¢ W, and,
to make the scheme computable, we chose an approximé@tioithe Dirichlet-to-Neumann
map S;. While the first step leads to a standard Galerkin method wisigasily analyzed
using the Céa lemma, the second step introduces a congigigncwhich demands analysis
by a Strang lemma.

4.1. Norms. In order to derive error estimates, we first need appropnatens for the
involved boundary function spaces. Because we use harregt@nsions heavily, the natural
norms to work with are those defined in terms of the extensperaiorsH;. Thus, we equip
the local trace spacdg'/?(T';) with the seminorm and norm

Wilmze,y = [Hvilgrry = inf  [@]m(ry),
peH (T;)
’Y?¢:Ui
9 1
||U’iHH1/2(Fi) = (dlam(T))2 ||H Ut||L2(T)+|H U1|H1(T)

The norm|| - || g1/2(r,) induces as usual an associated dual npr ;12 (r,) on the dual
space off7'/%(I;).
We observe that, for all; € H'/%(T;),

<Sivi7 U'L>F = ’Yz H ,Ul) Yi (H v’l)>
(4.1) (2.9
: v H ’Ul . H Uz) der = |H UZ|H1(T) = |v2|H1/2(F )

onWw ={ve HI/Q(FS) :v|r = 0}, we define the skeletal energy norm by

N ) 1/2 N ) 1/2
bols = (X loiBnsey) = (X Hwlng) = Msvlmo:
1=1 i=1

On the spacél’, whose members satisfy homogeneous boundary conditliasstindeed a
full norm.

4.2. Error of the inexact Galerkin scheme. Our error analysis is based on the follow-
ing special case of the second Strang lemma.

LEmMMA 4.1.Let X, C X be Hilbert spaces with the norfr ||. Assume that there are
constantsy;, 72, 71, ¥2 > 0 such that the bilinear forms(-, ), a(-,-) : X x X — R satisfy

nllvl? < av,v), T loll* < a(v,v) Yo € X,
la(v,w)| < yellllwl], |alv,w)] < vl Vo,we X.

Assume that, € X andu,;, € X, solve
a(u,v) = (F, v) Yv e X,
A(un,vp) = (F, vp) Yo € Xy,

with the bounded linear functionals, F e X*. Then

Ay wn) — (F
fu—unll < € inf fu—vyl + sup 2]y
v €Xp wpEXp ||wh||
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whereC = max{l + %, %}

Proof. See [/, Theorem 4.2.2]. 0O

Using this abstract result, we can now prove a first Céa-typar @stimate for our
method.

LEMMA 4.2. Letu € W be the solution 0f3.4), andu; € W} the solution of(3.5).
Denote byw;(u,) = Si(u + g) € H~Y/2(T";) the skeletal Neumann data corresponding to
the exact solution. Then we have the error estimate

(4.2) |Hs(u—wup)lm) = llu—unls
N

. . 9 1/2
= ¢ { vh,lg‘ﬁfh mu B Uth + (leh,ilggh,i ||wl(uq> B Zh7i| Vi) }7

1=

where

C= (1+ cls) max{l,\/%}

with the abbreviationgx := max; cx; < 1 for the largest contraction constant and with
Cg = min; :;’(Z > 0.

Proof. In the notation of Lemma.1, we use the Hilbert spacd$;, c W with the
norm|| - ||s. For the bilinear formu(-, -) (cf. Section3.3), identity (4.1) gives us the bounds
v1 = 72 = 1. For the approximate bilinear for(-,-), relation @3.3) yields the bounds
Y1 = cg andyz = 1. (The upper bounds follow from the spectral estimates \&aGhuchy-
Schwarz inequality{S;v;, w;)? < (S;v;, v;)(Ssw;, w;).) Lemma4.1then implies the error
estimate

) a(ug, v
(4.3) lu —unlls < G ( inf JJu—wulls + sup '()')
oW, oews lonlls

whereCy =1 + é We now estimate the consistency error. First notedkay, v) = 0 for
allv € W. Hence|a(ug, vs)| = |a(ug,vn) — alug, vp)|, and we see that

-

&
Il
-

<<51(Uz +gi), Uni)r, — (Si(ui + ), Uh,z‘)l“,-)

alug, vp) — alug,vy) =

(51 4 K{)(wi(ug) — wn i(ug)), vni)r,

|
_MZ

ﬁ
Il
-

(51 + Ki)vni, wi(ug) — whi(ug))r;,

I
UMZ

Q
Il
_

wherewy, ;(u4) is determined by relatior8(2). In order to bound the local consistency error
on each element boundary, we use that

sup <wv U>Fi

= [jw
veEH/2(T;) ||UHV;1

Vi

which is easily obtained by standard techniques. In othedsyd - ||y, is the associated dual
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Figure 4.1: Sketch of a pentagonal elem&htwith auxiliary triangulation=;, one of its
constituting simplices € =;, and a boundary facet € F;.

norm tol| - [|;,-1. Hence,

(BT + K;)oni, wilug) — whi(ug))r,

< NG+ Kionilly -1 wi(ug) — wni(ug) v,
CK,i
(4.4) < == vl o) lwiug) — whi(ug)|lvi,
1-— CK,i
where in the last line we have used inequalByl) and the fact that- |s, = | - | y1/2(p,)-

Finally, we estimate the remaining rightmost term 4n4J. By the defining relations
Viwi(ug) = (31 + K;)(u; + g;) for w;(uy) and @.2) for wy, ;(u,), we have the Galerkin
orthogonality

(Vi(wi(ug) —wn,i(ug)), zni) = 0 Vni € Zpy.

By a simple application of Céa’s lemma, we therefore get

[wi(ug) = whi(ug)llv, = inf Jlwi(ug) = 2pi

‘/vi.
Z}L,iEZ}L.'L

Combining these results witl (), we obtain the desired statement easily from the Cauchy-
Schwarz inequality ifR™ . 0

The error estimate4(2) contains the constants; andcg. We have not yet clarified
their dependence on the mesh (i.e., on the shapes of therg®rand will do so in the next
section. Furthermore, estimating the error in terms of tirecBlet and Neumann errors on
the skeleton is not desirable since these terms are inthemmash-dependent. The remainder
of our error analysis is concerned with estimating the esgoms on the right-hand side of
(4.2) only in terms of the exact solution and certain regulardygmeters of the mesh.

In the sequel we restrict ourselves to the three-dimenkease.

4.3. Geometric assumptions on the meshWwe assume that every eleméhithas an
auxiliary conforming triangulatio®; consisting of mutually disjoint tetrahedra

T, =J =
TEE;

By F;, we denote the collection of all triangular facésf tetrahedra € =; which lie on the
element boundary;. This setting is illustrated in Figuré.1 for the two-dimensional case.
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We assume that the triangulations of any two neighborinmetesT; andT}; arematching
in the sense that, for facefs € F; and f; € F; such thatf; # f;, their intersectiory, N 7j
is either empty, a vertex, or an edge.

We emphasize that these local triangulations are a purellytcal device and not re-
quired for the numerical realization.

DEFINITION 4.3. The tetrahedral triangulatiorx; is calledregularif and only if there
exist positive constants, ¢1, ¢,, andeé, such that for all tetrahedra € = we have

¢, (diam7)® < |det J,| < & (diamT)?,
(4.5) 177 [,

< ¢y diam T,
(4.6) 1T e, < (g diam7) ™,

where J; is the Jacobian of the affine mapping from the unit tetrahedmr, and where
IAlle, = v/ Amax(AT A) denotes the spectral matrix norm.

For some auxiliary results that will be given later on, wedtee following shape regu-
larity assumptions on the mesh.

ASSUMPTION4.4. We assume that the polyhedral mégh)Y ; satisfies the following
conditions:

(i) There is a small, fixed intege¥~ uniformly bounding the number of boundary
triangles per elementF;| < Ny Vi=1,2,...,N.

(i) Every element’; has a conforming triangulatio&; which is regular with uniform
constants:, ¢1, ¢y, andés > 0, independent of the index

In the standard finite element analysis, we usually obtaiform constants by transform-
ing domain and surface integrals to reference elementfismiay, the constants appearing
in the estimates depend only on mesh regularity parametevelaas on some fixed constants
stemming from inequalities on the reference elements.

For general polyhedral meshes, such a technique is not yetrkn In particular, we
cannot express the constangs by a transformation to reference elements. In order to get
uniform bounds in our case too, we make use of shape-expbcibds on the constantg ;
that Pechstein6] has obtained recently. The construction therein usesall@ving param-
eter introduced by Jone&T].

DEFINITION 4.5 (Uniform domain [7]). A bounded and connected sbt ¢ R? is
called auniform domairif there exists a constaty; (D) such that any pair of points; € D
andz, € D can be joined by a rectifiable curvgt) : [0, 1] — D with v(0) = z; and
~v(1) = x4, such that the Euclidean arc lengthis bounded by’y; (D) |z — z2| and

min [z; — ()| < Cu(D) dist(y(1), 0D) ¥t € [0,1].
Any Lipschitz domain is also a uniform domain. In the follegi for any Lipschitz domain
D, we call the smallest constafit; (D) that complies with Theorem.5the Jones parameter
of D.

The second parameter that we use is the constant in Poisdaeguality. LetD be a
uniform domain, then le€’p (D) be the best constant such that

(‘1161]1% ||u - CHLQ(D) < CP(D) diam(D) |U|H1(D) Yu € Hl(D)

Combining a famous result by Maz'ya9] and Federer and Fleming.§] with an auxiliary
result by Kim (seeZ6, Lemma 3.4]), the constantp (D) can be tracked back to the constant
in an isoperimetric inequality. For convex domaiisone can even show th@t (D) < 1/,

cf. [3]. Estimates for shar-shaped domains can be foundih [
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Since each individual elemeff} is Lipschitz, the Jones parametéy (7;) and the con-
stantC'p(T;) in Poincaré’s inequality are both bounded.
LEMMA 4.6. [26] For each elemerit; we fix a ballB; enclosindl; with

4.7) B; > T, dist(0B;, 9T;) > 1 diam(T;),

and let the Jones parametély (B; \ T';) and Poincaré’s constar»(B; \ T’;) be bounded.
Then, there gxists a positive constagnt depending solely 06y (T;), Cp(T;), Cu(B; \ 1)
andCp(B; \ T;) (or on upper bounds of these constants) such that

Co,i > E()?i > 0.

In order to get a uniform bound for the constaats, we fix a ballB; enclosing each element
T; and fulfilling (4.7), and we need the following assumption.

ASSUMPTION4.7. We assume that there are constafifs > 0 andC} > 0 such that,
forallie {1,...,N},

Cu(T;) < Cyp, Cu(Bi\T;) < C,

Cp(T;) < Cp, Cp(B:\T;) < C%.
Due to Lemmat.6, if Assumption4.7 holds, then each of the constangs is bounded away
from zero by an expression which depends onlynandC?. This also allows us to bound
ck,; away from one, as it is given in terms @f ;.

Furthermore, as shown in the same wdzK][ if Assumption4.7is satisfied, we have the
bound

v, < Colzilg-rew,y — Va€ HVA(TY),

with a constant’; that is again uniformly bounded.

4.4, Approximation error in the Dirichlet data. Under the assumption of fult/?-
regularity of the exact solution, we easily get the followiresult on skeletal approximation
of the Dirichlet data by standard finite element approxioratiechniques on the auxiliary
triangulation=;.

THEOREM 4.8. Let the meshT;)Y., satisfy Assumptiod.4. Letug € H?(f2) be the
exact solution of the domain variational formulati¢h?2), andu € W the solution of(3.4).
Assume furthermore that the given Dirichlet dgta H'/?(I's) is piecewise linear. Then we
have

N 1/2
(4.9) Ju—vills < O (YK lualisny) < Chlualaz),
) =1

inf
v €W
where the constan® depends only on the regularity parameters from Assumpgtién

Proof. Due to=; being a conforming triangulation ¢f; and the assumption of the

element triangulations being matching across elementdarigs,= = | J, =; describes a
conforming regular triangulation dd. LetV;, ¢ H!(Q) denote a standard finite element
space of piecewise linear, globally continuous functiomer&. Chooseg; € Vj, with
on|r = g arbitrarily, and se®;, := ~s(¢n) — g € Wy, This choice yields the estimate

N
inf —ull% < flu— @2 = Z (u— @) |2 )
o nf lu —vrlls < llu— @ulls 2 Hi(u — @) |5 (1)
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Note now thatys(ug — ¢r) = u+g— (P, +9) = u— Py, and hence, by the energy-
minimizing property of the harmonic extension,

[Hi(u — @)y < |ua — énlar(m) Vie{l,...,N}.
Sinceg,;, was chosen arbitrarily, we obtain

inf — < inf — .
Jinf Ju—uills < inf Jug — éulin o)

Pnlr=g

We can thus apply standard approximation results for filéeent spaces, see, e.g., Ciar-
let [7], to obtain the desired statement. O

4.5. Approximation error in the Neumann data. For technical reasons, we need the
Sobolev-Slobodeckii seminorm in addition to the harmonigesion norm we have worked
with so far. For every boundary fagec F;, we define

. " [u(@) — u(y))?
(4.10) |u|2i/2(f) = /f/fwdsmdsy,

which gives rise to the piecewise Sobolev-Slobodeckii senm onI’;,

2 L 2
|“|Hiéiv<r7-,) T f;_ ‘u|Hi/2<f)'

For approximating the Neumann data, we use
Zp; = {v e Ly(I';) : vy = const. Vf e F},

the space of piecewise constant functiond gnFurthermore, we introduce the,-projector
Qn,i : L2(T;) — Z,; given by the variational problem

(Qn,iwy Va) Loy = (U Vn)Ly(m,) Vop € Zpi-

that is uniquely solvable for any givenc L. (T';). The projectory;, ; permits the following
interpolation error estimate.

THEOREM 4.9. LetT; be an element from a mesh fulfilling Assumptiof Then, for
all w € Hpl?(T';), we have the error estimate

lw = Qniwlla-120;y < Chilwlge ),

where the constant’ depends solely on the constants from Assumptién

Proof. Postponed to Appendik.4.

Additionally, we need the following Neumann trace ineqtyal

THEOREM4.10 (Neumann trace inequality)et7; be an element from a mesh fulfilling
Assumptiont.4. Then, for allu € H?(T;), the estimate

|’71'1U|Hi/p2w(pi) <C |U|H2(Ti)

holds, where the constatt depends solely on the constants from Assumpgtién
Proof. Postponed to Appendik.2.
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With this, we have the tools in hand to prove the following mpgmation result for the
Neumann data.

THEOREM4.11. Let the meshT;)Y , satisfy Assumptiod.4 and Assumptiod.7. Let
ug € H?(Q) be the exact solution of the domain variational formulati@r?), v € W the
solution of (3.4), andw; (uy) = S;(u; + g;) the exact local Neumann data &y. Then,

inf flwi(ug) = znillv, < Chilualu )
2h,i€2Zn,i
where the constant’ depends solely on the regularity parameters from Assumpgtidand
Assumptior.7.

Proof. Due to Propositior2.1, w;(u,) = Si(u; + g;) = viug € Hy(T;). Using

relation @.8), Theoren4.9, and Theorerd.10, we estimate

inf fwi(ug) —znallvi < Nwiug) — Qniwi(ug)|lvi
2h,i€2Zh,i @9
< Oy lwilug) — Qniwiug) | -1/2(r,)
Thm4.9
< Chifwilug)l gz

= C hi hiluQ'Hi/pzw(Fi)
Thm4.10
Chi |US2|H2(T1;)- O

4.6. Final error estimate. Combining the error estimates for the Dirichlet and Neu-
mann data, we arrive at the final error estimate given in theviitng theorem.

THEOREM4.12. Let the meshT;)Y.; satisfy Assumption.4 and Assumptiod.7. As-
sume further that the given Dirichlet datgis piecewise linear. Ifi, € H?(Q2) is the exact
solution of the variational formulatiof2.2), andwu; € W), is the solution of the discrete
skeletal formulatior(3.5), we have the error estimate

N ol 1/2
lug — Hs(un + g)lmio) < C(Zhi \uﬂ\mm)) < Chlualpz(o),
i=1

where the constant’ depends solely on the regularity parameters from Assumgtiband
Assumptior.7.

Proof. Note first thatug = Hs(u+ g) and thusug — Hg(up +g) = Hs(u—up). From
Lemma4.2, we have

N 1/2
[Hs(u—un)|m o) < C’{ inf Jlu—opls+ (Z inf  |Jwi(u) — 2, %) }
. .

vp EW — z2n,i€2ni
with
1 CK
O (14 Yma {1, Y
o max i

Due to Lemma4.6, C' can be bounded in terms of the regularity parameters. Nowp-Th
rem4.8yields the Dirichlet approximation property

al 2 2 1/2
inf — < ( h; ) .
it Jlu—uls < C ;  lualtr ()

The remaining terms can be treated using the Neumann appeitign property from Theo-
rem4.1L

inf  |Jw;(ug) — 2n,

< Chyluw 207 - |
2n,i€2n,i Vi = Z| Q|H (7o)
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Table 5.1: Numerical results.

mesh sizév  H'-error  LZ2-error #tets

0.866025 0.923507 0.0879679 48
0.433013 0.459565 0.0223147 384
0.216506 0.226186 0.00549834 3,072
0.108253 0.109806 0.00131165 24,576

0.0541266 0.0537825 0.000315016 196,608
0.0270633 0.0264988 7.62441e-05 1,572,864

(a) Results with tetrahedral mesh.

mesh sizv  Hl-error  L2-error #tets #polys

0.866025 0.867685 0.0842554 40 4
0.433013 0.433557 0.0214242 258 63
0.216506 0.214188 0.00522372 2,044 514

0.108253 0.103955 0.00124863 15,822 4,377
0.0541266 0.0508436  0.000304395 125,350 35,629
0.0270633 0.0251327  7.76704e-05 996,390 288,237

(b) Results with mixed mesh.

5. Numerical results. In order to verify our theoretical results, we have impleteedn
the BBFEM and performed several numerical tests. The imgfgation was done in C++
and builds upon thearmAx framework by Pechstein and Copelandror the computation
of the boundary element matrix entries, we use the approitie osTBEM library [28]: the
inner (collocation) integral is computed analytically,iletthe outer integral is approximated
by a 7-point quadrature. For the solution of the resultingusietric positive definite linear
system, we use the conjugate gradient (CG) method withegsomditioning.

In our numerical experiments, we consider the inhomogen®&atichlet boundary value
problem for the Laplace equatio®.() in the unit cube? = (0,1)3. In all tests, we prescribe
the exact solution(z, y, z) = exp(z) cos(y)(1 + 2).

We perform computations on two different mesh configuratiorhe first one is a stan-
dard regular tetrahedral mesh obtained by uniform refin¢iwfesm coarse mesh. The second
one is derived from the first one by unifying some pairs of egljd tetrahedra. This results
in meshes consisting of both tetrahedra and polyhedra g&vurertices, 9 edges and 6 faces.
Some of the latter may be non-convex. Because our methodgitcdegrees of freedom at
element vertices, this unification procedure does not ahémgnumber of unknowns.

For computing the ,-error, we use the representation formula from the theobpahd-
ary integral operators to evaluate the solution at some jpmiets of the elements and perform
quadrature. For computing thig!-error, we estimate the gradient as a piecewise constant
guantity from the computed Neumann data and again perfoadrature.

The results are shown in Talel, where Tablé.1(a)gives the results for the tetrahedral
meshes, while Tablé.1(b) gives the results for the mixed meshes. In each table, the firs
column gives the mesh size (here calculated as the maximgmledgth). The second and
third columns give the error in th& '-seminorm and thé,-norm, respectively. The final
columns give the number of tetrahedra and polyhedra in eadinm

In both cases, thél-error decays wit©O(h), as Theorend. 12 predicts. Also, the.,-
error decays witl©(h?) in both experiments. Figure 1 visualizes these results graphically.
As can be seen, the errors for the tetrahedral and mixed meséeirtually identical.

*http://ww. numa. uni -1 inz. ac. at/ P19255/ sof t war e. sht m
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Figure 5.1:L,- and H '-error for tetrahedral and mixed mesh.

6. Conclusion and outlook. We have described in detail the discretization method for
elliptic PDEs on polyhedral meshes introduced by Copel&mager, and Pusch], and
analyzed it in the special case of the 3D Laplace equatiooutf&nowledge, our main result,
Theoremd4.12 is the first rigorous error estimate for a method of this ty@eir numerical
tests confirm the convergence rates which the theory sugygest

The range of application of the BBFEM is very broad. Copelaasliapplied this method
to the Helmholtz equation and to the time-harmonic Maxwellation in the high-frequency
range P]. The numerical results presented #} ook very nice, but a rigorous error analysis
is still missing for these cases. In order to apply the BBFBEMame particular boundary
value problem, the fundamental solution of the correspangiartial differential operator
must be explicitly known. Since we need the fundamentaltsmiwonly elementwise, we
can permit elementwise constant coefficients. We can evew &br elementwise smooth
coefficients and then solve an approximate equation wittalsiei elementwise constant co-
efficients. Therefore, the application of this method teedin elasticity problems with el-
ementwise homogeneous material properties, to the Stglstsns and even to diffusion-
convection-reaction problems with elementwise constangifiooth) coefficients is possible.
For all these cases, the fundamental solutions are explkciown; see, e.g. 23, 27].

In this paper we were primarily interested in the discrétimaerror analysis and not in
the construction and analysis of fast solvers for the lirsyatems resulting from the BEM-
based FE discretization. In the numerical experimentsepites! in Sectiorb, we used the
conjugate gradient method without any preconditioner &gesdor the linear systems of al-
gebraic equations. Of course, for really large scale systefficient parallel solvers like
domain decomposition or algebraic multigrid methods sthtwel used. We believe that finite
element tearing and interconnecting (FETI) type methodsvatl suited for solving BBFEM
equations; see, e.g3%, Ch. 6], and alsod0, 21, 25] for boundary element variants. How-
ever, the proper application of FETI-type methods to BBFEM a corresponding rigorous
analysis should be the subject of future research.

Appendix A. Proofs of some element-local properties.

In the proof of our error estimates, we—perhaps surprisigbund that among the
greatest technical challenges was obtaining approximgtioperties for piecewise constant
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boundary functions which are valid on the quite general pediyal elements we consider.
This appendix serves to provide some technical resultshwhiezhave used without proof in
the main part of the article. Specifically, our aim here is tove Theoren¥.9 and Theo-
rem4.10 Since all relevant properties can be analyzed locally, weldy the notation by
omitting the element index subscript in the following, evge writeT" for an elemenf’;.

A.1. Transformation properties. Throughout this appendix, we assume that R?
is a polyhedral element from a mesh satisfying Assumptigh That is,T" has a regular
triangulation= with at mostN - boundary triangleg. Note that for every boundary triangle
f € F, there exists exactly one tetrahedrgne = having f as one of its faces.

We write

Ny = {(Jfl,...,l‘d)TERd:JTi>O,$1+...+$d<1}

for the unit simplex inR¢. For any tetrahedron € Z, we fix an affine mapping’, : R® —
R? such thatF, (A\3) = 7. The Jacobian of this mapping is denotedhy= VF, € R3*3,
From the regularity conditiongl(5) and @.6), we easily derive the property

(A.1) co(diam ) €| < | T < Ca(diamT)|¢] VE € R3,

which describes how lengths transform under

In the following we show that regularity & implies regularity ofF.

LEMMA A.l. Let = be a regular tetrahedral triangulation. Then for every tigular
facef € F and every tetrahedron = 7; € = with f C 07, we have

(A.2) cydiam7 < diam f < diamT,
1
(A.3) L (diam7)? < |f] < (diam7)?,
202 2

where| f| denotes the area of the triangfe B
Proof. The estimateliam f < diam 7 is trivial as f C 7. From this we easily get

1 1
[fl < S(diam f)* < o (diam )%,

and thus the upper bounds are proved.

For the lower bounds, le; throughé, denote the vertices of the unit tetrahedrbg.
The vertices ofr are then given by:;; = F-(§;), i = 1,...,4. Clearly, the diameter of is
the length of an edge, sdy;, =), of 7. We have

(A1)
diam f = |z; — x| = |[Fr(&) — F-(§)] = [J-(& = &) > cp diamT[€; — &5l

Sincel¢; — ;| is the length of an edge of the unit tetrahedron, it is cleat|t) — &;| > 1,
which completes the proof of\(2).

For the lower area bound, let, z;, x; be the vertices of. With y; := z; — x; and
yo := x5, — ;, the area of the triangle is given by| = % |y1 x yo|. Furthermoref :=

F~1(f)is aface ofA3, and we hav%f’ = L |m x n| with

-
mo=&—& = Flxy) = FolN(w) = J7 g — ) = Iy,
and analogously, = J-1y,. Thus, we may estimate
L= 1fl = 3m xml| = 3|7y x I |
'l

9L et 1 17T x )| < 3ot (diamr) P (diam ) 2 1]
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where we have used thaet(J-!) = (detJ,)~! and ||/ ||, = ||J-|le,- The identity
marked with(x) stems from the following elementary property of the crosxlpct that can
easily be checked by direct calculation: for any non-siagmatrix A € R3*3,

Ayy x Ay = (det A)A™T (31 X o). d

We also need some norm scaling relations for transformingtfans to and from the
unit tetrahedron.

LEMMA A.2. Let f be a face of a tetrahedron from a regular triangulation and let
f := F=1(f) be the corresponding triangle on the unit tetrahedryp. Let¢ € H/2(f)
and denote by = ¢ o F, the pullback ofs to f. Then

—3/2 . n
(A4) ‘¢|HL/2(f) <G / (dlam7)1/2|¢|HL/2(f”)

with the Sobolev-Slobodeckii seminorm as defing@dihd. Letu € H'(7) and denote by
4 = u o F, the pullback of. to A3z. Then

(A5) o’ (diamT) V2 i giay) < Julmie < @7t (diam )2 @] g ay)-

Proof. Let Fy, F; : R* — R? denote affine mappings such thgt(As) = f, Fj(A2) =

f,andF; = 91 % ZEL1 = 2| f|. For a suitable real-valued functign
defined onf, we see that

[ owds, =210 [ orrends = 2151 [ ot ry0) de

f AY)

= 0o = L [ owas

For the Sobolev-Slobodeckii seminorm, the above identitggus

B |6(z) — d(y)I°
|¢‘§{i/2(f) = ~/f/f|x—y3 dsy ds,

(Y [ [ =dwl
(|f> /ff FACEE

Using the regularity relationg\(3) and @A.1) we obtain

(diam 7)*\? ¢ ()]
|¢| HY2(f) < e (2|f> (diam 7)™ //Smd ds,,.

Noting finally that|f| > 2, we get A.4).
The remaining statemeni\(5) is shown by standard transformation arguments from fi-
nite element analysis, and we omit the proof. 0O

A.2. Trace inequalities. In this section we derive trace inequalities fowith constants
which depend solely on the regularity parameters of its\tyidation. First we consider a
single tetrahedrom with associated trace operatgr : H'(7) — H/?(d7).

LEMMA A.3. For a tetrahedronr from a regular triangulation and one of its faces,
we have the Dirichlet trace inequality

(A.6) \’yTu|H1N/2(f) < o |ulgir Yu € H'(T)
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with a trace constant’, > 0 which depends solely on the regularity parameters.
Proof. By a standard embedding argument, there exists a fixed ctnsta: 0 such that
for every facef of the unit tetrahedror\3, we have

(A.7) ‘7A3U|Hi/2(f) < ¢, ‘U|H1(A3) Yu € Hl(Ag)

with the trace operatoya, : H'(A3) — H'/?(dA3). Using the transformation relations
from LemmaA.2, we obtain

AL g5 -
rulgzgy < o / (dlam7)1/2|7A3“|Hi/2(f)

an

< cye o0z (diam7)1/2|ﬂ\H1(A3)

(A.5) 1/2 3/2

< eyey T ulp ). o

This result extends straightforwardly to the piecewisedi®bSlobodeckii seminorm on
the boundary of a polyhedral element.
LEMMA A.4. If the element” has a regular triangulation, then

(A8) |7Tu|Hi/p2w(8T) < QC; |u\H1(T> Yu € Hl(T)

Proof. We fixu € H'(T) and calculate
|’YTU| 1/2 >.(0T) Z ‘,‘YTfu‘ 1/2 — Z |U|H1(Tf)
fer fer

Since every tetrahedrory has four sides, every € = occurs at most four times in the
rightmost sum. Thus we may further estimate

|7Tu|i1i@,2w(0T = Z|U‘H1(T = 4(c ) |u‘H1(T) U

With this result we are able to prove the Neumann trace irlégussed in our error
estimates.

Proof of Theorem 4.10. On every boundary trianglg € F, there is a uniquely defined
and constant outwards unit normal vectgr € R* with |ns| = 1. On a single facg € F
lying on the tetrahedrom, by using the triangle inequality and then the Cauchy-Schwa
inequality, we get

3

[l aragpy = 1070 gl gasny = | 3oV

‘ 1/2
et HIZ(f)

3

3 1/2
Z|(nf)k| \(%VU)MHW < Inygl (kz:l| %V“)k‘i&”(‘f))

k=1

3 ou ‘2 1/2
=1 Vraxk HY2 () .

(%

With this we obtain that on the entire boundary,

7l or) = Z ey < 2 Z

feF k=1
- Z"Y 8&: ‘ /2

pr

IN

"t B oz, ’ 2(f

(AB) T\2 2
on = Z’&xk’Hl = 4()? |uldpipy. O
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A.3. An auxiliary harmonic extension norm. For our final approximation result, we
will make use of a more general version of the norm defined veaharmonic extension,
namely one which is defined on arbitrary parts of the surfades first requires a general-
ization of the harmonic extension operator. For any LipgcdomainD and some surface
component C 9D with positive measure, we define

Hy—.p : HY?(t) - HY(D) : u — argmin |l a1 (D)
$eH* (D)
¢>|t:U
The previously introduced harmonic extension operator beageen as a special case of this
definition: H; = Har,—1,. With this notation, we define a seminorm HH/2(t) given by

‘U|H1/2(t7D) = |Ht_>DU\H1(D) = inlf \¢|H1(D) Yu € Hl/z(t)-
et (D)
¢le=u
Again, this may be viewed as a generalization ofy1/29py = | * |g1/2(0p,p)-

It is of interest to know how this seminorm relates to the fesly introduced Sobolev-
Slobodeckii seminorm. For our purposes, the following $empsult will suffice.

LEMMA A.5. LetT € = be a tetrahedron from a regular triangulation, and IgtC o7
be one of its faces. For everye H'/%(f), we have
(A.9) ‘U|H£/2(f) < C‘U‘Huz(fﬂ.)

with a constanC' that depends solely on the regularity parameters.
Proof. Using the trace inequality for a regular tetrahedron frormh&aA.3, we get

(A.6)
|U|H1~/2(f) = |%'Hf_’7v|H1N/2(f) < C; |Hf_,7—1}‘H1(.,.) = C;|U|H1/2(f,-r)~ a

The following lemma gives some indication of the monotorébévior of the seminorm
|v| 1721, py With respect to changes #ror D.

LEMMA A.6. Let D’ ¢ D be Lipschitz domains and C ¢+ C 9D’ N 9D surface
components with positive measure. Then, for everyH'/2(t), we have

(A.10) Wlgi2e,0n < Vla120,0))
(A.11) 2w ,py < |vlE2e D)
Proof. We observe that
"Hi—pvlmpy < [Himpvlmpy < |[Hi—pv|a (),

where the first inequality holds because of the energy-maing property of the harmonic
extension. This proves the first statement.
Because of’ C t, itis clear that

{ue HY(D) : ulp =v} 2 {u€ HY (D) :u|; = v},

and thus the minimum that is attained over the left set is lem#dan that over the right one.
This proves the second statement. [0

We now return to the polyhedral eleméntForu e HS\A/,Q((’)T), we define the seminorm
|u‘§1;v/ﬁ(aT) = Z |u|ifl/2(f,7f)'
feF

If w € H'/2(0T), then by applying4.10) and (A.11) we immediately obtain
(A.12) lul 2oy < VNFulmreorr = VNFuliezer.
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A.4. Approximation properties. We now study approximation properties for piece-
wise constant boundary functions 0f". The final aim of this section is the proof of Theo-
rem4.9. We follow quite closely the approach by Steinba8f][

Recall theL,-projector @y, into the space of piecewise constant functidhson 0T
introduced in Sectiod.3. It is easy to see that the values of the projection are giyen b

(A.13) (Qnu)|; = Ifl/ )ds,  for f e F.

LEMMA A.7. Let= be a regular triangulation of and f € F a boundary face. For
u € H,iv/;"(aT), we have the error estimates

2c .
e = Qnulacry < 3= (i )2 ful e,

(A.14) llu — QhuHLz(OT) < C'(diam T)l/ ‘u|HL/lfw(8T)
with a constantC' which depends solely on the regularity parameters.
Proof. Because ofA4.13), we have

u(z) — Qru(x =T / y)ds, forze f.

Squaring this relation and using the Cauchy-Schwarz irldéyyéelds

[u(z) — Quu(z)” = |fl| ( /f fulz) — u(y)] d)

1 [U(l")—u( )] 3/2 2
Ry R

1
< |f|2/[ (m—y dsy/|x—y| ds,

jam f)? — 7_ ()] S
< (diam f) |f/f ey

Estimating| f| from below using the regularity conditioi(3) and integrating ovef proves
the first statement. The second statement follows by sumopnaver allf € F and using
thatdiam f < diam 7. a

With LemmaA.7, we can finally prove the approximation property used in auore
estimates using an Aubin-Nitsche duality argument.

Proof of Theorem 4.9. By the definition of the dual norm and of thg-projection@y,,
and per the Cauchy-Schwarz inequality, we have

(w — Qpw, v)LQ(aT)

H’LU - Qhw”H*I/?(aT) = sup
vEH/2(9T) ||U||H1/2(0T)
~ (W = Qrw, v — Qnv) L, (1)
vEH/2(9T) ||UHH1/2(6T)
v — QnvllL,or
< lw = Qrw|pyory  sup 20D)

vEH/2(OT) ||UHH1/2(6T)
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We estimatg|w — Qrw| 1, @7y using @.14). For||v — Qnv||L, o), We again useA.14)
and then estimate

v = QuvllLyom) < C(diamT)'/? 0l 12, o)

1/2 (a g 1/2
= (C (diamT)1/2 ( Z |v|121[1~/2(f)> < C (diamT)UQ ( Z 7)|2H1/2(f77.f))
feF ferF

(

A12)
= C (diamT)'/? \U|lew/2(6T) < C\/Ng (diamT)"/? 0] 172 o1y -

Since we assumed thafsx is a uniform, small bound on the number of boundary triangles
per element, we may subsume it into the generic con§tatombined, these estimates yield
the statement of Theoremo. ]
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