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Abstract

Soil is an essential source of ecosystem services such as food production and climate regulation. Soil information
is of fundamental importance for decision making on adequate land use planning and management and environmental
protection which is in fact the motivation behind soil surveys.  One of the majors concerns in soil science relies on the
fact that the conventional methods of soil analysis are too expensive and time-consuming, and soil legacy databases are
often not adequate for assessing and mapping the soil condition. In this sense, producing relevant soil information for
improving the current soil legacy databases is one of the big goals of soil sensing and digital soil mapping. Classical
sampling methods (e.g. simple random sampling, systematic sampling and stratified sampling) as well as the model-
based sampling strategy require a large number of samples to account for the spatial variation of environmental
variables. As sampling is constrained by financial resources, efficient sampling strategies are desirable. In this paper,
we are focusing on sampling design optimization based on Soil-Land Inference Model (SoLIM) with respect to
environmental covariates (soil and terrain attributes).
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1. Introduction

1.1. Soil Maps and Digital Soil Mapping (DSM)
Soil maps are used for many purposes. To

name a few examples, they are used in planning to
evaluate land allocation scenarios, in agronomy to
assess the suitability of the land for growing crops
or assess the faith of pollutants such as pesticides, in
ecology to develop nature conservation plans, and in
hydrology and climatology to describe the role of
the soil in the hydrological cycle [1].
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Since many years, national governments and
international organisations have therefore put much
effort in mapping the soil. Soil maps are also
increasingly used to derive spatially distributed soil
inputs to environmental and ecological process
models. For instance, soil maps provide important
information about physical, chemical and biological
soil properties needed by acidification and
groundwater flow models [1].

Digital soil mapping (DSM) is defined as the
creation and population of spatial soil information
systems by the use of field and laboratory
observational methods coupled with spatial and non-
spatial soil inference systems [2, 3]. Efficient
sampling designs play an important role in DSM
[4], as they have a significant impact on the
accuracy of the maps [5].
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Digital soil mapping does not just produce a
paper map; it is a dynamic process in which
geographically referenced databases are created at a
given spatial resolution.

A digital soil map is essentially a spatial
database of soil properties, based on a sample of
landscape at known locations.

Field sampling is used to determine spatial

distribution of soil properties, which are mostly
measured in the laboratory.

These data are then used to predict soil
properties in areas not sampled [3]. Digital soil
maps describe the uncertainties associated with such
predictions and, when based on longitudinal data,
can provide information on dynamic soil properties.
The process is summarized in fig. 1.

Figure 1. Digital soil mapping procedure [3]

1.2. Sampling design for soil mapping
Conventionally, soil sampling is carried out using different sampling designs. Common sampling

designs are: Grid sampling: A grid with suitable spacing is placed on a landscape to be studied. Sites can be
selected at intersections of the grid lines or within the grid cells. Grid sampling does provide equally spaced
observations and it reveals any systematic variation across the tract under study. The drawback in
geostatistical analysis is the equal distance between all sampling points. It should be noted that there is no
randomization associated with grid sampling, therefore, the assumptions underlying several statistical
analysis (e.g. ANOVA - analysis of variance) can not be fulfilled. Random sampling: Sample locations are
selected at random, with equal probabilities of selection and independently from each other. The rationale is
to exclude any form of bias, such as a conscious or even unconscious process of discriminatory selection on
parts of the individuals. The technique has advantages of being statistically sound and unbiased, however,
random samplings tend to cluster spatially (non-uniform density of observations per unit area and of
dispersion of sites over the delineations) and are not likely to detect and measure systematic variation.

Random stratified sampling: The area is first divided into a number of sub-regions, called strata, and
then random sampling is applied to each of the strata separately. The sample sizes in the strata may be
chosen such that the probabilities of the locations of being sampled differ between strata. Transects : Soil
samples are taken along straight lines across a landscape. The spacing between sampling points might be
equal, nested, or random. Transect sampling reveals spatial variability along a line (often downhills),
however, spatial variability in other directions is neglected.
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Target sampling: Two or more attributes (e.g.
topographic attributes such as slope, aspect, plan or
profile curvature) are used to identify homogeneous
and heterogeneous patterns. The goal is to identify
'representative sampling points'. This is a technique
which minimizes the effort (costs) and maximizes
the information content, on the assumption, that the
sampling points are representative for the total data
set (study area). It should be noted that there is no
randomization associated with target sampling,
therefore, the assumptions underlying several
statistical analysis (e.g. ANOVA - analysis of
variance) can not be fulfilled. Different sampling
approaches must be used depending on the
objectives, which are strongly influenced by scale.
Each experimental design has constraints and
strengths with regard to the analysis of data.

1.3. Effect of terrain characteristics on digital soil
survey and sampling
Creating detailed soil information is necessary to
meet the demands of ecological and environmental
management systems [6, 7, 8]. The scale at which
traditional soil surveys are created and the polygon
data model used is often incompatible with other
environmental data layers derived from digital
terrain analysis and remote sensing techniques [7].
In addition, the process of manually creating
conventional soil surveys is often a subjective one
because it relies on the visual identification of
landscape conditions through air photo
interpretation for delineating soil–landscape units.
Terrain characteristics, such as slope gradient, slope
aspect, profile curvature, contour curvature
computed from digital elevation model (DEM), are
among the key inputs to digital soil surveys based
on geographic information systems (GIS) (fig. 2).

The use of geographic information system
based soil-mapping applications can resolve these
limitations associated with traditional soil surveys
by producing digital soil information at very fine
scales, and by using an objective quantification of
the landscape to characterize the soil formative
environment [4]. In GIS-based soil-mapping
applications, raster-based digital elevation models
(DEM) are used to compute the terrain attributes,
such as slope gradient, slope aspect, profile and
contour curvature, which are required for
characterizing a generalized soil-formative
environment. Numerous authors have shown the
need of terrain attributes derived from DEM for
digital soil mapping [9, 10].

1.4. Soil-Land Inference Model (SoLIM)
Soil property maps generated from

conventional soil survey maps are no longer

sufficient because they often do not represent the
spatial variability of soil properties at the level of
detail needed for many applications.
Statistical/geostatistical methods have been used to
provide detail spatial variability of soil properties
[11, 12]. However, these techniques rely too heavily
on the assumption of linearity and stationarity. It is
unlikely that a direct linear relationship exists
between terrain attributes and soil property values;
in fact, the relationships between soil property
variation and underlying terrain variables can be
very complex [13]. The linearity and stationary
assumption and the data requirements of these
techniques present stiff challenges to their
application over large and diverse landscapes.

Classical sampling methods (e.g. simple
random sampling, systematic sampling and stratified
sampling) as well as the model-based sampling
strategy require a large number of samples to
account for the spatial variation of environmental
variables [14].

As sampling is constrained by financial
resources, efficient sampling strategies are desirable
[15]. Increasingly available geospatial information
(e.g. satellite imagery, geology maps, Digital
Elevation Models) can be exploited as
environmental covariates to optimize sampling
locations [15] within the framework of a soil-
landscape model [16, 17].

A number of recent papers [e.g. 14, 18]
demonstrated the value of purposive mapping based
on such covariates in producing more accurate
predictions by using fewer, but more representative
samples.

SoLIM, a soil land inference model, was
developed to address the limitations of conventional
soil survey [19]. The SoLIM approach employs
recent developments in geographic information
science (GISc), artificial intelligence (AI), and
information representation theory to overcome these
limitations. While the methods for deriving soils
data are new, the model has its foundations in the
soil factor equation of Dokuchaeiv [20] and Hilgard
[21] and the soil-landscape model described by
Hudson [22] which contend that if one knows the
relationship between a soil and its environment, one
can predict the occurrence of that soil in other areas
having the same environment. SoLIM uses a suite of
GIS and remote sensing techniques to characterize
environmental conditions and knowledge
acquisition techniques to extract and document soil
landscape relationships from local soil experts.
Environmental conditions are integrated with the
extracted soil-landscape relationships to infer the
spatial distribution of soil types under fuzzy logic.
Implementation of SoLIM is shown in fig. 3.
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Figure 2. Digital elevation model of Kouhin region, central Iran (Developed by authors)

Figure 3. Implementation of SoLIM [18]
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Data on soil formative environmental
conditions (E) can be derived using GIS techniques
(fig. 3). The variables used to characterize the soil-
formative environmental conditions are decided
based on the discussion between the person who
conducts the knowledge acquisition (knowledge
engineer) and the local soil expert(s). For a given
area the local soil expert would provide an initial list
of environmental variables to be considered. This
list is modified by the knowledge engineer based on
the data availability and the importance of the
variables impacting the pedogenesis in the study
area. Due to the data availability and difference in
pedogenesis over different areas, there is no fixed
list of environmental variables to be included. The

list varies from area to area. Common data layers
used to describe topography include elevation, slope
aspect, slope gradient, profile and planform
curvatures, upstream drainage area and wetness
index, distance to streams, and distance to ridges.
Bedrock and/or surficial geology data are necessary,
but often not available at the level of details (fig. 4).
The deficiency of geological data poses a major
problem (it is a problem for manual mapping, too).
Other data layers could include vegetation
information derived from remotely sensed data such
as LAI, tree canopy coverage, etc. It must be
pointed out that the sufficiency and quality of
environmental data layers will directly impact the
quality of computed similarity values.

Figure 4. Topographic Position Index of Kouhin region, central Iran (Developed by authors)

The soil-environmental relationships (f) are
approximated by the expertise of local soil scientists
[23]. The acquired soil-environmental relationships
can then be combined with data characterizing the
soil formative environment conditions to infer S’
under fuzzy logic [23, 24].

2. Conclusions

The aim of this study is to review the
application of the SoLIM methodology with respect
to environmental covariates  (soil and terrain

attributes) for sampling design optimization. Some
of conclusions can be summarized as follows:

- Sampling design optimization based on Soil-
Land Inference Model (SoLIM) is more efficient
and less costly than the traditional soil sampling.

- During the SoLIM process, soil-landscape
relationships are explicitly documented and stored
for future use.

- The initial digital nature of SoLIM saves
time and money that would otherwise be spent
converting analog products to digital products and
the high resolution raster dataset is more compatible
with other sources of environmental data.
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