
Scientific Research and Essays Vol. 6(8), pp. 1720-1731, 18 April, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE09.441
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

An optimization technique using hybrid GA-SA
algorithm for multi-objective scheduling problem

A. Norozi*, M. K. A. Ariffin, N. Ismail and F. Mustapha

Department of Mechanical and Manufacturing Engineering, Universiti Putra, Malaysia, 43400 UPM Serdang, Malaysia.

Accepted 3 December, 2010

A Mixed-model assembly line is widely employed to perform the assembly operation in industries and
the time needed to release products to market is frequently considered by many researchers. However,
providing an appropriate level of flexibility to meet customer demand variations is critical for
companies survival in this competitive market. The problem of production planning in terms of
sequencing various product model is studied here. A manufacturing system is presented to show the
application of this problem. A proposed multi-objective function is given to minimize the overall make-
span of a mixed-model assembly line, but with additional goals also considered, such as balancing the
assembly line and minimizing the variation of completion time. We propose a solution aimed to solve
the problem in successive stages. For each stage, a mathematical model formally describes the
problem and the main difficulties faced are explained. Due to the high complexity of problem solving
procedures by classical mathematic techniques, this paper presents a new approach of hybrid genetic
algorithm-simulated annealing (GA-SA) implementation in order to meet the problem objectives. A
proposed hybrid scheme is executed to overcome problem complexity and to meet the problem
objectives. In order to check the efficiency of hybrid search techniques, a comparison is made between
the results obtained by hybrid GA-SA and GA, and the comparison validates the effectiveness of the
presented hybrid search technique.

Key words: Genetic algorithm, hybrid GA-SA (genetic algorithm-simulated annealing), mixed-integer
programming, meta-heuristic algorithm.

INTRODUCTION

One of the most important issues for companies is to
release their products into the markets earlier than other
competitors to take more market share and stabilize the
company’s situation in the global competitive markets.
Creating more profit enhance the company’s survival
chance in the economic crisis period and improve the
flexibility to respond to key business issues. Quick
response manufacturing is an operation strategy which
helps companies to stand against today’s challenges in
the competitive markets by focusing and reducing the
time required to accomplish various manufacturing

*Corresponding author. E-mail: alireza.norozi.en@gmail.com.

Abbreviations: SDST, Sequence dependent setup time;
MOSS, multi objective scatter search; PCB, printed circuit
board; PCA, principal component analysis; PMX, partially
mapped crossover; GA-SA, genetic algorithm-simulated
annealing.

activities (Stevenson, 2005). The flexible assembly lines
provide special benefits for production and assembling
industries by providing more level of flexibility in
producing different types of product if it is well planned
(Rehg, 1994). They also make industries more efficient to
adjust the production requirements to the possible
demand changes (Sule, 1997). Mixed-model assembly
lines are kinds of manufacturing system that is
appropriate and quickly respond to the customer’s
variable demands. It can be measured as quick response
manufacturing of the category which is used to produce
different types of products without suffering from large
inventory costs. In recent years, with the emergence of
meta-heuristic algorithms, such as ant colony, tabu
search, genetic algorithm, simulated annealing, have
been employed to deal with scheduling problems. Many
meta-heuristic algorithms were applied to overcome the
complexity of mixed-model assembly lines problems.
Simaria and Vilarinho (2009) attempts to develop an
optimization algorithm for balancing two-sided assembly

lines which are usually used in the automobile industry,
more than one worker, are simultaneously working on the
two sides of jobs.

Kim et al. (1996) considered a new mixed-model
assembly line with hybrid workstations type and
sequence-dependent setup time. Their study focuses on
optimizing three objectives such as minimizing the overall
length of line, change over time and production rate
variation. A new Immune algorithm was introduced by
Zandieh et al. (2006) for scheduling a hybrid flow shop in
which there is sequence dependent setup time (SDST)
considerations within the problem. The actual data in real
world’s problems is not strictly predetermined and has
fuzzy nature of data. Sakawa and Kubota (2000) focused
on the job shop scheduling with fuzzy processing time
and fuzzy due date. Multi objective fuzzy job shop
scheduling problems are formulated were it aims to
maximize the minimum agreement index, average agree-
ment index and minimize the maximum fuzzy completion
time. For this purpose, a Genetic algorithm was
developed to meet the problem objectives. A new multi
objective scatter search (MOSS) approach was proposed
by Rahimi-Vahed et al. (2007) for sequencing problem in
mixed model assembly line in JIT environment. As the
entire objective functions are NP-hard, so obtaining the
optimum solution in reasonable amount of time is not
possible. Dynamic ideal point was proposed to overcome
this problem.

Gokcen and Erel (1997) attempted to develop a binary
integer programming model for balancing the mixed-
model version of the assembly problems by considering
the similarity of precedence relations between different
products. The suggested method could avoid rapid
increase in the number of decision variables within
integer programming model so it would be able to cope
with NP-hard nature of mixed-model assembly problems
with larger number of variables. Sekar (2007) survey was
done on the electronic industry which used printed circuit
board (PCB) for mounting electronic components. He
aimed to determine the required number of assembly line
by principle component analysis (PCA). A binary integer
programming model (IP) was proposed in previous
research that tried to minimize the make-span of mixed-
model assembly lines by optimizing the job allocation on
different lines and distributing tasks among workstations
using binary integer programming.

This paper presented an approach to address the job
allocation problem in high product mix shop floor area. A
mixed-integer programming model is presented to
formally describe the problem under study and the
massive required calculations which make it impossible
to be solved optimally. This paper is organized as follows:
general descriptions of meta-heuristic methods and the
importance of problem under study and the recent
achievement in optimization techniques are reviewed in
this section. Materials and methods focus on main
characteristics of mixed shop floor environment. The
proposed mathematical programming model for problem

Norozi 1721

under study is described to interpret the mathematical
equations. The complexity of problem under study is also
discussed to presents the combinatorial complexity of this
problem. In the next step, a proposed hybrid GA-SA
mechanism is explained to clarify the implemented hybrid
optimization framework. The obtained results of
numerical example with both hybrid GA-SA and GA are
illustrated in result section and the conclusion and future
research of this study is presented in the last section.

MATERIALS AND METHODS

The problem under study includes specific number of mixed-model
assembly lines in a shop floor environment where different types of
jobs can be processed and each line consist of manual work-
stations in which each assembly station is capable of serving task
of any jobs. Typically, a mixed model assembly line is equipped
with flexible workstations which are capable of producing variety of
product models similar in product characteristics, continuously and
concurrently (Groover, 2001). A workstation in any line should be
setup for the new materials requirement to be able to serve the new
set of products. Each line is equipped with certain number of
workstations. Each job consists of a number of tasks that should be
done at workstations and has its own initial setup time when it’s the
first job of the sequence. Change over time is required to change
the settings from one job to another in the same line. The following
assumptions were considered in this research: All the assembly
lines performed assembly operation independently and each
assembly line had its own work stations that are capable of serving
any type of models. After the job allocation, jobs were not allowed
to shift to other assembly lines. Task time was fixed and all tasks
were kept at the workstation, once started, until completion. All the
times involved in this model such as processing times, change over
time, initial setup time and task times are deterministic. Figure 1
show a diagram of problem under study and the engaged
parameters within the problem area.

Problem solving procedure

In order to meet the objectives for the considered problem, the
proposed solving procedure was composed of two successive
stages as follows:

(1) Assigning task to the workstations.
(2) Allocating jobs to the assembly line.

Mathematical model for task assignment

The integer programming model was developed by Sekar (2007) for
allocating tasks of a job between multiple workstations so that all
the workstations have utmost equal processing time. This model is
used for keeping the load balance between workstations which is
represented as follows:

 (1)

Subject to:

 (2)

1722 Sci. Res. Essays

Figure 1. Model diagram of mixed-shop floor and the engaged parameter.

 (3)

 (4)

 (5)

 (6)

 (7)

If a task of a job assign to

 is a set of tasks {q∈Q}

 is the set of jobs {i∈N}

 is the set of workstations {w ∈W}

 is he processing time for each task ‘q’ of job ‘i’

 is the processing time of wth station for ith job

This mathematical model is formulated by the task distribution

among workstations for all jobs by minimizing the value of
which represents the difference in process time among

workstations . This means all workstations have minimum

difference in process time for a job. denotes the process time

of W
th

 station for L
th

 job in the system. There are no precedence

relations between tasks as they can be served at any workstations.
Constraints (2) ensures that each task for a job should be assigned
to only one workstation on a line, and once a task is assigned to
any workstation, it cannot be reassigned to other workstations.
Constraint (3) guarantees that no workstation is left without task
assignment and at least one task of a job is assigned to a
workstation. Constraint (4) aims to dispense the tasks for all jobs to
the workstations without making any limitation for task assignment
between jobs. Constraint (5) gives the process time of each
workstation for every job by summing all the times of the assigned

task to that workstation. represents the difference in process
time among work stations for every single job. Constraint (6) aims
to compute the value of difference in process time at every work-

station for each job. Practically, the value of should be greater
than zero. Constraint (7) is used to ensure this objective.

Mathematical programming for job allocation

Each assembly line represents the kind of flow shop system and
the workstations representative of involved machines in the flow
shop system. Each assembly line acts as flow line system in which
the overall make-spam of system is determined by the longest
completion of line so minimizing the completion time of all lines
directly effect on overall make span of system. The proposed
mixed-integer programming model is built based on flow shop
model which is developed by Wagner (Pinedo, 2008) and it is
expanded to consider the effect of initial setup time and sequential
change over time for multiple lines. The mathematic formula is as
follows:

which is subject to:

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

 (15)

 (16)

 (17)

 (18)

 (19)

 (20)

 (21)

Where,

Norozi 1723

If job is the job in the sequence in line ,

 Ideal time on machine between the and

position in assembly line ,

 Waiting time of the job in the position in between

machine and in the assembly line,

 Number of workstations in assembly line,

 Number of jobs in flow shop system,

 Initial setup time for job in the position of job
sequence,

 Change over time between job and ,

 Total idle time at the last workstation for assembly line,

Total setup time for assembly line,

Completion time for assembly line,

Processing time at the last workstation of assembly
line,

Total absolute difference among completion time of assembly

line and the rest of lines,

Total absolute difference among process time of line and
rest of lines, m

Total Process time for job ,

Total process time of assembly line,

Number of jobs allocated to assembly line,

Number of assembly line,

Process time of job at workstation , and

Process time of job at workstation

The first term of objective function attempts to minimize the overall
make-span of this system is by minimizing the longest completion
time of lines. The second term of objective function attempts to
balance workload among all assembly lines by considering all jobs’
process time for every single job. Minimizing the absolute value of
total differences in process time of all assembly lines is the
procedure that is used for achieving this goal. The third term of
objective is used to minimize the variation of completion time
among all assembly lines that has almost finishing time.

Constraint explanation

Minimizing the make span time in (Fm/Permu/Cmax) is associated
with minimizing the total idle time on the last workstation. The
second set of Equation (8) is used to obtain the minimum total idle
time at the last workstation for every single assembly line. Equation
(9) calculates the total setup time by summing the initial setup time
and the change over time between the different jobs in sequence

for each assembly line. demonstrates the initial setup time for

job in the k
th

 sequence. It is obvious that initial setup time, only

for the first job of sequence has positive value and zero for the rest

jobs. Sik =0; K=2,…,n-1. There are jobs in this system and

each line processes number of jobs. Equation (10) determines
the processing time at the last workstation for every assembly line.
Generally in the simple flow shop system, the completion time is
achieved by summing the process time and idle time on the last
workstation of the corresponding line. Equation (11) calculates the
total completion time for every single assembly line by adding job’s
initial setup time and change over time to the flow time of the
corresponding line. Equation (12) is used to determine the total
absolute difference of completion times for assembly lines. The

1724 Sci. Res. Essays

Figure 2. Problem solving procedure by meta-heuristic algorithm.

second term of objective function aims to balance the assembly
lines by distributing jobs among multiple lines in which all the lines
have utmost equal process time. Equation (13) helps to find the
difference in total process time for multiple lines by computing the
absolute difference in total process time for lines. Equation (14) is
used to attain the process time for every single line which is
determined by summing all the jobs allocated to the assembly

lines. denotes the total process time of L
th

 assembly.

The total process time for every single assembly line is attained
by summing the process times of all the jobs allocated to that
assembly line. Constraint (15) is used to dedicate all jobs to the
available positions in which each job is placed at the unique
position of that assembly line. Constraint (16) ensures that each job
can be placed in only one of the available positions of sequence for
each assembly line. Constraint (17) ensures that from all the
available positions in the system, each job must be processed in
only one of all available positions of sequences. The last set of
constraints (18) show the inevitable relation between the idle time
and waiting time in each assembly line. It represents the logical
concept of variables involved in flow shop system. Equation (19)
reveals that the waiting time for the first job in a sequence is always
equal to zero for any assembly line. Equation (20) shows that the
first workstation is always ready to process the first job of a
sequence in any assembly line. Equation (21) illustrates that the
initial setup time is only considered for the first job of sequence and

zero for the rest jobs.

Combinatorial complexity for job allocation problem

In this problem, the total number of permutations for task
assignment can be computed as follows:

 (22)

 represents the total number of assembly stations and kwc

shows the number of tasks assigned to the W
th

 workstation in C
th

task assignment configuration. Nct represents all the configurations
of task assignment to the workstation so the total permutations of
all tasks are obtained by summing the task permutations for all
configurations. In the job allocation problem, the total number of
permutations for job allocation way can be computed as follows:

 (23)

Where, Nc denotes a set of possible configurations of job allocation

to the assembly lines and N represents the number of jobs in the
system. It should be noted that the total permutations for this
problem is obtained by summing the permutation for all possible
configurations of job allocation. So, in order to solve the problems

by mathematical methods, different values of input parameters kl
for different configurations of job allocation should be formulated. In
this case, each set of equations only represents a specific con-
figuration of job allocation. In order to check all the configurations of
job allocation, the proposed model should be formulated for several
times and it requires huge amount of mathematical calculations and
modeling which is quite time consuming and inefficient. Thus,
problem with larger number of variables usually cannot be solved
within a reasonable amount of time. The main objective of this
research is to provide an evolutionary-based solving procedure to
overcome the mathematical techniques limitations and find the
solutions in an efficient way.

Meta-heuristic algorithm

The solving procedure starts by finding the best task allocation in
which it balances the workstations. Allocating tasks to the
workstations which minimizes the total time difference between
work stations is the purpose of the GA-1. It gives the workload for
every single job at each workstation which is required to compute
the make-span for each line. In next stage, hybrid GA-SA tries to
allocate jobs to the assembly lines in order to minimize the multi
objective functions for the considered problem. Assigning jobs to
the assembly lines can be done in different configuration of job
allocation. So, in order to find the best solution for this problem,
hybrid GA-SA should run for all possible job allocation
configurations. The entire solving procedure by meta-heuristic
methods is shown in Figure 2.

Genetic algorithm for task assignment problem (GA-1)

Fitness function is used to evaluate the generated chromosomes to
measure the optimality of solutions. The chromosome is a string of

length (number of tasks for job j) that corresponds to the

Figure 3. Chromosome of task for a job.

number of tasks assign to station in the configuration.
Figure 3 show a chromosome of tasks and also show how they are
assigned to the workstations. A fitness function for task assignment
problem is shown in Equation (24) where the main objective
focuses on minimizing the absolute value of total differences in
processing time among all possible workstations. The best value of

 can be achieved while all stations are fully balanced so, in that
case the objective is 100% met and while the absolute value of total

difference in processing times increases, tends to zero. In order
to guaranty the best task allocation, all possible configurations of
task allocation is required to be checked and minimum value of
unbalanced time is selected as best tasks allocation configuration
for that particular job. Controlling the balancing parameter for this
problem is computed by the proposed fitness function which is
given by

 (24)

Where Tjw is the total process time for a job j on the W

th

workstation given by

 (25)

Where,

is the processing time of task in sequence of job ,

 is the total number of tasks required to complete a job,

 is a set of possible configurations for task assignment to
workstations, and

 is the number of jobs assigned to the workstation in

 configuration.

Hybrid GA-SA algorithm for job allocation problem

Genetic algorithm and simulated annealing are categorized as
global search heuristics techniques which are able to tackle the
complexity of large size problems by finding near optimal solutions.
SA evolution mechanism perform based on iterative process of
modifying and examining in the neighborhood of current solution
(local search) while GA handles set of potential solutions which are
based on retaining and transferring the useful information during
the generations (Wang and Zheng, 2001). The hybrid approach

Norozi 1725

combines both advantages of GA for global searches and the
advantage of SA for local ones by using the respective advantages
(Oysu and Bingul, 2009). An effective combination of GA and SA,
hybrid GA-SA is developed to solve the scheduling problem.

A chromosome of job is generated in a predetermined number of
population and the cost evaluation for each chromosome is done in
the next step. A proportion of the existing population is selected
through a fitness-based process in each generation which is more
likely to produce better solutions for the next generation. The next
step is to generate a second generation of solutions from those
selected through genetic operators. For this means, some
chromosomes are randomly selected for reproduction operation. In
order to distract the algorithm from reaching the premature
convergence, mutation is randomly applied on few chromosomes.
The best individual in each generation is selected for neighborhood
search by SA. The neighborhood search is executed within the job
chromosomes to increase the quality of obtained solution. When
the simulated algorithm finishes, the enhanced chromosome is
copied to the population for further evolution through exploring
other potential solutions. This process will be continued until the
stopping criteria are met. The proposed hybrid GA-SA is shown in
Figure 4.

Generally, the appropriate fitness function closely associates with
mathematical objective function which is capable of computing the
cost for each chromosome quickly. As can be seen from Figure 5,

the chromosome is a string of length N where Klc; l=1,2,…,L

represents the number of jobs assigns to the L
th

 assembly line in

the C
th

 configuration so for finding optimum solution to this

problem, different configuration of fitness function computing should
be done. Total objective value is computed by summing the value
of make-span time, process time difference and completion time
difference. The proposed fitness function is given by

 (26)

Where,

 (27)

 (28)

 (29)

Initial population

The population in both GA-1 and hybrid GA-SA are fixed during all
generations and it is determined base on complexity of the
problems to provide required diversity for initial population. The
population size for GA-1 is set to 30 in each generation. The

complexity of job allocation problem is increasing by order. So
a larger population is required to provide more diversity of potential
solutions and discourages premature convergence to local
optimums. The population size for hybrid algorithm is set to 80
which are fixed in each generation. Total number of generation is
used as a stopping criterion for both GA-1 and hybrid GA-SA
programs. GA-1 is terminated when it reaches 100 generations and
the genetic part of hybrid heuristic requires more iteration to obtain

1726 Sci. Res. Essays

Figure 4. Hybrid GA-SA algorithm.

Figure 5. A Chromosome of jobs.

the potential solutions, so the algorithm terminates at 300
generations.

Tournament selection

Tournament selection is a very popular strategy that aims to imitate
natural competition of specious (Michalewicz, 1996). The tourna-
ment selection works in a way that two individuals are randomly
selected from the mating pool. The individual with the highest
fitness value is selected as the winner of the tournament and the
selection process continues by selecting a new tournament group
randomly until all the individuals are selected. Finally, the winner of
each competition is copied to the worst chromosomes (Eiben and
Smith, 2003).

Crossover

Crossover is a genetic operator that combines sets of information
from different chromosomes and generates new offspring to

capture both individual’s information (Ariffin et al., 2004). It is
probable that superior parents may produce better offspring.
Partially Mapped Crossover (PMX) is employed as crossover
operator in both GA-1 and hybrid GA-SA algorithms while GA-1
attempts to find the best task distribution whereas hybrid GA-SA
aims to find the best sequence of jobs within each line. The
crossover rate is set based on the initial population size for each
program in order to increase the algorithm efficiency. Meanwhile, a
population size of 30 with an 80% crossover rate is applied for GA-
1. For the hybrid GA-SA algorithm, a 50% crossover rate is
considered appropriate, which is able to find a good solution in a
reasonable amount of time (Grefenstette, 1986). Meanwhile,
population size of 30 with 80% crossover rate is applied for (GA-1).
For hybrid GA-SA algorithm, 50% crossover rate is considered
appropriate which is able to find good solution in a reasonable
amount of time (Grefenstette, 1986).

Mutation

Mutation operator aims to provide a means to prevent algorithm

 Norozi 1727

Table 1. All configurations of task assignment to the two workstations for seven tasks.

Configuration Number of tasks assigned to W1 Number of tasks assigned to W2

 K1c K2c = Q – K1c

1 4 3

2 5 2

3 6 1

Table 2. Different configurations of Job allocation to the lines.

Number of jobs assigned to Line 1 Number of jobs assigned to Line 2 Number of jobs assigned to Line 3

K1c K2c K3c = N – K1c – K2c

from rapid convergence or premature convergence and drive
algorithm to search for further feasible problem space to escape
from local optimum, this means swap mutation is elected as
mutation operator. The Mutation probability is set to 0.02 in both
GA-1 and genetic programming of hybrid algorithms which is a
typical value for Genetic algorithm (Leu et al., 1994).

Neighborhood search

In hybrid algorithm, the best obtained solution in each genetic
algorithm generation is transferred to SA in order to improve the
quality of solution through neighborhood search to produce a
solution close to the current solution in search space, by randomly
swapping the positions of two elements in a chromosome. Thus, a
new solution is produced (Leung et al., 2001).

Cooling scheduling

In simulated annealing algorithm, worse moves might be accepted
based on current temperature to avoid algorithm to stick in a local
optimum and the acceptance probability for worse moves,
decreasing as the algorithm proceeds to the freezing point. The
exponential cooling scheduling is shown as an appropriate
performance in simulated annealing algorithm as it’s able to com-
promise between fast schedule and also the ability to reach lower
energy state (Wang and Zheng, 2001). The exponential cooling

schedule is given by where is the
temperature decrease rate. The initial experiment was demon-
strated to us that the initial temperature of 30 is suitable to explore
the potential solutions by neighborhood movement. Freezing point
is set at 1 and the temperature is decreasing by factor of 0.05

.

Elitism

Elitism is usually used to prevent the loss of the current fittest
member of the population due to crossover or mutation operators or
neighborhood search and keep the best solution through the entire
hybrid search process (Haupt and Haupt, 1998).

RESULTS AND DISCUSSION

In this paper a numerical example is used to verify the
efficiency of a proposed hybrid algorithm by comparing

the obtained result by a simple genetic algorithm. The
experiment is carried out on one set of problem tests
(Sekar, 2007). The first step of the proposed procedure is
to compute the best task assignment for every single job.
Hybrid GA-SA attempts to determine the best job
allocation configuration and the optimum sequence of
assigned jobs to each line that meet all the considered
objectives in the problem. The total number of the jobs in
the system is thirteen with maximum seven tasks per job.
Three assembly lines are selected to process thirteen
jobs and each line equipped with two workstations.
Several configurations of task assignment and job
allocation in both problems are available. The GA-1 starts
from first job and attempts to assign tasks to the
workstations. All possible configurations for task assign-
ment are displayed in Tables 1 and 2. For example the
first configuration illustrates that four tasks are assigned
to the first workstation and the rest of three are assigned
to the second workstation.

Example: mK1=5,K2=5,K3=3 represents that 5, 5 and 3
jobs are allocated to the line1, 2 and 3 respectively. By
this means fourteen different configurations of job
allocation are available for thirteen jobs and three lines so
each configuration is considered as a new problem which
is solved by hybrid GA-SA.

Input data in numerical example

The hybrid GA-SA algorithm and simulated annealing are
coded in MATLAB 7.1 and run on a 1.66 GHz core2 CPU
computer. The data used in this research are represents
in the following tables. Task time for every single job is
shown in Table 3. Table 4 includes the initial setup time
and change over time matrix for all involved jobs.

Table 5 illustrates the task assignment to workstations
that is obtained at the end of the first stage. The first
column represents the number of jobs in the system. The
second and third columns show the workload of each
workstation for each job. The workload difference
between two workstations for each job is shown in the

1728 Sci. Res. Essays

Table 3. GA-1, Input: Task processing times.

Jobs\Tasks 1 2 3 4 5 6 7 Process time

job 1 12.3 35.53 34.85 4.78 6.15 19.13 16.4 129

job 2 22.95 11.05 0 5.95 7.65 11.9 13.6 73

job 3 15.15 65.65 28.62 11.78 30.3 70.7 26.93 249

job 4 12.6 9.1 17.85 4.9 3.15 4.9 8.4 61

job 5 22.8 82.33 43.07 35.47 22.8 0 40.53 247

job 6 56.7 27.3 35.7 44.1 18.9 58.8 33.6 275

job 7 37.8 81.9 35.7 29.4 18.9 58.8 0 263

job 8 30.6 22.1 28.9 17.85 7.65 0 27.2 134

job 9 11.25 27.08 14.17 11.67 7.5 5.83 10 88

job 10 58.95 56.77 111.35 15.28 39.3 61.13 34.93 378

job 11 34.2 49.4 21.53 35.47 22.8 35.47 10.13 209

job 12 27.45 39.65 34.57 21.35 18.3 42.7 24.4 208

job 13 36.45 35.1 45.9 28.35 12.15 37.8 10.8 207

Table 4. GA-SA Input: Initial setup time and change over time of Jobs.

Job/Job j 1 j 2 J 3 j4 j5 j 6 j 7 j 8 j 9 j 10 j 11 j 12 j13 Initial setup time

j 1 0 10 9 8 10 11 12 11 9 7 13 5 14 25

j 2 10 0 12 16 17 8 6 15 13 7 10 9 16 30

j 3 9 12 0 19 7 16 12 14 13 18 19 20 12 32

j 4 8 16 19 0 13 18 11 8 19 16 11 7 5 22

j 5 10 17 7 13 0 17 15 20 12 19 13 16 8 35

j 6 11 8 16 18 17 0 9 10 8 6 10 11 17 33

j 7 12 6 12 11 15 9 0 6 15 13 12 10 19 35

j 8 11 15 14 8 20 10 6 0 5 16 11 18 10 39

j 9 9 13 13 19 12 8 15 5 0 14 14 5 7 33

j 10 7 7 18 16 19 6 13 16 14 0 11 13 9 29

j 11 13 10 19 11 13 10 12 11 14 11 0 6 14 37

j12 5 9 20 7 16 11 10 18 5 13 6 0 6 28

j 13 14 16 12 5 8 17 19 10 7 9 14 6 0 36

Table 5. GA-1 output: Workload for every single job at workstations.

Job
Workload at

workstation 1
Workload at

workstation 2
Unbalanced

time

Task distribution

Workstation 1 Workstation 2

1 64.91 64.23 0.68 6 5 3 4 1 7 2

2 36.55 36.55 0 6 4 5 2 1 3 7

3 124.56 124.57 0.01 1 6 4 7 2 3 5

4 30.45 30.47 0.02 7 4 6 5 2 3 1

5 124.14 122.86 1.28 1 5 4 3 6 7 2

6 136.5 138.6 2.1 1 7 5 2 6 3 4

7 132.3 130.2 2.1 6 7 1 3 5 2 4

8 67.15 67.15 0 5 3 1 6 4 7 2

9 43.34 44.16 0.82 7 3 4 5 1 6 2

10 189.95 187.76 2.19 5 2 7 1 3 4 6

11 103.87 105.13 1.26 5 7 6 4 3 1 2

12 103.7 104.72 1.02 5 2 4 7 1 6 3

13 103.95 102.6 1.35 5 7 3 2 6 4 1

Norozi 1729

Table 6. Job allocation results for all configurations of job allocation.

Configuration of
job allocation

Make-span
Process time

difference
Completion time

difference
Total objective

Objective
difference

Hybrid GA Hybrid GA Hybrid GA Hybrid GA [Hybrid – GA]

K1 = 11, k2 =1, k3 = 1153.32 1153.32 3186 3186 1690.44 1690.44 6029.76 6029.76 0

K1 = 10, k2 =2, k3 = 1015.8 1015.8 2454 2454 1218.18 1218.18 4687.98 4687.98 0

K1 = 9, k2 =2, k3 = 882.92 883.52 1636 1636 863.04 864.24 3381.96 3383.8 1.84

K1 = 9, k2 =3, k3 = 884.92 884.34 1956 1956 956.42 955.26 3797.34 3795.6 -1.74

K1 = 8, k2 =3, k3 = 730.74 730.39 912 912 355.06 354.36 1997.8 1996.7 -1.1

K1 = 8, k2 =4, k3 = 730.39 733.04 1462 1462 647.36 652.66 2839.75 2847.7 7.95

K1 = 7, k2 =3, k3 = 649.17 649.17 230 230 108.4 108.4 987.57 987.57 0

K1 = 7, k2 =4, k3 = 663.02 666.82 572 572 219.62 227.22 1454.64 1466 11.36

K1 = 7, k2 =5, k3 = 734.15 664.8 1390 1390 654.88 654.88 2779.03 2779.03 0

K1 = 6, k2 =5, k3 = 649.17 649.17 44 36 4.5 27.48 697.67 712.65 14.98

K1 = 6, k2 =5, k3 = 656.41 655.97 576 588 206.4 205.52 1438.81 1449.5 10.69

K1 = 6, k2 =6, k3 = 734.81 740.06 1390 1388 656.2 666.7 2781.01 2794 .8 13.79

K1 = 5, k2 =4, k3 = 654.37 654.37 10 10 30.48 30.48 694.85 694.85 0

K1 = 5, k2 =5, k3 = 656.48 656.48 24 24 6.46 6.46 686.94 686.94 0

Figure 6. Total objective difference between hybrid algorithm and Genetic algorithm.

fourth column which is inevitable for some jobs. Finally
the fifth column illustrates the task distribution between
workstations. The process time for every single job at
both workstations obtained by GA-1 is used as an input
for hybrid GA-SA for computing the final completion time
of assembly lines. The obtained results for all
configurations of job allocation with both hybrid GA-SA
and Genetic Algorithm for all the individual sub-objectives
are shown in Table 6. Figure 6 represents a total
objective comparison between hybrid GA-SA and GA,
which reveals that the hybrid algorithm provides superior
performance to GA as it reaches better solutions in most
of the configurations of job allocation. By comparing the
total objective values between all configurations of job
allocation, the minimum value of total objective function is
achieved in k1=5, k2=5, and k3=3 as both hybrid GA-SA
and GA reach the same solution in all objectives. Table 7
reveals the job sequence in each line that provides an

optimum solution in which all lines have almost the same
make-span and completion times. As can be seen from
Table 7, the longest completion time determines the
overall make-span of the system. The maximum
difference between all completion times is only 3.23 time
units (t.u), which clearly shows that all lines have almost
the same completion time. The maximum difference
between total process times in each line is 12 t.u, which
reveals that all lines are closely balanced. A comparison
between all configurations of job allocation for all
objectives is shown in Figure 7. The comparison of
obtained results revealed that the hybrid GA-SA
algorithm produced relatively better results than the GA.

Conclusion

In this paper, a hybrid GA-SA procedure is applied to

1730 Sci. Res. Essays

Table 7. GA-SA Output: Best Job sequence is obtained by K1 = 5, k2 =5, k3 = 3.

Line Line 1 Line 2 Line 3 M B C Objective

Completion time 656.48 653.25 654.88 656.48 6.46

Process time 841 846 834 24 686.94

Job sequence 1 9 4 6 12 8 5 2 1 7 10 13 3

Figure 7. Total objective comparison for all configurations of job allocation.

tackle the complexity of sequencing problems in parallel
mixed-model assembly lines. For solving such problems
by mathematical methods, the proposed mixed-integer
model should be formulated for several configurations of
job allocations, which is quite time consuming and
inefficient. A hybrid GA-SA is implemented to overcome
the massive search space needed for optimizing the
multi-objective function. The solving procedure starts by
finding the best task allocation based on the processing
time of the tasks that balance the workstations by simple
GA-1. Allocating tasks to the workstations to minimize the
total time difference between workstations is the purpose
of the GA-1. In the next stage, hybrid GA-SA attempts to
allocate jobs to the assembly lines in order to minimize
the multi-objective functions. In order to check the
efficiency of the proposed search algorithm, a genetic
algorithm is also applied and the obtained results from
both meta-heuristic methods are compared. The compa-
risons with the single GA and hybrid GA-SA approaches
prove that the hybrid approach can result in more
satisfactory results.
 However, future work should implement a systematic
solving procedure for a larger number of configurations of
job allocation. In such problems with additional input
parameters, more configurations of job allocation would

be available so that a systematic and intelligent solving
procedure could be developed to tackle the problem with
higher degrees of complexity.

REFERENCES

Eiben AE, Smith JE (2003). Introduction to evolutionary computing.

springer.
Gokcen H, Erel E (1997). A goal programming approach to mixed-

model assembly line balancing problem. Int. J. Product. Econ.. 48(2):
177-185.

Grefenstette JJ (1986). Optimization of control parameters for genetic
algorithms. IEEE Transactions on Systems, Man and Cybernetics,
16(1): 122-128.

Groover MP (2001). Automation, production systems, and computer-
integrated manufacturing. London : Prentice Hall ; Prentice-Hall
International, Upper Saddle River, N.J., xv, p. 856.

Haupt RL, Haupt SE (1998). Practical genetic algorithms. Wiley New
York.

Kim YK, Hyun CJ, Kim Y (1996). Sequencing in mixed model assembly
lines: A genetic algorithm approach. Comput. Operat. Res., 23(12):
1131-1145.

Leu YY, Matheson LA, Rees LP (1994). Assembly Line Balancing Using
Genetic Algorithms with Heuristic-Generated Initial Populations and
Multiple Evaluation Criteria*. Decision Sci., 25(4): 581-606.

Leung TW, Yung CH, Troutt MD (2001). Applications of genetic search
and simulated annealing to the two-dimensional non-guillotine cutting
stock problem. Comput. Ind. Eng., 40(3): 201-214.

Michalewicz Z (1996). Genetic algorithms+ data structures= evolution

programs. Springer.
Mohd Ariffin MKA, Sims ND, Worden K (2004). Genetic optimization of

machine tool paths. Adaptive computing in design and manufacturing
VI, pp. 125-135.

Oysu C, Bingul Z (2009). Application of heuristic and hybrid-GASA
algorithms to tool-path optimization problem for minimizing airtime
during machining. Eng. Appl. Artif. Intel., 22(3): 389-396.

Pinedo ML (2008). Scheduling: theory, algorithms and systems.
Springer.

Rahimi-Vahed AR, Rabbani M, Tavakkoli-Moghaddam R, Torabi SA,
Jolai F (2007). A multi-objective scatter search for a mixed-model
assembly line sequencing problem. Adv. Eng. Inf., 21(1): 85-99.

Rehg JA (1994). Computer-integrated manufacturing. Prentice Hall.
Sakawa M, Kubota R (2000). Fuzzy programming for multiobjective job

shop scheduling with fuzzy processing time and fuzzy duedate
through genetic algorithms. Europ. J. Operat. Res., 120(2): 393-407.

Norozi 1731

Sekar V (2007). Minimizing the make-span in a high-product mix shop-

floor using integer programming. M.S. Thesis, State University of
New York at Binghamton, United States -- New York.

Simaria AS, Vilarinho PM (2009). 2-ANTBAL: An ant colony
optimisation algorithm for balancing two-sided assembly lines.
Comput. Industr. Eng., 56(2): 489-506.

Stevenson William J (2005). Operation Management. McGraw-Hill
international edition, p. 38.

Sule DR (1997). Industrial scheduling. PWS Pub. Co Boston.
Wang L, Zheng DZ (2001). An effective hybrid optimization strategy for

job-shop scheduling problems. Comput. Operat. Res.,28(6): 585-596.
Zandieh M, Fatemi Ghomi SMT, Moattar Husseini SM (2006). An

immune algorithm approach to hybrid flow shops scheduling with
sequence-dependent setup times. Appl. Math. Comput., 180(1): 111-
127.

