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INTRODUCTION 
 
One of the most interesting questions in the theory of 
functional analysis concerning the Ulam stability problem 
of functional equations is as follows: when is it true that a 
mapping satisfying a functional equation approximately 
must be close to an exact solution of the given functional 
equation? In 1940, Ulam (1960) posed the famous Ulam 
stability problem. In 1941, Hyers solved the well-known 
Ulam stability problem for additive mappings subject to 
the Hyers condition on approximately additive mappings. 
He gave rise to the stability theory for functional 
equations. 

In 1950, Aoki generalized Hyers' theorem for 
approximately additive functions. In 1978, Rassias 
provided a generalized version of  Hyers  for  approximately 
 
 
 
*Corresponding author. E-mail: xutianzhou@bit.edu.cn. 

 
MR (2000) Subject classification: 39B52, 39B82, 46S40, 
26E50, 46S50. 

linear mappings. In addition, Rassias et al. (2009, 2001, 
1989, 2005, 2008, 2010, 2011) generalized the Hyers 
stability result by introducing two weaker conditions 
controlled by a product of different powers of norms and a 
mixed product-sum of powers of norms, respectively. In 
2001, Rassias introduced the pioneering cubic functional 
equation: 
 

)(6)()(3)(3)2( yfyxfxfyxfyxf =−−++−+  

 
and established the solution of the Ulam stability problem 
for this cubic functional equation. Sadeghi and Moslehian 
(2008) proved the generalized stability of the cubic type 
functional equation, 
 

)(12)(2)(2)2()2( xfyxfyxfyxfyxf +−++=−++  

 
and another functional equation, 
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where k  is an integer with 1,0 ±≠k in the framework of 

non-Archimedean normed spaces. 

 
The idea of fuzzy norm was initiated by Katsaras (1984). 
Later, several notions of fuzzy norm have been 
introduced and discussed from different points of view 
(Cheng and Mordeson, 1994; Krishna and Sarma, 1994). 
In particular, Bag and Samanta (2005) gave a definition of 
a fuzzy norm in such a manner that the corresponding 
fuzzy metric is of Kramosil and Michalek type (1975). 
They also studied some properties of the fuzzy norm 
(2005). The notion of fuzzy stability of the functional 
equations was given by Mirmostafaee and Moslehian 
(2008). Later, several various fuzzy versions of stability 
concerning Jensen, cubic, quadratic and mixed additive-
cubic functional equations were investigated (Mihect, 
2009; Mirmostafaee, 2009; Mirmostafaee et al., 2008; Xu 
et al., 2010. 

In 2003, Radu noticed that a fixed point alternative 
method is very important for the solution of the Ulam 
problem. Mihet (2009) obtained a fuzzy version of a 
generalized Hyers-Ulam stability for the Jensen functional 
equation employing this method. Mirmostafaee (2009) 
established Hyers-Ulam-Rassias stability of the quartic 
functional equation in the setting of quasi fuzzy p -normed 

spaces using the fixed point method. In this paper, we 
consider the functional equation for fixed natural number 

k with 2≥k : 

 

)(2)(2)()()()( xkfkxfyxkfyxkfykxfykxf −+−++=−++   (1) 

 
with .0)0( =f It is easy to see that the 

function bxaxxf += 3
)( is a solution of the functional 

Equation (1), which is called a general mixed additive-

cubic functional equation. We observe that in case 2=k  

Equation (1) yields mixed additive-cubic equation, 

 

)(4)2(2)(2)(2)2()2( xfxfyxfyxfyxfyxf −+−++=−++  

 
and there are many interesting results concerning the 
stability problems of the mixed additive-cubic equation 
(Najati and Eskandani, 2008). Therefore, Equation (1) is 
a generalized form of the mixed additive-cubic equation. 
The main purpose of this paper, is to establish the 
generalized Hyers-Ulam-Rassias stability of the functional 
Equation (1) where functions  map a linear space into a 
complete quasi fuzzy p -normed spacea by using the 

fixed point alternative. In addition, some applications of 
our results in the stability of general mixed additive-cubic 
mappings from a linear space into a quasi p -norm space 

will be exhibited. Finally, we establish some interesting 
results of continuous approximately general mixed 
additive-cubic mappings in quasi fuzzy p -normed spaces. 

 
 
 
 
Preliminaries 
 
For the sake of convenience, here, we recall some 
notations and basic definitions used in this paper. 
 
Definition 1 (Bag and Samanta, 2003): Let X be a real 
linear space. A function ×XN : R ]1,0[→  (the so-called 

fuzzy subset) is said to be a fuzzy norm on X  if for all 
Xyx ∈,  and all ∈ts, R: 

 

(N1) 0),( =cxN  for all 0≤c ; 

(N2) 0=x  if and only if 1),( =cxN  for all 0>c ; 

(N3) |)|/,(),( ctxNtcxN =  if 0≠c ; 

(N4) )},(),,(min{),( tyNsxNtsyxN ≥++ ; 

(N5) 1),(lim =
∞→

txN
t

. 

 

A fuzzy normed space is a pair ),( NX , where X  is a real 

linear space and N  is a fuzzy norm on X . 

 
Definition 2 (Mirmostafaee, 2009; Rolewicz, 1984):  Let 
X  be a real linear space. A quasi-norm is a real-valued 
function on X  satisfying the following: 
 

(1) 0|||| ≥x  for all Xx ∈  and 0|||| =x  if and only if 0=x ; 

(2) |||||||||| xttx  =  for all ∈t R and all Xx ∈ ; 

(3) there is a constant 1≥M  such that, 

||)||||(|||||| yxMyx +≤+  for all Xyx ∈, . 

A quasi-normed space is a pair ||)||,( ⋅X , where |||| ⋅  is a 

quasi-norm on X . The smallest possible M is called the 

modulus of concavity of |||| ⋅ . A quasi-Banach space is a 

complete quasi-normed space. A quasi-norm |||| ⋅  is 

called a p -norm ( 10 ≤< p ) if ppp
yxyx |||||||||||| +≤+  for 

all Xyx ∈, . 

In this case, a quasi-Banach space is called a p -

Banach space. By the Aoki-Rolewicz theorem (1984), 
each quasi-norm is equivalent to some p -norm. Since it 

is much easier to work with p -norm than quasi-norms; 

henceforth, we restrict our attention mainly to p -norms. 

 

Definition 3 (Mirmostafaee, 2009): Let X  be a real linear 
space. A function ×XN : R ]1,0[→  is said to be a quasi 

fuzzy norm on X  if for all Xyx ∈,  and all ∈ts, R: 

 

(a) 0),( =cxN  for all 0≤c ; 

(b) 0=x  if and only if 1),( =cxN  for all 0>c ; 

(c) |)|/,(),( ctxNtcxN =  if 0≠c ; 

(d) there is a constant 1≥M  such that, 

)},(),,(min{))(,( tyNsxNtsMyxN ≥++  for all Xyx ∈, ; 

(e) 1),(lim =
∞→

txN
t

. 



 
 
 
 

A quasi fuzzy normed linear space is a pair ),( NX , 

where X  is a real linear space and N  is a quasi fuzzy 

norm on X . A quasi fuzzy norm N  is called a quasi 

fuzzy p -norm if 

 

)},(),,(min{),(
ppp

tyNsxNtsyxN ≥++  

 
for all Xyx ∈,  and all 0, >ts . 

 

Lemma 1: Let ),( NX  is a fuzzy normed space (quasi 

fuzzy p -normed space). Then ),( txN  is non-decreasing 

with respect to ),0( ∞∈t for each Xx ∈ . 

 

Proof. Let ),0(, ∞∈ts  such that ts > . Then tsh −= ; for 

each Xx ∈ , we have: 

 

),()},0(),,(min{),0(),( txNhNtxNhtxNsxN =≥++=  

 
or 
 

),()},(),,(min{))(,0(),( txNtsyNtxNtstxNsxN
p ppp ppp =−≥−++=  

 

Example 1 (Mirmostafaee, 2009): Let ||)||,( ⋅X  be a p -

normed space. For all Xx ∈ , consider  

 










≤

>
+

=

.0,0

,0,
||||

),(

t

t
xt

t

txN
 

 

Then ),( NX  is a quasi fuzzy p -normed space. 

 

Definition 3: Let ),( NX be a quasi fuzzy normed space. 

Let }{ nx  be a sequence in X . Then }{ nx  is said to be 

convergent if there exists Xx ∈  such that 

1),(lim =−
∞→

txxN n
n

 for all 0>t . In that case, x  is called 

the fuzzy limit of the }{ nx  and we denote it by 

xxN n
n

=−
∞→

lim . A sequence }{ nx  in X  is said to be a 

Cauchy sequence if 1),(lim =−+
∞→

txxN npn
n

 for all 0>t  

and K,3,2,1=p . It is known that every convergent 

sequence in a quasi fuzzy normed space is a Cauchy 
sequence. If every Cauchy sequence is convergent, then 
the quasi fuzzy norm is said to be quasi fuzzy complete 
and the quasi fuzzy normed space is called a quasi fuzzy 
Banach space. A complete quasi fuzzy p -normed space 

is called a quasi fuzzy p -Banach space. 
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Stability of functional equation in the fuzzy setting 
 
From now on, unless otherwise stated, we will assume 

that 10 ≤< p  and pq /1=  are a real vector space, ),( NY  

is a quasi fuzzy p -Banach space and )',( NZ  is a fuzzy 

normed space. Utilizing the fixed point alternative, we will 
establish the following new stability for the generalized 
mixed additive-cubic functional equation in quasi fuzzy 
p -Banach space. For convenience, we use the following 

abbreviation for a given function YXf →: : 

 

)(2)(2)()()()(),( xkfkxfyxkfyxkfykxfykxfyxDf +−−−+−−++=

 

for all Xyx ∈, . 

 
We start with the following lemma which plays a crucial 
role here. 
 

Lemma 3 (Xu et al., 2011): Let YXf →:  be a function 

with 0)0( =f  and satisfying Equation (1), then the 

function )(8)2(:)( xfxfxG −=  is additive and 

)(2)2(:)( xfxfxH −=  is cubic.  

 
For explicitly later use, we recall the following result by 
Diaz and Margolis. 
 
Lemma 4 (The fixed point alternative theorem, (Diaz and 

Margolis, 1968):  Let ),( dΩ  be a complete generalized 

metric space (that is one for which d  may assume infinite 

values) and Ω→Ω:J  be a strictly contractive mapping 

with Lipschitz constant 10 << L , that is 

 

),(),( yxLdJyJxd ≤    for all Xyx ∈, . 

 

Then, for each given Ω∈x , either ∞=+
),(

1
xJxJd

nn  for 

all 0≥n or ∞<+
),(

1
xJxJd

nn  for all 0nn ≥  for some 

natural number 0n . Actually, if the second alternative 

holds, then the sequence }{ xJ
n  is convergent to a fixed 

point ∗x  of J  and 

 

(1) ∗x  is the unique fixed point of J  in the set 

}),(:{ 0 ∞<Ω∈=∆ yxJdy
n  ; 

(2) ),(
1

1
),( Jyyd

L
yyd

−
≤∗  for all ∆∈y . 

 

Lemma 2: Let YXf →:  be a function with 0)0( =f  for 

which there is a function ZXX →×:ϕ  such that: 

 

)),,((')),,(( tyxNtyxDfN ϕ≥                               (1) 

 

for all Xyx ∈,  and 0>t . Then, 
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))(,()),(16)2(10)4((
3

1 tkkxNtxfxfxfN −≥+−        (2) 

 
for all Xyx ∈,  and 0>t , where,  
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Proof: Letting 0=x  in (1), we get 

 
))1(),,0((')),()(( tkyNtyfyfN −≥−+ ϕ            (3) 

 
for all Xy ∈  and 0>t . Putting xy =  in (1), we have 

 

)),,((')),(2)(2)2())1(())1((( txxNtxkfkxfxkfxkfxkfN ϕ≥+−−−++

 (4) 
 
for all Xx ∈  and 0>t . Hence, 

 

)),2,2(('

)),2(2)2(2)4())1(2())1(2((

txxN

txkfkxfxkfxkfxkfN

ϕ≥

+−−−++
 

   (5) 
 

for all Xx ∈  and 0>t . Letting kxy =  in (1), we get 

 

)),,(('

)),(2)(2))1(())1(()2((

tkxxN

txkfkxfxkkfxkkfkxfN

ϕ≥

+−−−−+−
 

 (6) 

 
 
 
 

for all Xx ∈  and 0>t . Letting xky )1( +=  in (1), we 

have 
 

)),)1(,(('

)),(2)(2)())2(()())12(((

txkxN

txkfkxfkxkfxkkfxfxkfN

+≥

+−−−+−−++

ϕ
 

(7) 
 

for all Xx ∈  and 0>t . Letting xky )1( −=  in (1), we 

have 
 

)),)1(,(('

)),()12())2(()()2())12(((

txkxN

txfkxkkfkxfkxkfN

−≥

++−−−+−−

ϕ
 

     (8) 
 
for all Xx ∈  and 0>t . Replacing x  and y  by x2  and 

x in (1), respectively, we get 

 

)),,2(('

)),()2(2)3()2(2))12(())12(((

txxN

txkfxkfxkfkxfxkfxkfN

ϕ≥

−+−−−++  

   (9) 
 
for all Xx ∈  and 0>t . Replacing x  and y  by x3  and x  

in (1), respectively, we get 
 

)),,3(('

)),3(2)2()4()3(2))13(())13(((

txxN

txkfxkfxkfkxfxkfxkfN

ϕ≥

+−−−−++

(10) 
 
for all Xx ∈  and 0>t . Replacing x  and y  by x2  and 

kx  in (1), respectively, we have: 

 

)),,2(('

)),2(2)2(2))2(())2(()()3((

tkxxN

txkfkxfxkkfxkkfkxfkxfN

ϕ≥

+−−−−+−+

(11) 
 

for all Xx ∈  and 0>t . Setting xky )12( +=  in (1), we 

have 
 

)),)12(,(('

)),(2)(2)2())1(2())1(())13(((

txkxN

txkfkxfkxkfxkkfxkfxkfN

+≥

+−−−+−+−++

ϕ

   (12) 

for all Xx ∈  and 0>t . Letting xky )12( −=  in (1), we 

have 
 

)),)12(,(('

)),(2)(2)2())1(2())1(())13(((

txkxN

txkfkxfkxkfxkkfxkfxkfN

−≥

+−−−−−−−+−

ϕ

(13) 
 

for all Xx ∈  and 0>t . Letting kxy 3=  in (1), we have, 

 

)),3,(('

)),(2)(2))13(())13(()2()4((

tkxxN

txkfkxfxkkfxkkfkxfkxfN

ϕ≥

+−−−−+−−+  

(14) 



 
 
 
 
for all Xx ∈  and 0>t . By (3), (4), (10), (12), and (13), 

we get 
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(15) 
 
for all Xx ∈  and 0>t . By (3), (7) and (8), we have 

 
( )((2 1) ) ((2 1) ) (( 2) ) ( ( 2) ) 4 ( ) 4 ( ),

( 1)
min{ '( ( ,( 1) ), ), '( (0, ), ),

4 4

( 1)
          '( ( ,( 1) ), ), '( (0, ), )}

4 4

q q

q q

N f k x f k x kf k x kf k x f kx kf x t
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N x k x N x
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N x k x N kx
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+ + − − + − − − − +

−
≥ +

−
−

(16) 
 
for all Xx ∈  and 0>t . It follows from (9) and (16) that: 
 

( )(( 2) ) ( ( 2) ) 2 (2 ) 4 ( ) (3 ) 2 (2 ) 5 ( ),

min{ '( (2 , ), ), '( ( ,( 1) ), ), '( ( ,( 1) ), ),
2 8 8
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          '( (0, ), ), '( (0, ), )}

8 8
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+ + − − − + − + −

≥ + −
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(17) 

 
for all Xx ∈  and 0>t . By (11) and (17), we have 
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   (18) 

 
for all Xx ∈  and 0>t . By (3), (12), (13) and (14), we 

have 
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for all Xx ∈  and 0>t . It follows from (3), (5), (6) and 

(19) that 
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for all Xx ∈  and 0>t . Hence, 
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for all Xx ∈  and 0>t . By (6), we have, 
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for all Xx ∈  and 0>t . From (20) and (22), we have: 
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for all Xx ∈  and 0>t . Also, from (15) and (23), we get 
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for all Xx ∈  and 0>t . On the other hand, it follows from 

(18) and (24) that, 
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for all Xx ∈  and 0>t . Finally, by using (21) and (25), we 

get (2).  
 
Lemma 6: Let  ZXX →×:ϕ  be a function and 

}0)0(|:{ =→=Ω gYXg   . For all Ω∈hg, , define 
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}0,),)(,()),()((|0inf{),(
3

1 >∈−≥−>= tXxtkkxNtKxhxgNKhgd
q

 

where 1N  is defined as in Lemma 5. Then d  is a 

generalized complete metric on Ω . 
 
Proof:  The proof is similar to the proof of Lemma 3 by 
Mirmostafaee (2009).  
 

Theorem 1: Let }1,1{−∈j  be fixed and 0>jα such 

that 1)2/( <j
jα . Let ZXX →×:ϕ  be a function with the 

following property: 
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for all Xyx ∈,  and 0>t . Let YXf →:  be a function 

with 0)0( =f  and satisfies the inequality 
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for all Xyx ∈,  and 0>t . Then there exists a unique 

additive function YXA →:  such that: 
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                                                                                  (29) 
 

for all Xx ∈ , where 1N  is  defined as in Lemma 5. 

 

Proof: Consider the set }0)0(|:{ =→=Ω gYXg  and 

introduce the generalized metric on Ω ,  
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Then d  is a generalized complete metric on Ω  by 
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for all Xx ∈  and 0>t . Hence, 
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for all 0, >∈ tXx . By definition, KJhJgd
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of Ω  with Lipschitz constant jp
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and therefore, by Lemma 4, J  has a unique fixed point 
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This means that (29) holds. Now we show that A  is 
additive. By (26) and (30), we have: 
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for all Xx ∈  and 0>t . So )(2)2( xAxA =  for all Xx ∈ . 
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for all Xyx ∈,  and 0>t . The first six terms on the right 

hand side of the above inequality tend to 1 as ∞→n  by 

(30) and the seventh and eighth terms tend to 1 as 

∞→n  by (27). Therefore 1)),,(( →tyxDAN  for all 0>t . 

Then, A  satisfies (1). By Lemma 3, the function 

)(8)2( xAxAx −→  is additive. Hence )(2)2( xAxA =  

implies that A is an additive function. 
To prove the uniqueness assertion, let us assume that 

there exists an additive function YXT →:  which 

satisfies (29). Then T  is a fixed point of J  in ∆ . 

However, by Lemma 4, J  has only one fixed point in ∆ , 

hence TA = . This completes the proof.  
By a modification in the proof of Theorem 1, one can 

prove the following result: 
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for all Xx ∈ , where 1N  is defined as in Lemma 5.  

Now we establish the generalized Hyers-Ulam-Rassias 
stability of function Equation (1.1) as follows: 
 
Theorem 3: Let 20 << α  and ZXX →×:ϕ  be a 

function with the following property: 
 

)),,((')),2,2((' tyxNtyxN αϕϕ ≥                                  (31) 

and 
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for all Xyx ∈,  and 0>t . Let YXf →:  be a function 

with 0)0( =f  and satisfies the inequality 
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additive function YXA →:  and a unique cubic function 
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for all Xx ∈  and 0>t , where 1N  is defined as in Lemma 
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Proof: By theorems 1 and 2, there exists an additive 

mapping YXA →:0  and a cubic mapping 

YXC →:0 such that 
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for all Xx ∈  and 0>t . Letting 6/)()( 0 xAxA −=  and 

6/)()( 0 xCxC = for all Xx ∈ , it follows from (37) that (34) 

holds. To prove the uniqueness of A  and C , let 
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for all Xx ∈  and 0>t . Hence, 
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for all Xx ∈ and 0>t . By )(2)2( xAxA = , )('2)2(' xAxA = , 

)(8)2( xCxC = , )('8)2(' xCxC = , (31) and (38), we get 
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for all Xx ∈  and 0>t . Therefore 01 =C  by (39) and then 

01 =A . This completes the proof.  

 
The proof of Theorems 4-5 is similar to the proof of 

Theorem 3, hence it is omitted. 
 
Theorem 4. Let 8>α  and ZXX →×:ϕ be a function 

with the following property: 
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for all Xx ∈  and 0>t , where 1N  is defined as in Lemma 

5. 
 

Theorem 5: Let 8,2 << βα  and ZXX →×:ϕ  be a 

function with the following property: 
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for all Xyx ∈,  and 0>t . Let YXf →:  be a function 

with 0)0( =f and satisfies the inequality, 
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for all Xx ∈ and 0>t , where 1N  is defined as in Lemma 

5. 
 
 
Applications of fuzzy stability 
 
Here, we investigate the applications of fuzzy stability to 
the stability of general mixed additive-cubic functional 
equation in quasi p -normed spaces. Hereafter, we will 

assume that X  is a linear space and Y is a p -Banach 

space with p -norm Y|||| ⋅ . We will apply our results in 

Section 3 to obtain the stability of almost mixed additive-
cubic mappings from X  to Y . 
 

Theorem 6: Let ),0[: ∞→× XXϕ  be a function such that 
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Let Xyx ∈,  be a function with 0)0( =f and satisfies the 

inequality ),(||),(|| yxyxDf Y ϕ≤  for all Xyx ∈, . Then 

there exist a unique additive function YXA →: and a 

unique cubic function YXC →:  such that: 
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for all Xx ∈ , where, 
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Proof:  Consider the fuzzy quasi p -norm defined as in 

Example 1, and apply Theorems 3 to 5. 
 

Corollary 1: Let X  be a quasi-normed space with quasi-

norm X|||| ⋅  and let r,ε  be non-negative real numbers 

such that ),3()3,1()1,0( ∞∪∪∈r . Let YXf →:  be a 

function with 0)0( =f  and satisfies the inequality 
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exists a unique additive function YXA →:  and a unique 
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for all Xx ∈ . 

 

Proof: Define )||||||(||),(
r
X

r
X yxyx += εϕ for all Xyx ∈, , 

and apply theorem  6.  

 
Corollary 2: Let X  be a quasi-normed space with quasi-

norm X|||| ⋅  and let sr,,ε be non-negative real numbers 
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for all Xx ∈ . 

 

Proof: Define s
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r
X yxyx ||||||||),(  εϕ = for all Xyx ∈, , and 

apply Theorem 6. This product stability function ϕ  was 

introduced by Rassias (1989, 1982). 
 
Corollary 3: Let X  be a quasi-normed space with quasi-

norm X|||| ⋅  and let sr,,ε  be non-negative real numbers 
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for all Xyx ∈, , and apply Theorem 6. This mixed 

product-sum stability function ϕ  was introduced by 

Rassias in 2008. 
 
 

Fuzzy continuity  
 

Here, we will establish some interesting results of 
continuous approximately general mixed additive-cubic 
mappings in quasi fuzzy p -normed spaces. 

 

Definition 4 (Mirmostafaee, 2009): Let ),( NY  be a (quasi) 

fuzzy normed space, :f R Y→  be a function and 

10 << β . Then f  is said to be β -fuzzy continuous, if for 

each 0>t , there is some 0>δ  such that 

βµµ ≥− )),()(( 0 tffN  for each µ  with δµµ <− || 0 . f  is 

called fuzzy continuous if it is β -fuzzy continuous for 

each 10 << β . 

Hereafter, unless otherwise stated, we will assume that 

10 << p  and pq /1= , ),( NY  is a quasi fuzzy p -Banach 

space and )',( NZ  is a fuzzy normed space. 
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Theorem 7: Let X  be a normed space with norm X|||| ⋅ . 

Let Zz ∈0  and r  be a non-negative real number such 

that ),3()3,1()1,0( ∞∪∪∈r . Suppose that a function 

YXf →:  with 0)0( =f  satisfies the inequality 
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for all Xx ∈  and 0>t . Furthermore, if for each 

Xx ∈ and all ∈n N, the function :g R Y→  defined by 
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Xx ∈ and ∈γ R. 
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Fix Xx ∈ and ∈0µ R. Given 0>ε  and 10 << β . From 

(2) and (3) it follows that: 
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for all 1|| 0 <− µµ  and ∈µ R. Since, 
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and βεµµ ≥− )),()(( 0xCxCN  for each µ  with 

δµµ <−< ||0 0 . Hence, the functions )( xA µµ →  and 

)( xC µµ →  are fuzzy continuous. 

 

Now, we use the fuzzy continuity of )( xA µµ →  and 
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for all ∈nm, N and Xx ∈ . Hence for every rational 

number ∈γ Q, we have )()( xAxA   γγ =  and 
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xCxC   γγ = . Let γ  be a real number, then there 
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For )3,1(∈r  or ),3( ∞∈r , we can prove the theorem by a 

similar technique.  
 

Theorem 8: Let X  be a normed space with norm X|||| ⋅ . 

Let Zz ∈0  and sr,  be non-negative real number such 

that ),3()3,1()1,0(: ∞∪∪∈+= srλ . Suppose that a 

function YXf →:  with 0)0( =f  satisfies the inequality 
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for all Xx ∈  and 0>t . Furthermore, if for each 

Xx ∈ and all ∈n N, the function :g R Y→  defined by 

)2()( xfg
n µµ =  is fuzzy continuous. Then the functions 

)( xA µµ →  and )( xC µµ →  are fuzzy continuous for each 

Xx ∈  and )()( xAxA   γγ =  and for each Xx ∈ and ∈γ R. 
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Proof: Define 0)]||||||(||||||||[||),( zyxyxyx
sr

X
sr

X
s
X

r
X

++ ++=  ϕ  

for all Xyx ∈, . The proof can be done on the same lines 

as in Theorem 7. 
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