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In this paper, we use the fixed point alternative theorem to establish Hyers-Ulam-Rassias stability of the
general mixed additive-cubic functional equation where functions map a linear space into a complete
quasi fuzzy p-normed space. In addition, some applications of our results in the stability of general
mixed additive-cubic mappings from a linear space into a quasi p-normed space will be exhibited.
Finally, we establish some results of continuous approximately general mixed additive-cubic mappings

in quasi fuzzy p-normed spaces.
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INTRODUCTION

One of the most interesting questions in the theory of
functional analysis concerning the Ulam stability problem
of functional equations is as follows: when is it true that a
mapping satisfying a functional equation approximately
must be close to an exact solution of the given functional
equation? In 1940, Ulam (1960) posed the famous Ulam
stability problem. In 1941, Hyers solved the well-known
Ulam stability problem for additive mappings subject to
the Hyers condition on approximately additive mappings.
He gave rise to the stability theory for functional
equations.

In 1950, Aoki generalized Hyers' theorem for
approximately additive functions. In 1978, Rassias
provided a generalized version of Hyers for approximately
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linear mappings. In addition, Rassias et al. (2009, 2001,
1989, 2005, 2008, 2010, 2011) generalized the Hyers
stability result by introducing two weaker conditions
controlled by a product of different powers of norms and a
mixed product-sum of powers of norms, respectively. In
2001, Rassias introduced the pioneering cubic functional
equation:

Fx+2y)=3f(x+y)+3f(0)—f(x=y)=6f(y)

and established the solution of the Ulam stability problem
for this cubic functional equation. Sadeghi and Moslehian
(2008) proved the generalized stability of the cubic type
functional equation,

FQx+y)+ fQRx=y)=2f(x+y)+2f(x=y)+12f(x)

and another functional equation,

Flloc+ )+ F (e k) = e+ Dk =DLF ) + O+ kK +Df (x+ ),
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where k is an integer with k£ #0,x1in the framework of
non-Archimedean normed spaces.

The idea of fuzzy norm was initiated by Katsaras (1984).
Later, several notions of fuzzy norm have been
introduced and discussed from different points of view
(Cheng and Mordeson, 1994; Krishna and Sarma, 1994).
In particular, Bag and Samanta (2005) gave a definition of
a fuzzy norm in such a manner that the corresponding
fuzzy metric is of Kramosil and Michalek type (1975).
They also studied some properties of the fuzzy norm
(2005). The notion of fuzzy stability of the functional
equations was given by Mirmostafaee and Moslehian
(2008). Later, several various fuzzy versions of stability
concerning Jensen, cubic, quadratic and mixed additive-
cubic functional equations were investigated (Mihect,
2009; Mirmostafaee, 2009; Mirmostafaee et al., 2008; Xu
et al., 2010.

In 2003, Radu noticed that a fixed point alternative
method is very important for the solution of the Ulam
problem. Mihet (2009) obtained a fuzzy version of a
generalized Hyers-Ulam stability for the Jensen functional
equation employing this method. Mirmostafaee (2009)
established Hyers-Ulam-Rassias stability of the quartic
functional equation in the setting of quasi fuzzy p -normed
spaces using the fixed point method. In this paper, we
consider the functional equation for fixed natural number
kwith k>2:

Syt lkoey)=kfoet) Hfo D21 Ey—2f) (1)

with  f(0)=0. It is easy to see that the

function f(x)=ax’+bx is a solution of the functional

Equation (1), which is called a general mixed additive-
cubic functional equation. We observe that in case k=2
Equation (1) yields mixed additive-cubic equation,

JRAD Qo) =2 ety +2Af CeyH2f 2040

and there are many interesting results concerning the
stability problems of the mixed additive-cubic equation
(Najati and Eskandani, 2008). Therefore, Equation (1) is
a generalized form of the mixed additive-cubic equation.
The main purpose of this paper, is to establish the
generalized Hyers-Ulam-Rassias stability of the functional
Equation (1) where functions map a linear space into a
complete quasi fuzzy p -normed spacea by using the

fixed point alternative. In addition, some applications of
our results in the stability of general mixed additive-cubic
mappings from a linear space into a quasi p-norm space
will be exhibited. Finally, we establish some interesting

results of continuous approximately general mixed
additive-cubic mappings in quasi fuzzy p -normed spaces.

Preliminaries

For the sake of convenience, here, we recall some
notations and basic definitions used in this paper.

Definition 1 (Bag and Samanta, 2003): Let X be a real
linear space. A function N:Xxx R —[0,1] (the so-called

fuzzy subset) is said to be a fuzzy norm on X if for all
x,ye X andall s,re R:

(N1) N(x,¢)=0 forall ¢<0;

(N2) x=0 if and only if N(x,c)=1 forall ¢>0;
(N3) N(cx,t)=N(x,t/lcl) if c20;

(N4) N(x+ y,s+1) 2min{N(x,s), N(y,1)};

(N5)

N5) lim N(x,7)=1.

t—o0

A fuzzy normed space is a pair (X,N), where X is areal
linear space and N is afuzzy normon X .

Definition 2 (Mirmostafaee, 2009; Rolewicz, 1984): Let
X be a real linear space. A quasi-norm is a real-valued
function on X satisfying the following:

(1) lx1>0 forall xe X and llxll=0 if and only if x=0;
(2) lexl= el xll forall reRand all xe X ;

(3) there is a constant M >1 such that,
lx+ylKMUlxll+1lyll) forall x,ye X .

A quasi-normed space is a pair (X,ll-1), where -l is a

quasi-norm on X . The smallest possible M is called the
modulus of concavity of Il-Il. A quasi-Banach space is a

complete quasi-normed space. A quasi-norm -1l is
called a p-norm (0< p<1) if lx+ylI?<IxII” +1l ylI” for
all x,ye X .

In this case, a quasi-Banach space is called a p -

Banach space. By the Aoki-Rolewicz theorem (1984),
each quasi-norm is equivalent to some p-norm. Since it

is much easier to work with p-norm than quasi-norms;
henceforth, we restrict our attention mainly to p -norms.

Definition 3 (Mirmostafaee, 2009): Let X be a real linear
space. A function N:Xxx R —[0,1] is said to be a quasi

fuzzy norm on X ifforall x,ye X and all s,z R:

a) N(x,c)=0 forall ¢<0;

b) x=0 ifand only if N(x,c¢)=1 forall ¢>0;

C) N(ex,t)=N(x,t/lcl) if c#0;

d) there is a constant M >1 such that,
N(x+y,M(s+t)) 2min{N(x,s),N(y,t)} forall x,ye X ;
e)

lim N(x,)=1.

1—o0

(
(
(
(

(



A quasi fuzzy normed linear space is a pair (X,N),

where X is a real linear space and N is a quasi fuzzy
norm on X . A quasi fuzzy norm N is called a quasi
fuzzy p-norm if

N(x+ y s +1) 2 min{N(x,{s), N, {)
forall x,ye X andall s,>0.

Lemma 1: Let (X,N) is a fuzzy normed space (quasi
fuzzy p-normed space). Then N(x,t) is non-decreasing
with respect to ¢ (0,) for each xe X .

Proof. Let s,re (0,) such that s>¢. Then h=s—1t; for
each xe X , we have:

N(x,s)=N(x+0,t+h)>min{N(x,1),N@,h)} = N(x,1)

or

o) =N+l +Hs” =) =minMot) Mol s” — ) =Mas )

Example 1 (Mirmostafaee, 2009): Let (X,II-1) be a p -
normed space. For all xe X , consider

t

N(x.f)= t+Il x|l

0, t<0.
Then (X, N) is a quasi fuzzy p-normed space.

Definition 3: Let (X,N)be a quasi fuzzy normed space.
Let {x,} be a sequence in X . Then {x,} is said to be
convergent if there exists xeX such that
lim N(x,—x,t)=1 for all r>0. In that case, x is called

n—oo

the fuzzy limit of the {x,} and we denote it by

N-lim x,=x. A sequence {x,} in X is said to be a
n—oo

Cauchy sequence if lim N(x,,,—x,,t)=1 for all r>0
n—oo

n+p

and p=123,.... It is known that every convergent

sequence in a quasi fuzzy normed space is a Cauchy
sequence. If every Cauchy sequence is convergent, then
the quasi fuzzy norm is said to be quasi fuzzy complete
and the quasi fuzzy normed space is called a quasi fuzzy
Banach space. A complete quasi fuzzy p-normed space

is called a quasi fuzzy p-Banach space.
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Stability of functional equation in the fuzzy setting

From now on, unless otherwise stated, we will assume
that 0< p<1 and ¢g=1/p are a real vector space, (Y,N)

is a quasi fuzzy p-Banach space and (Z,N') is a fuzzy

normed space. Utilizing the fixed point alternative, we will
establish the following new stability for the generalized
mixed additive-cubic functional equation in quasi fuzzy
p -Banach space. For convenience, we use the following

abbreviation for a given function f: X —7Y:
Df(x,y) = f (kx+ y) + f (kx—y) =kf (x+ y) = kf (x= y) =2 f (kx) + 2kf (x)

forall x,ye X .

We start with the following lemma which plays a crucial
role here.

Lemma 3 (Xu et al., 2011): Let f: X —Y be a function
with f(0)=0 and satisfying Equation (1), then the
function G(x)=f(2x)—-8f(x) is additive and
H(x)=f(2x)—2f(x) is cubic.

For explicitly later use, we recall the following result by
Diaz and Margolis.

Lemma 4 (The fixed point alternative theorem, (Diaz and
Margolis, 1968): Let (Q,d) be a complete generalized

metric space (that is one for which 4 may assume infinite
values) and J:Q — Q be a strictly contractive mapping
with Lipschitz constant 0< L <1, thatis

d(Jx,Jy)< Ld(x,y) forall x,ye X .

Then, for each given xe Q , either d(J"x,J"'x)=oo for

all n>0 or d(J"x,J""'x)<e for all n>n, for some
natural number n, . Actually, if the second alternative

holds, then the sequence {J"x} is convergent to a fixed
point x* of J and

(1) x* is the unique fixed point of J in the set
A={yeQ:d(J"x,y) <o};

(@) acy,yy < d(y,Jy) forall ye A.

1-L

Lemma 2: Let f:X —7Y be a function with f(0)=0 for
which there is a function ¢: X xX — Z such that:

N(Df (x,y),) 2 N'(¢(x, y),1) (1)

forall x,ye X and r>0. Then,
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N(f(4x)—10f(2x)+16f(x),t)ZNl(x,(k3—k)t) (2)
forall x,ye X and r>0, where,

t
N 1) = i N' ’2k 1 s )
(o) =min(V (@ k+ D))

t t
N'(¢(x, (2k—1)x), N (@(x3kx),——),
(Ax, (2k=1)x) 384%) (¢l )38 7

k=Dt t
N'(¢(0,(3k—1)x),——),N'(¢(2x,2x),——),
(PO.Bk=D). e - N (2629, 0 3)

N'(@0, (k+1>x>,@>,1v'<¢(x, ko),

I (

((0,2kx )s

96” (k+1)

N'((/’(2x2kX) )N'((/’(3XX) )N'((/’(2 X)

N(Ax, (k+1)X) )N'((/’( x, (k= 1))6) )

x (2k+1Dx
2
X 3kx t

VO e

N'(¢(0,x )—) N'((2x,kx), —) N'((/’( )s

t x (2k-1Dx t
’N' )
),N' (¢ ), 384"k

384k 27 2
(kD) (k- t
N'(¢0,—— N (Pxx),——
@0, 384%) (px,x) %q 3
(k+1)x LGRS
96”k ((/)(2 2 96”

( (0.kv,

)s

N'(@0,—2

Nl

)}

96”(k +1)
Proof: Letting x=0 in (1), we get
N(f D+ f 3,02 N' (@0, y), (k =) (3)
forall ye X and ¢>0. Putting y=x in (1), we have
N(f ((k+Dx) + f ((=Dx) —kf (26) =2 f (kx) + 2kf (x),1) 2 N' (@A, ). 1)
(4)
forall xe X and r>0. Hence,

N(fQ(k+1D)x)+ £k = Dx) — kf (4x) — 2 f (2kx) + 2kf (2x),1)
> N'(@(2x,2x),1)
(5)

forall xe X and ¢>0. Letting y=kx in (1), we get
N(f (2kx) —kf (k +1)x) = kf (—(k —1)x) =2 f (kx) + 2kf (x),1)

> N'(¢(x, kx), 1)
(6)

for all xeX and r>0. Letting y=(k+Dx in (1), we
have

N(f((2k +Dx) + f(=x) = kf ((k +2)x) = kf (=kx) =2 f (kx) + 2kf (x),1)
2 N'(¢(x,(k+1)x),t)

(7)

for all xeX and r>0. Letting y=(k-Dx in (1), we
have

N(f((2k =Dx) = (k +2) f (kx) = kf (=(k =2)x) + (2k +1) f (x), 1)
2 N'(p(x,(k=1)x),1)

(8)

for all xe X and r>0. Replacing x and y by 2x and
xin (1), respectively, we get

N(f(2k+Dx)+ f((2k=1)x) =2 f (2kx) — kf (3x) + 2kf (2x) — kf (x),1)
> N'(p(2x,x),1)

(9)

forall xe X and ¢ >0. Replacing x and y by 3x and x
n (1), respectively, we get

N(f(Bk+1Dx)+ f((Bk—1)x)—2f (Bkx) —kf (4x) — kf (2x) + 2kf (3x),1)
> N'(9p(3x,x),1)
(10)

for all xe X and r>0. Replacing x and y by 2x and
kx in (1), respectively, we have:

N(f Bkx)+ f (kx)—kf ((k +2)x) —kf (—(k —2)x) =2 f (2kx) +2kf(2x),t)
= N'(¢(2x,kx),t)
(1)

for all xe X and r>0. Setting y=Q2k+1Dx in (1), we
have

N(f(Gk+D)x) + f ((k+1Dx) —kf(2k +1D)x) —kf(=2kx) =2 f (kx) + 2kf(x).1)
>N (@x, 2k+1Dx) 1)

(12)
for all xe X and ¢t>0. Letting y=Q2k-Dx in (1), we
have

N(f (Gk =Dx)+ f ((k=1)x) =kf(=2(k = 1)x) = kf(2kx) =2 f (k) + 2Kkf(x).1)
=N (p(x,(2k—Dx),1)
(13)

forall xe X and ¢ >0. Letting y=3kx in (1), we have,
N(f (dhx) + f (=2kx) = kf (Bk +1)x) —kf (=(Bk —1)x) = 2.f (kx) + 2kf (x),1)

> N'(¢(x,3k0),1)
(14)



for all xe X and r>0. By (3), (4), (10), (1
we get

2), and (13),

N Uk +1)x) +kf =2k —I)X) +6/ (k) —2f 3k —kf (@) +2kf(3x) —6kf (0.0

>min{V (@(x, (2%k— l)x) )N((p(x (2k+1)x) )N((p(3x x)

- 1
Mgt L), N & Dt)N((AO(k 1))( )t)
N @02k, @ I?t)}

(15)
forall xe X and ¢>0. By (3), (7) and (8), we have
Nk +1)0)+ F(2k~10)~kF (k+2)0)~kf (~(k —2)) — &£ (k) +4kF (2).1)

2 min{N (p(e. -+ 20,0, N (0., (k= D’)
, , (k Dt
N (@ (k=D N (9100, £ 00) (16)

forall xe X and ¢>0. It follows from (9) and (16) that:

N (KF (k+20)+Af (~(k ~2)2)— 2 (k) +4f (k) —kf (32) + 24 (2)—Skf (1), 1)
znﬁn{N'(w@mx)é;N'(w(m <k+1>x>,i,),1v'<¢<x, <k—1>x>,§>,

(k l)t (k l)t

N'(@(0,x), ) N'(@(0, kx), )

(17)
forall xe X and ¢>0. By (11) and (17), we have
N(f(3106)—4f(2106)+5f(106)—19‘(3x)+419‘(ZX)—519‘(x),t)
2min{N (¢(29@x) )N((/’(J@(k+l)x) )N((/(x(k l)x) )
)

N '((/(O,x )

)} (18)

for all xe X and r>0. By (3), (12), (1
have

3) and (14), we

Nk (~(k+1)2) =kf (~(k =Dx) = k* f 2k +1D)x) +&° f (=2(k=1)x)
+k* f (2hn) = (K —l)f(—ZkX) +f (4kx) = 2 f (k) + 2kf (x),1)

2min{N (@(x, 2k +1)x),— o L) N, 2k - l)x),4qk)
(k=1

o ! (19)

N'(¢(x, 3kx), q), N'(9(0,(3k = D),

for all xe X and ¢>0.
(19) that

It follows from (3), (5), (6) and

N(f (40 =2f (2k0) =k f (4X)+2k3f (2x).1)

7)

(k l)t (k l)t

N0,k =10, =5 N (@25, 20),

(

)

N (@l k), —) N'(@(0. 2k~ 1)),

)N(¢(0 2kx),

67(k +1))} (20)
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forall xe X and ¢ >0. Hence,

N(f (2ko) =2 f (k) =K’ £ (2x)+ 2K f (x), 1)

x (2k +1)x t x (2k Dx. ¢t X & ot
2min{N (0. g Ve DNV PG
(3k D, (k=D (k+1)x (k=
N0, 1 M @ 0. N (0. S S,
N 550 W 0.6 -00. 500 N 0.k )

27276 64(k+1) (21)

forall xe X and ¢>0. By (6), we have,

N( f (o) —kf (2K +1)x) = kf (=2(k ~1)x)— 2 f (2ko) +24f (2x),1)
> N'((2x, 2k0),1) (22)
forall xe X and ¢>0. From (20) and (22), we have:

N(kf 2k + Dx) + kf (—2(k — 1))() —Kfdx)+ 2k - 2k)f(2x) 1
> min(N(p(x, 2k + D), ). N (p(x, (2K = D).

(k— >t
487k

N (9 3k),

48”>

( 1):

N'(¢(0,(3k —1)x),———),N '(¢(2x,2x),

12¢
( >

) N'((0, (k +1x),

),

N'((x, kx), 7) N'((0,2(k =D)x), 7, N ((0, 2kx), L

12k +1)"
N'(p(2x, 2kx),2—q)} (23)
forall xe X and ¢>0. Also, from (15) and (23), we get

N(2f(3kx)—6f(kx)+(k—k?)f(4x)—2kf(3x)+(2k? —2k)f(2x)+6kf(x) t)

> min (N (p(x, 2k + D), 5 2. N (@3, (k=) o

N0,k ) DN (p(2x. 20, N (@0, (k+ ). (2 4qlk>’>,
e >
N (90,260, o,
N (25,200, )N (90 0N 900, 6 =00. E 0N oo

' (24)

forall xe X and r>0. On the other hand, it follows from
(18) and (24) that,

N(Sf(ka)—léf(kx)+(k—k3) £(4x)+ (2K —10k), f(2x)+16kf(x) 7

2 min( N (s 2k 1201070 N (@ 2k =), 0. N (G 3k, 1924)
N(9(0.Gk-D0. D’)N(q»(z 20— )N 0.+ 1, 20,

N (@) )N (020 =02, S0, (0.2, m)

NPx200, N (@350, N (00,6 =0, DD N (.0,
N'(pQ2x, x),i), N(@(x, (k+1)x), ;W)’ N(@(x, (k — 1)), ;W)’

N (0000 20 W (0100 S0 N pla ) ) (25)

forall xe X and ¢ > 0. Finally, by using (21) and (25), we
get (2).

Lemma 6: Let ¢:XxX —>Z be a function and
Q={g:X >YI g(0)=0}. Forall g,he Q, define



318 Int. J. Phys. Sci.

d(g.h)=inf{K >01 N(g(x)—h(x),K%) > N, (x, (k> —k)r),xe X,t >0}

where N, is defined as in Lemma 5. Then 4 is a
generalized complete metric on Q.

Proof: The proof is similar to the proof of Lemma 3 by
Mirmostafaee (2009).

Theorem 1: Let je{-11} be fixed and a;>0 such

that(a;/2)’ <1. Let ¢: X xX — Z be a function with the
following property:

N' (927 x27 y).0) 2 N' (] (. y).1) (26)
and
lim V(@2 x,2" ) 2"71) =1 27)
Nn—0

for all x,ye X and t>0. Let f:X —»Y be a function
with f(0)=0 and satisfies the inequality

N(Df(x,y),t) 2 N'(¢(x, y).1) (28)

for all x,ye X and ¢+>0. Then there exists a unique
additive function A: X — Y such that:

N(f (20 -8f () —AX).H =N (x,(k —k) | of =27 17 1)
(29)

forall xe X , where N, is defined as in Lemma 5.

Proof: Consider the set Q={g: X —->Y1g(0)=0} and
introduce the generalized metricon Q

d(g,h)=inf{K >01 N(g(x)—h(x),Kt) > N,(x, (k> —k)r),xe X,t >0}

Then d is a generalized complete metric on Q by
Lemma 6. Define a function J:Q—>Q by

Jg(x):%g(zfx) for all xeX . Let d(g,k)<K , by

definition, N(g(x)—h(x),K%) > N,(x,(k* =k)) , for all
xe X,t>0. By (26) and the definition, we get

N g2/ )27 W20 27 K 2 N2 x, (6 ko0 2 Ny (x, (6 ~ k) 1)
forall xe X and r>0. Hence,

NQ7 g2 9)=27 W2 x).K(@;12) 1) 2 Ny (x, (ko)

for all xe X,r>0. By definition, d(Jg,Jh) <(a; /2" K .

Therefore, d(Jg.Jh)<(a;/2)"d(g.h), for all g.heQ .
This means that J is a strictly contractive self-mapping
of Q with Lipschitz constant (a;/2)” .

Now, let f:X Y be the function defined by

f(x)=f(2x)—-8f(x) for each xe X . By (2) of Lemma 5,
N(f(2x)=2f (x).1) 2 Ny(x,(k* —k)), then we see that

N(F@) —%f(zxx%r) > N, (x, (6 = )
and

N(f(x) - 2f(§>,r> >N, (g, (k> —k)t)= N, (g, (k> —k)ar_y1)

forall xe X and ¢ >0. Hence,

e,
1727, j=1,

d(f,ff)s{ J="k

and therefore, by Lemma 4, J has a unique fixed point
A:X >Y inthe set A={ge QId(f,g)<e}, where A is
defined by

A(x):=N - lim J" f(x) = N — lim n F(2"x) (30)
n—oo n—o0 2"/
for all xe X . Moreover,

~ 1, ~ = 1
d(f,A)s——d(f,Jf) S———.
G ad s,

This means that (29) holds. Now we show that A is
additive. By (26) and (30), we have:

N(A(2x) - 2A(x),1) = N(AQ2x) - 2—1] F" %)+ 2—1] F27 )= 24(x),1)

1
2nj+l

t
2q+l

2 min( N(AQ2%) -— fem x>,2’—q),1v( £ x) - Ax),

1
I

)}

—1 (n— )

for all xe X and +>0. So A(2x) = 2A(x) for all xe X .
Replacing x,y by 2"x,2"y, respectively in (28) we have:

N(Zin Df(2"x2" y),t)2 N'(@(2"x,2" y),2"1)

for all x,ye X and r>0. On the other hand, it can be
easily verified that,

Df (x,y) = Df (2x,2y) —8Df (x, y)



forall x,ye X . Hence,

NDAX, y).1)
= N(A(kxt+y) +Alkx—y) —kAx+y) —kAx—y) = 2A(kx) )+ 2kAx).1)

fev Gt y)) t f FQV(o—y) 1
2v

>minN(A(kx+y)— ) N(Akx—y)————,—),

2”/ 8’]
nj .
F@ry) ) A(x_y)_f(Z @) 1
2 8%k 2 8k
f(2"/k)0 t f(2"/x) t
S MAW= S,

N (@22 ) 2740, N (@2 527 ) 277 1))

NAMXx+y)—

N(A(kx)—

for all x,ye X and ¢t >0. The first six terms on the right

hand side of the above inequality tend to 1 as n — « by
(30) and the seventh and eighth terms tend to 1 as
n— o by (27). Therefore N(DA(x,y),r) —1 for all t>0.
Then, A satisfies (1). By Lemma 3, the function
x— AQ2x)—-8A(x) is additive. Hence A(2x)=2A(x)
implies that A is an additive function.

To prove the uniqueness assertion, let us assume that
there exists an additive function T:X —Y which
satisfies (29). Then T is a fixed point of J in A .
However, by Lemma 4, J has only one fixed point in A,
hence A =T . This completes the proof.

By a modification in the proof of Theorem 1, one can
prove the following result:

Theorem 2: Let je {

(B;18) <1 .
following property:

N' (@27 x27 y).t) = N' (B o(x, y).1)
and

lim N'(@p(2" x,2" y),8" 1) =1

n—oo

for all x,ye X and t>0. Let f:X —»Y be a function
with fO)=0 and  satisfies  the  inequality
N(Df (x,y),t) 2 N'(¢(x, y),t) for all x,ye X and ¢>0 .

Then there exists a unique cubic function C: X — Y such
that

N(fQ2x)=2f(x)—C(x),t) 2 Nl(x,(k3 -k)l ,b’/’? -8717¢)
forall xe X , where N, is defined as in Lemma 5.

Now we establish the generalized Hyers-Ulam-Rassias
stability of function Equation (1.1) as follows:

-L1} be fixed and S; >0 such that
Let ¢:XxX —Z be a function with the

Theorem 3: Let O0<a<2 and ¢:XxX —>Z be a
function with the following property:

N'(¢(2x,2y),1) > N'(ap(x, y),t) (31)
and
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lim N'(p(2"x,2" y),2"t) =1 (32)
n—oo

for all x,ye X and t>0. Let f:X —»Y be a function
with f(0)=0 and satisfies the inequality

N(Df (x,y),) 2 N'(¢(x, y),1) (33)

for all x,ye X and ¢r>0. Then there exist a unique

additive function A: X —Y and a unique cubic function
C:X —Y such that

3 _ P _ P\d
N = AW) - C).0 2 N, (6 2K ")(; @)1y (34)

forall xe X and ¢ >0, where N, is defined as in Lemma
5.

Proof: By theorems 1 and 2, there exists an additive
mapping A,:X —>Y and a cubic mapping

Cy: X — Y such that

N(f(2x) =8 (x) = Ay(x),) = N, (x, (k> =k)(2" —a")?1) (35)
and

N(f(2x)=2f(x)—Cy(x),t) = N, (x, (k* —k)(18” —a?)r) (36)

forall xe X and ¢ >0, where N, is defined as in Lemma
5. Therefore from (35) and (36), we get

6(k> —k)(2P —aP)'t
)
211

N(f () +—— 2N (x, (37)

Ao (%) Co (%)
6

for all xeX and r>0 . Letting A(x)=-4,(x)/6 and
C(x)=Cy(x)/6for allxe X , it follows from (37) that (34)

holds. To prove the uniqueness of A and C , let
A',C': X —Y be different additive and cubic mapping

satisfying (34). Let A, =A-A"and C;,=C-C". So

N(A (D) +C(0),1) = N(AX) +C(x) = f () + f(0)-A'(x)-C'(x),0)
> min{ N(A(x)+ C(x) = f(x),t/29),N(f(x) = A'(x) = C'(x),1/29)}
> Ny (x,6(k> —k)(2P —aP)7t147)

forall xe X and ¢ >0. Hence,

N(Cy(x),1) = N(Cy(x) + A (x) — A (x),1)
> min{V(Cy () + A (0,11 27), N (A, (x),£/29)) (38)
2min{N,; (x,6(k3 —k)(2p —a'p)qt/Sq),N(Al (x),t/Zq)}
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forall xe X and r>0. By A(2x)=2A(x), A'(2x) =2A'(x) ,
C(2x)=8C(x),C'(2x)=8C"(x), (31) and (38), we get
N(Cy(x),0) = N(C; (2" x).8"1)

> min{ Ny (2" x,6(k> —k)(2P —a?)18" 1), N(A(x),2*" 1)}

> min{ N (x,6(k* ~k)(2F —a?)18" 11/ a"),N (A (x),2*" 1)}

—>1(n—>)

(39)

forall xe X and ¢>0. Therefore C, =0 by (39) and then
A, =0. This completes the proof.

The proof of Theorems 4-5 is similar to the proof of
Theorem 3, hence it is omitted.

Theorem 4. Let ¢ >8 and ¢: XxX — Z be a function
with the following property:

N (@p(x/2,y/2),t) 2 N'(¢(x, y), )

and lim N'(p(2™"x,27"y).87"n) =1 for all

n—oo

x,ye X and
t>0. Let f:X —>Y be a function with f(0)=0 and

satisfies the inequality, NMDfX,y),))2N (@x,y),1), for
all x,ye X and r>0. Then there exists a unique additive

function A:X —-Y and a unique cubic function
C:X —Y such that,

60> — k)@ —8”)"t)

N(f(x)—A(x)—C(x).H) 2 N (x, -

forall xe X and ¢ >0, where N, is defined as in Lemma
5.

Theorem 5: Let 2<& /<8 and ¢:XxX —Z be a
function with the following property:

N'(@(x/2,y/2),0) 2 N'(p(x, y),0n),N'(@(2x.2y),0) 2 N' (S, ).1)

and

m N (@27 %27 y) 27" =1, im N' (2" x,2" y) 8"1) =1
n—xo n—oo

for all x,ye X and r>0. Let f:X—Y be a function
with f0)=0 and satisfies the inequality,

N(Dfix,y),)) 2N (@x,y),0) , for all x,ye X and >0 .

Then there exists a unique additive function A: X —Y
and a unique cubic function C: X =Y such that:

N(f (%)= A(x) = C(x).1)
3 3
6(k> —k) (P — 2p)qt),N1(x, 6(k”> —k)(8” — BP)t
21 21

2 min{V, (x,

)}

for all xe X and >0, where N, is defined as in Lemma
5.

Applications of fuzzy stability

Here, we investigate the applications of fuzzy stability to
the stability of general mixed additive-cubic functional
equation in quasi p -normed spaces. Hereafter, we will

assume that X is a linear space and Y is a p -Banach
space with p -norm II-1l, . We will apply our results in

Section 3 to obtain the stability of almost mixed additive-
cubic mappings from X to Y.

Theorem 6: Let @: X XX —[0,%) be a function such that
one of the following holds:

(i) for some a<2 , @2x2y)<ap(x,y) and
lim 27" 2" x,2"y)=0 forall x,ye X ;
(i) for some a>8 , ap(x,y)<e2x2y) and

lim 2" @(2™"x,2™" y)=0 forall x,ye X ;

n—oo

(iif) ap(x,y) < e(2x,2y)
P(2x2y)< Bp(x,y) and 1lim2"@(2"x27"y)=0 and

for some 2<a,B<8 |,

lim2™" (2" x,2" y) =0 forall x,ye X .
n—>o0
Let x,ye X be a function with f(0)=0and satisfies the

inequality || DAix, Y)Ily<@(x,y) for all x,ye X . Then
there exist a unique additive function A: X —Y and a
unique cubic function C: X — Y such that:

2 1(x)

6K -k~
21 1(x)

6 ke &)
2 1(x)

6 ke -2
2 1)

Q-8 -

, O<a<2

Il fG)—A)—AX)lly<
2<ao<R2< <8 2" —c)?

, 2<a<R & -2 ),

forall xe X , where,

s



9
H(x) =max {3847k x, (2k +1)x),384" kg x, (2k —1)x), 384 ¢ x, 3/0:),% @0, (3k—Dx),
2 96"k 967 k>
96K (20, 20). 910, (k+10. 96 9L ).~~~ 0.2~ 96 (k +1x0. 2k,

167 (2, 24x), 567 (3, x), 32 A2, x), 128! x, (k +1)x), 128 ﬂx,(k—l)x),% ?0,%),

- 3847k
e R !

d
96" kzﬂx,x),—(jf ’; o0, ;Dx

0,Gk=Dx
k-1 2

)

),967 ﬂ% ,%),% A0, (k—1)x), 96" (k+1)¢x0,kx) }.

Proof: Consider the fuzzy quasi p -norm defined as in
Example 1, and apply Theorems 3 to 5.

Corollary 1: Let X be a quasi-normed space with quasi-
norm Il-lly, and let &,r be non-negative real numbers

such that re (0,H)U(3)uUB,~) . Let f: X Y be a
function with f(0) =0 and satisfies the inequality
I Df (x, ) Ily< el xlly +11ylly) for all x,ye X . Then there

exists a unique additive function A: X — Y and a unique
cubic function C: X — Y such that:

76872 ’
3 elly o
(3 —k)@P —2'7)1
7687 -3 kel xll
3 b4 17x ZIX o e (3’00);
I f) =A@ -Cly<] &~k =87
7687 -3 kel x 11 o In@8” —27)—1In2
, T 5 5
& —k)@? —27)4 pin2
7687 -3 ke xll% e (ln(8” -27)—In2 3
&3 —k)8” =277 pln2 ”

forall xe X .

Proof: Define ¢(x,y)=e(lxlly +1lylly) for all x,ye X ,
and apply theorem 6.

Corollary 2: Let X be a quasi-normed space with quasi-
norm Il-1l, and let €,r,s be non-negative real numbers

such that A:=r+se (0,)U(1,3)U(B3,~). Let f: X =Y be
a function with f(0)=0 and satisfies the inequality
I Df (x, ) IIly<ellxlly I ylly for all x,ye X . Then there

exist a unique additive function A: X —Y and a unique
cubic function C: X — Y such that:

20 id
T8RNy oy,
23 —ky? 2%

A1 A+ 4
7681 .34k gllx"x’ Ae (3,%);

2k —k) (2% —8P)4
7681 37 kMgl x4
243 _k)(zﬂp —2Pyd ’ pln2
7687 -3+ Mg x1E _ n@®”-27)-In2
2(k3 —k)@®” _221’)11 ’ pln2

I —AX)-C(x)lly<
F ()= AD) =C@ Ny 7 —27)in2.

>

3,
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forall xe X .

Proof: Define ¢(x,y)=¢ellxlly Iyl for all x,ye X , and
apply Theorem 6. This product stability function ¢ was
introduced by Rassias (1989, 1982).

Corollary 3: Let X be a quasi-normed space with quasi-
norm Il-1l, and lete,r,s be non-negative real numbers

such that A:=r+se (0,)U(1,3)U(3,~). Let f: X =Y be
a function with f(0)=0 and satisfies the inequality
Il Df (x, y) Iy < gl x W MLy I, +(x 105 + 1y 1K) for  all
x,ye X . Then there exists a unique additive function

A:X —Y and a unique cubic function C: X —Y such
that:

768" -3kl
2k —k)(2r =2%y1’
768 -3'k* e,
2(k° —k)(2* -8yt

Ae (0,1);

Ae (3,»);
Hf(x)—A(x)—C(x)Hy <

768¢ -3 kM e Al P _ory_
: i |, e In®=2)-m2
2(k* —k)(2* =27y pln2
768" 3"k e | In" ~2")-In2
—’ e —’ b
2(k° —k)(8" =2yt pln2
forall xe X .
Proof: Define
r+s r+s

@(x, ) = el x W 1Ly I +( x5S +1 y 15

for all x,ye X , and apply Theorem 6. This mixed
product-sum stability function ¢ was introduced by
Rassias in 2008.

Fuzzy continuity

Here, we will establish some interesting results of
continuous approximately general mixed additive-cubic
mappings in quasi fuzzy p-normed spaces.

Definition 4 (Mirmostafaee, 2009): Let (Y, N) be a (quasi)
fuzzy normed space, f: R —Y be a function and
0< fB<1.Then f is said to be S -fuzzy continuous, if for
each ¢r>0 , there is some 6>0 such that
N(f()— f(uy),t) = p for each p with lu—yl<d. f is
called fuzzy continuous if it is g -fuzzy continuous for
each 0< fg<1.

Hereafter, unless otherwise stated, we will assume that
O<p<land ¢g=1/p, (Y,N) is a quasi fuzzy p-Banach
space and (Z,N'") is a fuzzy normed space.
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Theorem 7: Let X be a normed space with norm Il .
Let zye Z and r be a non-negative real number such
that re (0,)u(,3)U(3,»~) . Suppose that a function
f:X —>Y with £(0)=0 satisfies the inequality

N(Df (x,9),) = N' (I x Iy, +11 ylly)zo,) for al x,ye X
and ¢ >0. Then there exists a unique additive function

A:X —»Y and a unique cubic function C:X —Y such
that:

. KRy
)#X%W
{ Kk -8
Xz)’ m.g—lkrﬂ
. B2y I —2)n2,
s e ph;“%,
. KRRy §-2)1n2
e

N( t, re@ly

M
N

M

1, re@3es,
NfO)-AN—-A0,1)>

3
(1)

for all xeX and r>0 . Furthermore, if for each
xe X and all ne N, the function g: R —Y defined by
g(w) = f (2" ux) is fuzzy continuous. Then the functions
M — A(ux) and u — C(ux) are fuzzy continuous for each
xe X and A(yx)=yA(x) and C(yx)=y" C(x) for each
xe X and yeR.

Proof: Letre (0,1) . If we define ¢(x, y)=(lxIly +11 yliy)z,
for all x,ye X . Existence and uniqueness of the additive

function A and cubic function C satisfying (1) are
deduced from Theorem 3. Note that for each xe X,re R,
and ne N, by the proof of Theorem 3, we have

n+l n n+l n n
@™ 0-87(2"x) z) N o+ L@D-87Q" D 2
6-2" 6 6
> Ny (2" x, (k> —k)(2P —2'P)42" 1)
(k3 —k)(2P =274 2"z)
2)‘”"

N(A(x)+ )

:Nl(X,

and

n+l n n+l n n
f@™n-2r2"y z) N4 L QD=2 @) 8
6-8" 6 6
> Ny (2" x, (k> —k)@®P —2'7)8" 1)
(> —k)@8P —2P)4 S"t)
2)‘”"

N(C(x)+

:Nl(X,

Fix xe X and g, R. Given £>0 and 0<f<1. From
(2) and (3) it follows that:

FQ" ) -82" o) Hemi (6 —R@P -27)12"
Y VR
(k3 —k)(2P —2'P)92"¢
A+l gy 1y 2™

N(A(u0) +

ZNI(X

and
n+ n 3 4 PyqQn
N(C(M)Jrf@ 1) — n2f(2 ) t)>N( (k k)(Sr ’i )81 f
68 Ll 2
3 n n
>Ny, (k> —k)(8P —2"P)18"t
(+1 gt )" 2"

forall | —u, <1 and ueR. Since,

lim (k> —k)@P —27)12";
nee (141 gt )" 2" n—soo

. (k3 —k)@®P —2'P)18"s
(411 1) 2"

there exists n, € N such that,

~ i+l ~ A
SO -8 ) €

N(A() + ,
6-2" 3¢

and

n+l n
SR -2f 27 o) ANy
6-8" "3

for all |u—u, 1 and pe R. By the fuzzy continuity of

N(C(u) +

the mapping u — f(2™ ux), there exists d <1 such that
foreach x with 0<l -, <1, we have,

NSO =8 @ ) FON 08120 e

—)2p,
6-2" 6-2" 34

and

N(f(2"°+1/0€)—2f(2"°/0€) _f(2"“ﬂox)—2f(2"°ﬂ()X) £ )> B
6-8" 6-8" A
It follows that,

. 2'1\*1 >
N -Agy0,8) >min{NA o+ &A1) e)

62"
f(Z““ﬂx) 82wy f 4)-8F(2 ) €
620 62 3
uf(Z““M}x) B2y €
N 7 2 B



and  N(C(ux)-C(ugx),e)2p for each u  with
O<lyg—pylc 6 . Hence, the functions u— A(ux) and
M1 — C(ux) are fuzzy continuous.

Now, we use the fuzzy continuity of 4 — A(ux) and
M —>C(ux) to establish that A(yx)=yA(x) and
C(yx)=y° C(x) for each xe X and ye R. By induction
on n, one can easily prove that A(nx)=nA(x) and

C(nx)=n>C(x) for every natural number ne N. It follows
that,

AC D = nAt vy =LA, = e x = Y e
m m m m m m

for all m,ne N and xe X . Hence for every rational
number ye Q, we have A(yx)=yA(x) and
C(7x)=73C(x). Let ¥ be a real number, then there
exists a sequence {y,} of rational numbers such that
¥, — v . By the fuzzy continuity of A(ex) and C(ex), for
every xe X ,

A =limA(y,x) =limy, A(x) =yA(), C(px)=lmA(y,x) =91;}15C(X) =y CWw.
For re (1,3) or re (3,00), we can prove the theorem by a
similar technique.

Theorem 8: Let X be a normed space with norm Il .
Let z,eZ and r,s be non-negative real number such
that A=r+se(0,)ud,3)uU(3,=) Suppose that a
function f:X —Y with f(0)=0 satisfies the inequality

N(Df (x,9),6) = N' ([l x 15 11y IS+ x W5 11y 1157)]z0, 1)
for all x,ye X and ¢+>0. Then there exists a unique

additive function A: X —Y and a unique cubic function
C:X —Y such that,

(. 2=l =27y .
Ny ™ gz 1 A<D
k3—k Zﬂﬁ_gﬁ g
Nw‘i%%f Ae(3e0);
MR N 5, K0T 2 - 0@ =2)—ln2,
X 0 768q~31k1+1 4 ]J]nZ 3
A 20 =K@ =27 In(8" —2")—In2
e

for al xeX and r>0 . Furthermore, if for each
xe X and all ne N, the function g: R —Y defined by
g(w) = f(2" ux) is fuzzy continuous. Then the functions
M — A(ux) and u — C(ux) are fuzzy continuous for each
xe X and A(yx)=yA(x) and for each xe X and ye R.
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Proof: Define @(x,y)=[ll xlly I y Iy +(l x5 + 11y 1171z,
for all x,ye X . The proof can be done on the same lines
as in Theorem 7.
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