

Scientific Research and Essays Vol. 6(9), pp. 2003-2010, 4 May, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.252

ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

Characterization and observation of (transmission
control protocol) TCP-Vegas performance with different

parameters over (Long term evolution) LTE networks

Ghassan A. Abed*, Mahamod Ismail and Kasmiran Jumari

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti

Kebangsaan Malaysia, 43600 UKM Bangi Selangor Darul Ehsan, Malaysia.

Accepted 28 April, 2011

Despite the larger performance and higher throughput compared to transmission control protocol (TCP)
Reno, TCP Vegas still has a few obstacles to be deployed in new networks, such as 4G LTE systems
(4th Generation, Long term evolution). One of these obstacles is the Vegas congestion control that is
not used in all available bandwidth capacity of the network path and which causes minimization in
packet quantity transferred from source to destination. However, many researches have shown unfair
treatment of TCP Vegas connections when they compete with Reno connections. So, Vegas need more
developments and more modifications to be efficient over bidirectional links with unbalanced traffic,
and on wireless links. TCP-Vegas is a congestion control algorithm that reduces queuing and packet
loss, and thus reduces latency and increases overall throughput, by carefully matching the sending rate
to the rate at which packets are successfully being drained by the network. This paper presents results
from a series of simulation experiments designed to study TCP Vegas performance in LTE network
model using NS-2 network simulator. The characterization and analysis of Vegas behavior performed
using the main two parameters, alpha and beta, to configure the congestion window (cwnd) phases.
After used multiple values, the configuration results show that TCP Vegas perform better than TCP
Reno.

Key words: Transmission control protocol; TCP-Vegas, cwnd, long term evolution (LTE), NS-2.

INTRODUCTION

TCP Vegas is a modification of TCP Reno introduced by
Brakmo and Peterson (1994). Vegas employs three
techniques to increase throughput and decreases the
packet loss, which are new retransmission mechanism, a
congestion avoidance mechanism and a modified slow-
start mechanism. TCP-Vegas is a proactive congestion
control mechanism proposed to improve TCP
performance by using round trip time (RTT) as a main
parameter to monitor traffic condition and avoid
congestion (Hong et al., 2006). TCP-Vegas detects
congestion at an incipient stage based on increasing RTT

*Corresponding author. E-mail: ghassan@eng.ukm.my.

values of the packets in the connection unlike other
flavors like Reno, which detect congestion only after it
has actually happened via packet drops. The algorithm
depends heavily on accurate calculation of the base RTT
value.

 In more detail, Vegas adopts a more sophisticated
bandwidth estimation scheme because it uses the
difference between expected and actual flow rates to
estimate the available bandwidth in the network (Zhang
and Bian, 2002; Sing and Soh, 2005). The idea is that
when the network is not congested, the actual flow rate
will be close to the expected flow rate. Otherwise, the
actual flow rate will be smaller than the expected flow
rate, and Vegas using this difference in flow rates to
estimate the congestion level in the network and updates

2004 Sci. Res. Essay

Figure 1. Phases and parameters effect of TCP Vegas.

the window size accordingly. To adjust the size of the
cwnd appropriately, Vegas uses two threshold values, α
and β to control the adjustment of cwnd at the source
host as follow: During the congestion avoidance phase,
Vegas sender does (Tsang and Chang, 2001):

cwnd = cwnd + 1 if Diff < (α/baseRTT)
cwnd = cwnd if (α/baseRTT) ≤ Diff ≤ (β/baseRTT)
cwnd = cwnd – 1 if (β/baseRTT) < Diff

Where:
Diff = expected rate – actual rate ≥ 0, by definition
Expected rate = data in transit/base RTT
Base RTT = the minimum of all measured RTT's
Actual rate = (next send sequence number – segment
timed)/average RTT,
RTT = observed or actual round trip time (in seconds),
α, β = some constant thresholds.

In other words, Vegas increases cwnd by one packet if
the per-flow queue at a bottleneck link is smaller than α,
decreases cwnd by one packet if the per-flow queue is
larger than β, and keeps cwnd unchanged otherwise
(Podlesny and Williamson, 2010). Conceptually, Vegas
tries to keep at last α packets but no more than β packets
queued in the network. Thus, with only one Vegas
connection, the window size of Vegas converges to a
point that lies between (window + α) and (window + β)
where window is the maximum window size that does not
cause any queuing (Feng et al., 2003). Figure 1, shows
the effects of different parameters on the behavior of
Vegas throughput, where α and β represents the main
controller to slow-start phase and congestion avoidance
phase. It also shows how to control the throughput value
for reducing the difference and contrast between the
expected and the actual throughput.

Selecting α and β holds an implicit tradeoff between
network utilization Good put, and fairness. By using the
default setting for those parameters, that is, α and β, prior
research inadvertently favored some other TCP variants
over Vegas. The main aim of congestion avoidance
algorithm of TCP Vegas is to measure and control the
extra packets in the network. So, the congestion
avoidance provides a monitoring to the changes in
sending rate and to RTT's to predict congestion before
losses occur. If we suppose that Vegas and Reno share
a bottleneck link, Reno uses up most of the router buffer
space. Vegas, interpret this as a sign of congestion, and
will decrease the congestion window, which leads to an
unfair share of bandwidth for Vegas.

Furthermore, when the router buffer size is large, the
average of window size of Reno connections will be
large, while the window size of Vegas connections will
remain unchanged, as it does not inflate the window size
larger than β.

Similar to Reno, Vegas uses a slow-start mechanism
that allows a connection to quickly ramp up to the
available bandwidth, but unlike Reno, to ensure that the
sending rate will not increase too fast to congest the
network during the slow start, Vegas doubles its
congestion window size only every other RTT, and
calculates the difference between the flow rates (Diff).
Since Vegas estimates the baseRTT to compute the
expected flow rate and adjust congestion window size, it
is important to get an accurate baseRTT. Sometimes the
sender may reduce its window size and it may cause
inefficient throughput. In short, while Vegas assumes that
packet delay or loss is due to congestion, in wireless
networks, packet delays can also be due to changes in
configuration of user equipment connected to the
network. In this paper, a study of TCP Vegas is done and
some features are simulated using the NS-2 simulator

Abed et al. 2005

Figure 2. Simple LTE representation.

depending on change some parameters of Vegas
algorithm congestion window over a model of LTE
network and the results were discussed. The main
objective of this research is to reach the most suitable
model with best possible performance obtained from
using TCP Vegas on LTE network.

The remainder of the paper is organized as follow.
Subsequently, we describe the possibility and problems
of implementation of Vegas using NS-2. The proposed
network simulation model developed for this research
was explained. Then, we illustrate the obtained results
and analyze the effects of the parameters variances into
the system. Further we present our conclusions and
plans for future work.

TCP-VEGAS IMPLEMENTATION IN NS-2

In our research, we use NS-2 simulator, an object-oriented discrete
event simulator targeted at networking research. It is developed at
University of California and is written in C++ and Otcl. NS-2
supports a wide variety of network protocols offering simulation
results for wired and wireless networks alike. NS-2 is a discrete
event simulator targeted at networking research. NS-2 provides
substantial support for simulation of TCP, routing, and multicast
protocols over wired and wireless (local and satellite) networks
(Network Simulator NS-2, 2006). In our research, we used NS-2
version 2.34. This version can be installed over Windows XP by
using Cygwin, where Cygwin provides a Linux-like environment
under Windows.

The tcp_vegas_alpha and tcp_vegas_beta entries control the
number of packets that Vegas attempts to keep queued in the
network in steady state. They are expressed in half-packet units. In
default configuration Vegas tries to keep between 1 and 3 packets
queued in the network and usually succeeds in stabilizes cwnd at a
value that satisfies this constraint. This is the initial configuration,
and we tried to change these parameters. In this configuration
Vegas oscillates, keeping around 0 to 2 packets in the network.
This is good because there will often be zero queuing delay, so that
new Vegas flows will get an accurate notion of baseRTT, this will
improve fairness between Vegas flows (Hasegawa et al., 1999). We
have conducted considerable experimentation with TCP Vegas
under NS-2, but this implementation faced some problems,
because Vegas tries to sense queuing delays by observing

changes in throughput each RTT and modulating cwnd accordingly
to avoid loss. The Vegas version used does not use gamma
parameter during the initial slow-start, we are considering it. But we
used a large value of alpha and beta because they are required for
high-speed links. There are two main known problems with TCP
Vegas implementation in NS-2, setting of Slow-Start-Threshold
ssthresh, and setting of alpha. The Vegas code works perfectly if
there is no loss, but if there is a loss before delay is detected,
ssthresh will be set by the Reno loss recovery algorithm to be
cwnd/2. Then the flow exits slow start with a relatively large
ssthresh (larger than 2). If ssthresh is higher than what the fair
cwnd should be, this flow becomes lucky (Wei et al., 2006):

1) In the middle of an RTT, cwnd is increased by tcp_slow_start
to ssthresh+1.
2) At the end of an RTT, since cwnd=ssthresh+1, the code goes
to congestion avoidance, which reduces cwnd by 1.
3) But in the middle of the next RTT, cwnd is increased again to
be ssthresh+1.
This loop keeps the cwnd to be ssthresh+1.

Since alpha equals to 1 in Vegas, this one packet worth of queuing
delay stops the congestion window to grow in some points before
there is really persistent queuing delay in the bottleneck. Setting
alpha to be 2 (and change gamma and beta correspondingly)
solves the problem.

PROPOSED TOPOLOGY AND SIMULATION

A simple LTE architecture has shown in Figure 2, it consists of one
server for serving FTP, HTTP, and providesa source connection for
the TCP link over the topology. In LTE system, the main job of aGW
router is to control the flow rate of the streaming data from server to
user equipment (UE) called evolved-NodeB (eNB), where these
nodes responsible for buffering the data packets for UE over the
network. Each eNB, connected to the corresponding aGW through
wired simplex link of 5 Mbps bandwidth and 2 ms delay.

The proposed topology has shown in Figure 3, where six UE's
are used, and connected directly to eNB within constant bandwidth
and delay of 1 Mbps and 2 ms respectively. It means that we use
12 UE's nodes with two eNB's. The data stream from all UE's
transferred through a main bottleneck. In fact it is not real
bottleneck link, but we supposed that, here to get a bandwidth of
100 Mbps.

The parameters of modeling and simulation are presented in
Table 1, so we can note that all link kept for one propagation delay

2006 Sci. Res. Essay

Figure 3. Real network animator (NAM).

Table 1. Simulation parameters.

Parameter Value

TCP protocols TCP Vegas

Propagation delay of all links 2 ms

Bandwidth of aGW link 5 Mbps

Bandwidth of server link 100 Mbps

Bandwidth of UE link 1 Mbps

Packet size 1500 Bytes

Window size 128 Kbytes

Simulation time 50 s

of 2 ms, and the maximum packet size of Vegas was set to 1500
Bytes, with minimum window size of 100 Kbytes. The router aGW,
connected to the server with duplex link with bandwidth of 100
Mbps, and propagation delay of 2 ms.

As explained, the six UE's nodes, linked to the corresponding
eNB, through wired link, but really these nodes must be wireless
but we ignored mobility features, because they do not move yet,
and if we support the movement of these nodes we must add a
Handover scenario to the topology, and this is not our goal in this
research, thus we ignore the interface between eNB's.

RESULTS ANALYSIS AND DISCUSSIONS

The goal of our experiments is to understand the

performance of TCP Vegas over a network topology
based on LTE system.

In the simulation model shown in Figure 3, the nodes 0
to 5 and 7 to 12 established with same parameters and
behavior, where all of them use either Reno or Vegas.
The NS-2 codes used in our experiments use TCP Vegas
to change the default and individual parameters of
congestion control algorithm over LTE connections.
Figures 4 to 10, represent the comparison of cwnd for
Reno and Vegas under similar network conditions, where
the bandwidth, propagation delay, packet size, window
size, and all other link parameters are kept the same,
only Vegas parameters changed every in experiment. In
Figure 4, we assumed alpha and beta have the same
value, α = β = 20. Actually the default vales of alpha and
beta are set to 40, as shown in Figure 5. If we compare
the window size between Figures 4 and 5, it is easy to
conclude that when we duplicate the values of α and β
from 20 to 40, the window size also duplicate from 24
Kbytes to 48 Kbytes.

As shown in Figures 4, 5, 6, 7 and 8, the size of cwnd
increase when we increase the values of alpha and beta,
so we note that the best performance is not supported by
the default values, and we got a maximum window size
when α = β = 120, where the window size become 118
Kbytes.

This change in Vegas parameters permitting to get a

Abed et al. 2007

Figure 4. Comparison of cwnd for TCP Reno and Vegas (α = β = 20).

Figure 5. Comparison of cwnd for TCP Reno and Vegas (α = β = 40).

new cwnd for same congestion window algorithm but with
better performance, and if we compare the performance
of Reno over the same topology, we can recognize that

when we exchange the values of α and β, the window
size improves.

In Figures 4 and 5, TCP Reno already have a better

2008 Sci. Res. Essay

Figure 6. Comparison of cwnd for TCP Reno and Vegas (α = β = 60).

Figure 7. Comparison of cwnd for TCP Reno and Vegas (α = β = 80).

cwnd than Vegas, where Vegas with 20 and 40 for α and
β, but when α and β increased, Vegas start give a better
window size than Reno, and that is appearing clearly in

Figure 8, when the window size of Vegas become have
twice the size that introduced by Reno.
Actually, Figures 4, 5, 6, 7 and 8, assumed that α and

Abed et al. 2009

Figure 8. Comparison of cwnd for TCP Reno and Vegas (α = β = 120).

Figure 9. Comparison of cwnd for TCP Reno and Vegas (α = 20, β = 40).

β, are equal or have a similar value when proceeded the
experiments, for that we tried to use a different values of
α and β, that is, α ≠ β, to see the real effects of α and β
independently and to achieve which one have the bigger
effect on window size.

Figures 9 and 10 represent the cwnd when α ≠ β. Here,

we suppose that α = 20 and β = 40, as shown in Figure 9,
thus to see if cwnd is nearest when α = β = 20, or when α
= β = 40, and that applied when α = 40 and β = 80, as
illustrated in Figure 10.

Generally, each α and β shared or combined the size of
window over the link, and neither α nor β are responsible

2010 Sci. Res. Essay

Figure 10. Comparison of cwnd for TCP Reno and Vegas (α = 40, β = 80).

on window size uniquely, then if we decide to choose a
parameters values we must observe the selection of each
value separately and individually and in isolation from the
other parameter value.

Conclusion

We have presented in this paper the simulation results
obtained for evaluating of TCP Vegas over LTE network
model with different parameters. Several studies
establish that TCP Vegas does achieve higher efficiency
than Reno, causes much fewer packet retransmissions,
and is not biased against the connections with longer
RTT's. In our research we proofed that the default
parameters of congestion window algorithm could not
produce a competitor performance with other TCP
variants, especially TCP Reno, but when we used other
values of alpha and beta parameters we got a high
performance notified to the degree of vulnerability.

However, while this paper leaves some questions
unanswered, TCP Vegas clearly showed significant
improvements with respect to TCP Reno, as highlighted
by their effective use of graphs and performance
measurements.

FUTURE WORK

Future work of this research will be on the compilation of
developing or modifying the congestion window algorithm
of TCP Vegas, and compare the results of this
amendment with standard results.

ACKNOWLEDGMENT

This study is sponsored by Universiti Kebangsaan
Malaysia (UKM) through the university research grant
UKM-OUP-ICT-36-182/2011.

REFERENCES

Feng W, Vanichpun S (2003). Enabling Compatibility Between TCP

Reno and TCP Vegas. Proceeding of Symposium on Applications
and the Internet (SAINT’03), Florida, USA.

Hasegawa G, Murata M, Miyahara H (1999). Fairness and Stability of
Congestion Control Mechanism of TCP. Proceeding of IEEE
Conference on Computer Communications (INFOCOM'99), New
York, USA.

Hong Z, Amoakoh G, Zhongwei Z (2006). Performance of STT-Vegas in
Heterogeneous Wired and Wireless Networks. Proceeding of 3rd
International Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks, Waterloo, Canada.

Network Simulator NS-2 (2006). Information Sciences Institute,
University of Southern California, USA. http://www.isi.edu/nsnam/ns/.

Podlesny M, Williamson C (2010). Providing Fairness Between TCP
NewReno and TCP Vegas with RD Network Services. Proceedings of
18th Workshop on Quality of Service (IWQoS), Beijing, China.

Sing J, Soh B (2005). TCP New Vegas: Improving the Performance of
TCP Vegas over High Latency Links. Proceeding of 4th IEEE
International Symposium on Network Computing and
Applications, NCA.

Tsang ECM, Chang RKC (2001). A Simulation Study on the Throughput
Fairness of TCP Vegas. Proceeding of 9th IEEE International
Conference on Networks, Bangkok, Thailand.

Wei DX, Jen C, Low SH, Hedge S (2006). Fast TCP: Motivation,
Architecture, Algorithms, Performance. IEEE/ACM Transactions on
Networking, 14(6): 1246-1259.

Zhang H, Bian Z (2002). Evaluation of Different TCP Congestion
Control Algorithms Using NS-2.CMPT 885-3: Special Topics: High-
Per, formance Networks, ENSC 835-3.

