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Despite the larger performance and higher throughput compared to transmission control protocol (TCP) 
Reno, TCP Vegas still has a few obstacles to be deployed in new networks, such as 4G LTE systems 
(4th Generation, Long term evolution). One of these obstacles is the Vegas congestion control that is 
not used in all available bandwidth capacity of the network path and which causes minimization in 
packet quantity transferred from source to destination. However, many researches have shown unfair 
treatment of TCP Vegas connections when they compete with Reno connections. So, Vegas need more 
developments and more modifications to be efficient over bidirectional links with unbalanced traffic, 
and on wireless links. TCP-Vegas is a congestion control algorithm that reduces queuing and packet 
loss, and thus reduces latency and increases overall throughput, by carefully matching the sending rate 
to the rate at which packets are successfully being drained by the network. This paper presents results 
from a series of simulation experiments designed to study TCP Vegas performance in LTE network 
model using NS-2 network simulator. The characterization and analysis of Vegas behavior performed 
using the main two parameters, alpha and beta, to configure the congestion window (cwnd) phases. 
After used multiple values, the configuration results show that TCP Vegas perform better than TCP 
Reno. 
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INTRODUCTION 
 
TCP Vegas is a modification of TCP Reno introduced by 
Brakmo and Peterson (1994). Vegas employs three 
techniques to increase throughput and decreases the 
packet loss, which are new retransmission mechanism, a 
congestion avoidance mechanism and a modified slow-
start mechanism. TCP-Vegas is a proactive congestion 
control mechanism proposed to improve TCP 
performance by using round trip time (RTT) as a main 
parameter to monitor traffic condition and avoid 
congestion (Hong et al., 2006). TCP-Vegas detects 
congestion at an incipient stage based on increasing RTT  
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values of the packets in the connection unlike other 
flavors like Reno, which detect congestion only after it 
has actually happened via packet drops. The algorithm 
depends heavily on accurate calculation of the base RTT 
value. 

 In more detail, Vegas adopts a more sophisticated 
bandwidth estimation scheme because it uses the 
difference between expected and actual flow rates to 
estimate the available bandwidth in the network (Zhang 
and Bian, 2002; Sing and Soh, 2005). The idea is that 
when the network is not congested, the actual flow rate 
will be close to the expected flow rate. Otherwise, the 
actual flow rate will be smaller than the expected flow 
rate, and Vegas using this difference in flow rates to 
estimate the congestion level in the network and  updates  
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Figure 1. Phases and parameters effect of TCP Vegas.  

  
 
 

the window size accordingly. To adjust the size of the 
cwnd appropriately, Vegas uses two threshold values, α 
and β to control the adjustment of cwnd at the source 
host as follow: During the congestion avoidance phase, 
Vegas sender does (Tsang and Chang, 2001): 
 
cwnd = cwnd + 1    if Diff < (α/baseRTT) 
cwnd = cwnd    if (α/baseRTT) ≤ Diff ≤ (β/baseRTT) 
cwnd = cwnd – 1    if (β/baseRTT) < Diff 
 
Where:  
Diff = expected rate – actual rate ≥ 0, by definition 
Expected rate = data in transit/base RTT 
Base RTT = the minimum of all measured RTT's 
Actual rate = (next send sequence number – segment 
timed)/average RTT, 
RTT = observed or actual round trip time (in seconds), 
α, β = some constant thresholds. 
 
In other words, Vegas increases cwnd by one packet if 
the per-flow queue at a bottleneck link is smaller than α, 
decreases cwnd by one packet if the per-flow queue is 
larger than β, and keeps cwnd unchanged otherwise 
(Podlesny and Williamson, 2010). Conceptually, Vegas 
tries to keep at last α packets but no more than β packets 
queued in the network. Thus, with only one Vegas 
connection, the window size of Vegas converges to a 
point that lies between (window + α) and (window + β) 
where window is the maximum window size that does not 
cause any queuing (Feng et al., 2003). Figure 1, shows 
the effects of different parameters on the behavior of 
Vegas throughput, where α and β represents the main 
controller to slow-start phase and congestion avoidance 
phase. It also shows how to control the throughput value 
for reducing the difference and contrast between the 
expected and the actual throughput. 

Selecting α and β holds an implicit tradeoff between 
network utilization Good put, and fairness. By using the 
default setting for those parameters, that is, α and β, prior 
research inadvertently favored some other TCP variants 
over Vegas. The main aim of congestion avoidance 
algorithm of TCP Vegas is to measure and control the 
extra packets in the network. So, the congestion 
avoidance provides a monitoring to the changes in 
sending rate and to RTT's to predict congestion before 
losses occur. If we suppose that Vegas and Reno share 
a bottleneck link, Reno uses up most of the router buffer 
space. Vegas, interpret this as a sign of congestion, and 
will decrease the congestion window, which leads to an 
unfair share of bandwidth for Vegas. 

Furthermore, when the router buffer size is large, the 
average of window size of Reno connections will be 
large, while the window size of Vegas connections will 
remain unchanged, as it does not inflate the window size 
larger than β.  

Similar to Reno, Vegas uses a slow-start mechanism 
that allows a connection to quickly ramp up to the 
available bandwidth, but unlike Reno, to ensure that the 
sending rate will not increase too fast to congest the 
network during the slow start, Vegas doubles its 
congestion window size only every other RTT, and 
calculates the difference between the flow rates (Diff). 
Since Vegas estimates the baseRTT to compute the 
expected flow rate and adjust congestion window size, it 
is important to get an accurate baseRTT. Sometimes the 
sender may reduce its window size and it may cause 
inefficient throughput. In short, while Vegas assumes that 
packet delay or loss is due to congestion, in wireless 
networks, packet delays can also be due to changes in 
configuration of user equipment connected to the 
network. In this paper, a study of TCP Vegas is done and 
some features  are  simulated  using  the  NS-2  simulator  
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Figure 2. Simple LTE representation. 

  
 
 

depending on change some parameters of Vegas 
algorithm congestion window over a model of LTE 
network and the results were discussed. The main 
objective of this research is to reach the most suitable 
model with best possible performance obtained from 
using TCP Vegas on LTE network.  

The remainder of the paper is organized as follow. 
Subsequently, we describe the possibility and problems 
of implementation of Vegas using NS-2. The proposed 
network simulation model developed for this research 
was explained. Then, we illustrate the obtained results 
and analyze the effects of the parameters variances into 
the system. Further we present our conclusions and 
plans for future work. 
 
 
TCP-VEGAS IMPLEMENTATION IN NS-2 

 
In our research, we use NS-2 simulator, an object-oriented discrete 
event simulator targeted at networking research. It is developed at 
University of California and is written in C++ and Otcl. NS-2 
supports a wide variety of network protocols offering simulation 
results for wired and wireless networks alike. NS-2 is a discrete 
event simulator targeted at networking research. NS-2 provides 
substantial support for simulation of TCP, routing, and multicast 
protocols over wired and wireless (local and satellite) networks 
(Network Simulator NS-2, 2006). In our research, we used NS-2 
version 2.34. This version can be installed over Windows XP by 
using Cygwin, where Cygwin provides a Linux-like environment 
under Windows. 

The tcp_vegas_alpha and tcp_vegas_beta entries control the 
number of packets that Vegas attempts to keep queued in the 
network in steady state. They are expressed in half-packet units. In 
default configuration Vegas tries to keep between 1 and 3 packets 
queued in the network and usually succeeds in stabilizes cwnd at a 
value that satisfies this constraint. This is the initial configuration, 
and we tried to change these parameters. In this configuration 
Vegas oscillates, keeping around 0 to 2 packets in the network. 
This is good because there will often be zero queuing delay, so that 
new Vegas flows will get an accurate notion of baseRTT, this will 
improve fairness between Vegas flows (Hasegawa et al., 1999). We 
have conducted considerable experimentation with TCP Vegas 
under NS-2, but this implementation faced some problems, 
because  Vegas  tries   to   sense   queuing   delays   by   observing 

changes in throughput each RTT and modulating cwnd accordingly 
to avoid loss. The Vegas version used does not use gamma 
parameter during the initial slow-start, we are considering it. But we 
used a large value of alpha and beta because they are required for 
high-speed links. There are two main known problems with TCP 
Vegas implementation in NS-2, setting of Slow-Start-Threshold 
ssthresh, and setting of alpha. The Vegas code works perfectly if 
there is no loss, but if there is a loss before delay is detected, 
ssthresh will be set by the Reno loss recovery algorithm to be 
cwnd/2. Then the flow exits slow start with a relatively large 
ssthresh (larger than 2). If ssthresh is higher than what the fair 
cwnd should be, this flow becomes lucky (Wei et al., 2006):  
 
1) In the middle of an RTT, cwnd is increased by tcp_slow_start 
to ssthresh+1.  
2) At the end of an RTT, since cwnd=ssthresh+1, the code goes 
to congestion avoidance, which reduces cwnd by 1.  
3) But in the middle of the next RTT, cwnd is increased again to 
be ssthresh+1.  
This loop keeps the cwnd to be ssthresh+1.  
 
Since alpha equals to 1 in Vegas, this one packet worth of queuing 
delay stops the congestion window to grow in some points before 
there is really persistent queuing delay in the bottleneck. Setting 
alpha to be 2 (and change gamma and beta correspondingly) 
solves the problem. 
 
 
PROPOSED TOPOLOGY AND SIMULATION 
 
A simple LTE architecture has shown in Figure 2, it consists of one 
server for serving FTP, HTTP, and providesa source connection for 
the TCP link over the topology. In LTE system, the main job of aGW 
router is to control the flow rate of the streaming data from server to 
user equipment (UE) called evolved-NodeB (eNB), where these 
nodes responsible for buffering the data packets for UE over the 
network. Each eNB, connected to the corresponding aGW through 
wired simplex link of 5 Mbps bandwidth and 2 ms delay.  

The proposed topology has shown in Figure 3, where six UE's 
are used, and connected directly to eNB within constant bandwidth 
and delay of 1 Mbps and 2 ms respectively. It means that we use 
12 UE's nodes with two eNB's. The data stream from all UE's 
transferred through a main bottleneck. In fact it is not real 
bottleneck link, but we supposed that, here to get a bandwidth of 
100 Mbps.  

The parameters of modeling and simulation are presented in 
Table 1, so we can note that all link kept for one  propagation  delay    
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Figure 3. Real network animator (NAM). 

  
 
 

Table 1. Simulation parameters. 

 

Parameter Value 

TCP protocols TCP Vegas 

Propagation delay of all links 2 ms 

Bandwidth of aGW link 5 Mbps 

Bandwidth of server link 100 Mbps 

Bandwidth of UE link 1 Mbps 

Packet size 1500 Bytes 

Window size 128 Kbytes 

Simulation time 50 s 
  
 
 

of 2 ms, and the maximum packet size of Vegas was set to 1500 
Bytes, with minimum window size of 100 Kbytes. The router aGW, 
connected to the server with duplex link with bandwidth of 100 
Mbps, and propagation delay of 2 ms. 

As explained, the six UE's nodes, linked to the corresponding 
eNB, through wired link, but really these nodes must be wireless 
but we ignored mobility features, because they do not move yet, 
and if we support the movement of these nodes we must add a 
Handover scenario to the topology, and this is not our goal in this 
research, thus we ignore the interface between eNB's. 
 
 

RESULTS ANALYSIS AND DISCUSSIONS 
 

The goal   of   our   experiments   is   to   understand   the  

performance of TCP Vegas over a network topology 
based on LTE system.  

In the simulation model shown in Figure 3, the nodes 0 
to 5 and 7 to 12 established with same parameters and 
behavior, where all of them use either Reno or Vegas. 
The NS-2 codes used in our experiments use TCP Vegas 
to change the default and individual parameters of 
congestion control algorithm over LTE connections. 
Figures 4 to 10, represent the comparison of cwnd for 
Reno and Vegas under similar network conditions, where 
the bandwidth, propagation delay, packet size, window 
size, and all other link parameters are kept the same, 
only Vegas parameters changed every in experiment. In 
Figure 4, we assumed alpha and beta have the same 
value, α = β = 20. Actually the default vales of alpha and 
beta are set to 40, as shown in Figure 5. If we compare 
the window size between Figures 4 and 5, it is easy to 
conclude that when we duplicate the values of α and β 
from 20 to 40, the window size also duplicate from 24 
Kbytes to 48 Kbytes. 

As shown in Figures 4, 5, 6, 7 and 8, the size of cwnd 
increase when we increase the values of alpha and beta, 
so we note that the best performance is not supported by 
the default values, and we got a maximum window size 
when  α = β = 120, where the window size become 118 
Kbytes. 

This change in Vegas  parameters  permitting  to  get  a   
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Figure 4. Comparison of cwnd for TCP Reno and Vegas (α =  β = 20). 

  
 
 

 
 
Figure 5. Comparison of cwnd for TCP Reno and Vegas (α = β = 40). 

  
 
 

new cwnd for same congestion window algorithm but with 
better performance, and if we compare the performance 
of Reno over the same topology, we  can  recognize  that  

when we exchange the values  of  α  and  β,  the  window 
size improves.  

In Figures 4 and 5,  TCP  Reno  already  have  a  better
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Figure 6. Comparison of cwnd for TCP Reno and Vegas (α = β = 60). 

  
 
 

 
 
Figure 7. Comparison of cwnd for TCP Reno and Vegas (α = β = 80). 

  
 
 

cwnd than Vegas, where Vegas with 20 and 40 for α and 
β, but when α and β increased, Vegas start give a better 
window size than Reno, and that  is  appearing  clearly  in 

Figure 8, when the window size of Vegas become have 
twice the size that introduced by Reno. 
Actually, Figures 4, 5, 6, 7  and  8,  assumed  that  α  and
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Figure 8. Comparison of cwnd for TCP Reno and Vegas (α = β = 120). 

  
 
 

 
 
Figure 9. Comparison of cwnd for TCP Reno and Vegas (α = 20, β = 40). 

  
 
 

β, are equal or have a similar value when proceeded the 
experiments, for that we tried to use a different values of 
α and β, that is, α ≠ β, to see the real effects of α and β 
independently and to achieve which one have the bigger 
effect on window size. 

Figures 9 and 10 represent the cwnd when α ≠ β. Here,  

we suppose that α = 20 and β = 40, as shown in Figure 9, 
thus to see if cwnd is nearest when α = β = 20, or when α 
= β = 40, and that applied when α = 40 and β = 80, as 
illustrated in Figure 10. 

Generally, each α and β shared or combined the size of 
window over the link, and neither α nor β are  responsible
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Figure 10. Comparison of cwnd for TCP Reno and Vegas (α = 40, β = 80). 

  
 
 

on window size uniquely, then if we decide to choose a 
parameters values we must observe the selection of each 
value separately and individually and in isolation from the 
other parameter value. 
 
 

Conclusion 
 

We have presented in this paper the simulation results 
obtained for evaluating of TCP Vegas over LTE network 
model with different parameters. Several studies 
establish that TCP Vegas does achieve higher efficiency 
than Reno, causes much fewer packet retransmissions, 
and is not biased against the connections with longer 
RTT's. In our research we proofed that the default 
parameters of congestion window algorithm could not 
produce a competitor performance with other TCP 
variants, especially TCP Reno, but when we used other 
values of alpha and beta parameters we got a high 
performance notified to the degree of vulnerability. 

However, while this paper leaves some questions 
unanswered, TCP Vegas clearly showed significant 
improvements with respect to TCP Reno, as highlighted 
by their effective use of graphs and performance 
measurements. 
 
 
FUTURE WORK 
 
Future work of this research will be on the compilation of 
developing or modifying the congestion window algorithm 
of TCP Vegas, and compare the results of this 
amendment with standard results. 
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