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Population Aggregation in Ancient Arid Environments
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ABSTRACT. Human societies have adapted to spatial and temporal variability, such as that found in the
prehistoric American Southwest. A question remains as to what the implications are of different social
adaptations to long-term vulnerability of small-scale human societies. A stylized agent-based model is
presented that captures small-group decision making on movements and resource use in ancient arid
environments. The impact of various assumptions concerning storage, exchange, sharing, and migration
on indicators of aggregation and sustainability are explored. Climate variability is found to increase the
resilience of population levels at the system level. Variability reduces the time a population stays in one
location and can degrade the soils. In addition to climate variability, the long-term population dynamics is
mainly driven by the level of storage and the decision rules governing when to migrate and with whom to
exchange.
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INTRODUCTION

A high degree of environmental variability and
uncertainty is the norm in arid and semiarid regions
such as the American Southwest. Much of this
variation is climatic, but these arid and semiarid
systems link not only biophysical processes, but also
social and cultural processes. Plants, animals, and
people have different mechanisms to adapt to spatial
and temporal variability (McAllister et al. 2009,
Janssen et al. 2007). Larger organisms can persist
locally in time if they invest in extensive resource
harvesting structures (such as the root structure of
trees), or have large home ranges (such as dingos)
(McAllister et al. 2009). Humans can adapt to spatial
variability by combining various mechanisms, such
as a nomadic lifestyle, storage of resources, and
trade and exchange of resources (Janssen et al.
2007). The city of Phoenix in the modern American
Southwest extracts resources from all over the
globe. Even for its basic water supply, it must
depend on water resources from hundreds of miles
away (Luck et al. 2001). Such an adaptation is only
possible with relatively cheap nuclear and fossil
energy supplies and sophisticated technology.

Although we observe mobility here to deal with
spatial variability in arid landscapes, the frequency
of mobility is lower than in tropical regions (Kelly
1983). The reason for this is the unpredictability of
successfully finding alternative locations with
sufficient resources in arid environments. When one
can store resources in livestock to buffer the
resource uncertainty, a nomadic lifestyle can be
adopted (Niamir-Fuller 1999). We are interested in
how prehistoric societies adapted to the prehistoric
American Southwest landscape. People in the
prehistoric American Southwest were handicapped
by a lack of domesticated large mammals, such as
horses or camels, which could facilitate transport of
resources or could serve as mobile storage units for
meat, fat, and milk. They were restricted by limited
transport capabilities, which affected their abilities
to adapt to the arid landscape.

Another adaptation to temporal and spatial
variability is storage of resources (Janssen et al.
2007). In prehistoric societies, the ability to store
food resources was limited, but was used for maize,
grain, etc. Stored resources could only last for a few
years, and there was a significant loss of the
resources due to rodents and decay. In a region like
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the American Southwest, a mixture of storage and
exchange of resources between settlements was
used to buffer environmental variability. An
analysis of exchange between settlements (based on
ceramics data) and spatial climate patterns in
ancient New Mexico suggests that distance alone is
not a good indicator of social interactions (Rautman
1993). Because nearby settlements may have
similar rainfall patterns, it is often more beneficial
to exchange with settlements that are further away
and experience different climatic patterns. On the
other hand, kinship relations can facilitate the
strength of exchange networks (Kobti et al. 2006).
Thus, both social and environmental conditions
affect the pattern of exchange of resources.

In this paper, we contribute to the understanding of
vulnerability of prehistoric societies in arid
environments by developing a stylized agent-based
model. We developed a model that captures in a
stylized way important environmental and social
processes of prehistoric societies. Although the
paper is inspired by case studies discussed in other
papers of this special issue, such as the Mimbres,
Hohokam, Zuni, and La Quimada societies, the
model does not aim to represent a specific case. With
the model, we try to derive a more general
understanding of the possible mechanisms
underlying the periods of aggregation and
disaggregation in arid environments. Especially, we
are interested in the role of climatic variability as
well as different social processes of exchange,
storage, and migration.

The model allows us to explore the resilience of
settlements and the population at the system level
to climate variability and resource degradation.
Settlements can be depopulated as a result of
climate-induced migration (Kohler et al. 2008).
However, we will show that climate variability
enhances the resilience and reduces the appearance
of system-level collapse and reorganization
(Gunderson and Holling 2002). Furthermore, we
will show the long-term consequences of
assumptions about storage, decisions to migrate,
and exchange.

Model-based archaeology is increasingly used to
test alternative hypotheses of mechanisms that can
explain observations (Kohler and van der Leeuw
2007). We use agent-based modeling to formulate
our model of households that cope with spatial and
temporal variability. In contrast to some existing
agent-based models of the Southwest archaeology

literature, such as Axtell et al. (2002), Kohler et al.
(2000), and Reynolds et al. (2003), our model
focuses on dynamics occurring on a large spatial
scale. In their models, the focus is on population
movements within a specific region. In our models,
agents also move and maintain an exchange network
between regions. These regions do not represent a
specific case as we are not interested in driving our
model results by the input data, but aim to
understand the consequences of different social
mechanisms for a variety of Southwest-like
landscapes. As Janssen (2009) demonstrated, the
insights of modeling studies of specific cases can
be completely driven by input data. Instead of
looking at one particular landscape, we generate
many different possible landscapes, which may lead
to insights that are less dependent on specific
landscape characteristics. There are some existing
regional models of migration (Young 2002), but
they do not include dynamics of social complexity
such as we include. By social complexity, we refer
here to the inclusion of various response
mechanisms such as storage, sharing, learning,
economy of scale, and exchange. Careful
representation of social complexity and exchange
networks is important if we wish to explore the
reasons why households and communities migrated
large distances in the ancient Southwest.

The model presented here is a preliminary attempt
to develop a model of agents, representing small
groups, making decisions about resource use and
movement. In this paper, we explore the
consequences of different types of adaptations,
ranging from movement, storage, sharing, and
exchange. Introducing more institutional complexity
will be challenging because of the lack of written
records; thus, it will be based on interpretations of
the ethnographic record of contemporary
communities in similar situations. In future
versions, we may include cultural tags, reciprocity,
and kinship networks, but we keep the model in this
paper to the bare bones of a few simple mechanisms.

With our initial model, we focus on the mechanisms
that stimulate aggregation of populations in
landscapes with low productivity and high
uncertainty. Why do the people not distribute
themselves according to an ideal free distribution
(Fretwell 1972), which assumes that individual
resource users will aggregate in various patches
proportionately to the amount of resources available
in each patch? First, we present the model and
explore the results of some typical runs. Then, we
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carry out a sensitivity analysis of the main
parameters of the model. Finally, we present the
results of agents adapting their strategies over time
and explore what kind of strategies agents evolve
in different types of landscapes.

MODEL DESCRIPTION

The model described is a stylized representation of
agents farming the landscape, aggregating in
settlements, sharing resources with other agents and
settlements, and moving to new locations. The
model is based on basic equations frequently used
in social–ecological systems and adjusted to
represent social and ecological processes as
understood in archaeology. The model is not,
however, intended to retrodict specific observations
of the US Southwest, but is used to systematically
explore the consequences of different plausible
assumptions about population dynamics in a
spatially explicit landscape with rainfall variability.
The code of the model is available at http://www.o
penabm.org/model-archive/populationaggregationi
naridenvironments.

The landscape consists of N x N cells. We assume
N to be 20, so the landscape consists of 400 cells.
No specific area is simulated, but to calibrate certain
parameter values, such as travel costs, we assume
that each cell is 10 x 10 km. To avoid edge effects
in this artificial closed system, we represent space
as a “donut-shaped” torus. The model proceeds in
annual time steps, and agents are updated in an
asynchronous way.

An agent represents a number of individuals who
act as a decision-making unit. This is probably an
extended family household or a small number of
households. We assume that each agent represents
the same number of individuals. In the basic model,
agents differ only in location, storage available, and
debt (net amount of resource derived from
exchange) but not in the decision-making rules. In
the last part of the paper, we explore the
consequences of heterogeneity of decision-making
rules.

Agricultural production

Each settlement receives rainfall each time step.
Each cell j has an agricultural production quality Qj 
(e.g., soil fertility). We assume that agents

occupying the cell harvest an amount proportional
to the production quality of the cell and the rainfall
at that time step. Thus, the individual harvest of
agent i, hi is defined as:

(1)

where  is a rainfall signal as discussed below, and
the production quality Qj depends on the available
resources, labor, and technology. In wet years,  >
1, and the agent’s harvest is higher than in an average
year. Note that the rain signal  is not a linear relation
with rainfall as described in the following
paragraphs.

Rainfall

The rainfall signal used here is the annual value of
the Palmer Drought Severity Index (PDSI). The
model uses actual historical sequences of
reconstructed PDSI for the period 900–1500 for a
typical location in the US Southwest (Fig. 1). We
picked the time series of the Cibola region, which
covers the period 900–1500 (Dean 2007). The
Cibola region was occupied for a very long time,
which suggests that these PDSI values are
inherently workable. For our simulations of 10,000
years, we use a sequence that repeats the 600
observations. The objective of the PDSI is to provide
measurements of moisture conditions that are
standardized. This enables comparisons using the
index between locations and between months
(Palmer 1965) (Table 1).

We define a relative production level as a function
of PDSI. We assume that the production level is zero
in the case of an extreme drought (PDSI = -8) and
a normalized one if PDSI is 0. Furthermore, we
assume that in wet years the production level grows
toward a maximum of 50% above the yield in
normal years. In line with the Mitscherlich-Baule
production function (Frank et al. 1990), we define
the rainfall-related production adjustment (Fig. 2)
as:

(2)
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Fig. 1. The time series of Palmer Drought Severity Index that is used as input for the model.
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Table 1. Classifications of Palmer Drought Severity Index.

Value Classifications of Palmer Drought Severity Index

4.0 or more Extremely wet

3.0 to 3.99 Very wet

2.0 to 2.99 Moderately wet

1.0 to 1.99 Slightly wet

0.5 to 0.99 Incipient wet spell

0.49 to -0.49 Near normal

-0.5 to -0.99 Incipient dry spell

-1.0 to -1.99 Mild drought

-2.0 to -2.99 Moderate drought

-3.0 to -3.99 Severe drought

-4.0 or less Extreme drought

In addition to the calculation of  for the landscape,
we assume that there is some spatial heterogeneity
in the value of . We introduce this heterogeneity
by multiplying  by (1 +  ) for each cell, where  
is a draw every time step from a normal distribution
with mean 0 and a standard deviation of 10% (=
0.15).

Agricultural production quality

The agricultural production quality of a cell is
assumed to change with the number of agents
occupying the cell. More labor will lead to modest
increasing returns to scale as they can help each
other prepare the land and harvest the resources.
Furthermore, the production quality of a cell
depends on the relative soil quality. With increasing
use of the cell, soil quality will be reduced because
of erosion processes. In a formal way, the
agricultural production quality of a cell is
represented by a production function with input
resources Rj (representing soil quality), population
size (Pj), and technology, and is formulated as:

(3)

With Pj the population level at the cell j agent i is
located,  the elasticity to labor input, and a is the
relative level of soil quality an agent uses per unit
of food harvested depending on the experience
available within the settlement. For an elasticity of
 equal to 0.2, a doubling of the population on a cell
leads to a 14% increase in production.

Resource dynamics

The relative resource level Rj represents the quality
of the soil. It will decline due to agricultural use and
recover when left fallow. The relative level of the
soil quality on time step t depends on the
regeneration level gr, the degradation factor of the
resource , the carrying capacity Cj, and the
depletion by use, depletion rate  times population
level jPj. The relative resource level is now defined
as a non-linear finite difference equation with
density-dependent regeneration:
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Fig. 3. Net growth curves, Rj (t+1) – Rj(t), for different assumptions of depletion rate and recovery rate
of the resource levels in each cell. For irreversible, we assume  = 2 and gr = 0.1188; for hysteresis, we
assume  = 1 and gr = 0.0844; and for reversible, we assume  = 0 and gr = 0.05.

(4)

If  = 0, the soil quality follows a traditional logistic
equation of resource dynamics of time. This means
that without use of the land, the soil quality recovers
back toward the original level leading to the carrying
capacity Cj. This recovery is like an S curve, with
the faster regeneration rate around half the level of
Cj. Thus, soil quality will always recover. However,
we expect that the ability of soil quality to recover
can decline the more it is depleted. That is why we
also consider cases where  > 0. With values of  >
0, soil quality regenerates more slowly when it is
depleted. This is included to mimic erosion
processes. In the model simulation, we used a
default value of  = 1 and gr = 0.0844 (Fig. 3). As

extreme conditions, we use  = 0 and gr = 0.05, and
 = 2 and gr = 0.1188, where we adjust gr to remain
at the same maximum regeneration rates (see
Appendix). Figure 3 shows the different effects of
the parameters on the net regeneration levels. With
higher values of degradation, the maximum
recovery rate occurs at higher levels of the soil
quality R. Thus, when soil quality R is depleted to
a lower level, it will regenerate very slowly, and
thus, it takes much longer to recover when depletion
is included (  > 0). The depletion of the soil quality
depends only on the number of agents in the cell. It
mimics loss of nutrients, vegetation, and other
resources.

We acknowledge that this formulation is extremely
simplistic, and more comprehensive models of the
ecological processes need to be explored in the
future. For now, it is important that a group of agents
cannot productively use a location forever because
this will lead to depletion of the soil quality.
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Local knowledge

Agents have a certain efficiency in using the soil
quality. The efficiency rate of harvesting a depends
on the cumulative experience of harvesting on that
location. The more experience is accumulated, the
higher the efficiency. This is formulated as follows:

(5)

For each agent, the number of time steps staying at
the cell is taken into account. This enables us to
calculate, tl the sum of the durations of all current
agents at the cell. The parameter lf is the learning
parameter. Agents lose experience in harvesting in
a cell when they leave that cell. Thus, if lf is 1, a is
equal to 0.5 for a new agent exploring a pristine cell.
The second year, a increases to 2/3 and, after 10
years, the relative efficiency is 10/11. When more
agents occupy the cell, the improvement in
efficiency appreciates more rapidly.

Decision making of agents

Agents are assumed to strive to consume a minimum
level of resources, hmin. These resources are derived
from the annual harvest and from storage. When
some settlements have a shortage, they will try to
obtain food through exchange (see below).
However, settlements with a surplus will keep a
minimum amount in storage as a buffer level, b.
Settlements with a production beyond this level may
choose to exchange. We update each step of an
activity for all agents before moving on to the next
activity in the sequence: harvesting, sharing,
exchange, and migration.

Storage

Agents store surplus for up to ys years. When agents
have consumed food from their stock, they first
deplete the oldest stock in storage before they use
resources from more recent years. Each year, a
fraction ls of the storage of the previous years is lost
or not suitable for consumption. If agents share or
exchange, they will only do so with the surplus of
resources beyond the stock level b.

Sharing

A settlement is defined as one or more agents in a
cell. We distinguish three variations of distribution
strategies within a settlement after Hegmon (1996):

 Independent—There is no sharing of harvest
or storage among the households within a
settlement.
 

 Pooling—All storage and harvest is pooled
each year and distributed equally among the
participants.
 

 Restricted sharing—Surplus of households is
shared with households who have a shortage,
up to the point that those households meet the
minimum requirement hmin. When surplus
within a settlement is greater than the
shortage, each agent with a surplus provides
the same share of surplus to those agents with
a shortage. When surplus in a settlement is
less than the shortage, each agent with a
shortage receives an amount so that each
agent with a shortage has the same level of
resources.

 
Exchange between settlements

After calculating the sharing of food for all agents
in all settlements, the model starts calculating the
exchange of resources between settlements.
Between settlements, there is exchange of food in
periods of stress and when the settlements have
exchange relationships. For each location, we
calculate whether there is a shortage. We randomly
draw which settlement with a shortage will be first
to initiate exchange of resources. When there are
other settlements where an exchange is possible, the
agents will obtain resources from a settlement with
a surplus. This procedure is repeated until no
exchange can be made anymore before moving on
to another settlement with a shortage. We
acknowledge that the order in which exchange
between settlements is updated might have some
minor effects on the results if there are many
settlements with shortages. Using data from
Malville (2001), we assume that a fraction of 0.02 *
distance in number of cells is lost, by assuming a
cell size of 10 x 10 km.

However, settlements do not always agree to
provide food to other settlements who ask for it. For
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each agent, we track how much it gives and receives
during exchange interactions. When settlements
exchange, we calculate the average level of debt
(more received than given) for each settlement. A
settlement does not receive additional resources
from another settlement if the average level of debt
of the cell is beyond a maximum tolerable level of
debt dmax.

Moving to another cell

If an agent does not receive the minimum level of
resources it requires (hmin) or when storage is below
a minimum level of the buffer (bm*b), the agent may
consider moving to another location. The agent will
only move to another location when it finds a
location within a radius rmax that is better than its
present location. The agent evaluates a location in
the following way.

Agents take into account that resources are
depleting and calculate what will be the impact of
them moving to that location. They calculate the
expected value of the relative resource R at timestep
t+1. To calculate the expectation, the agent uses the
current level of the soil quality and calculates the
consequence of adding one additional agent moving
to that cell, using the following relationship:

(6)

 
This expectation depends on the expected number
of agents in the cell, which is assumed to be equal
to the number of agents at that moment, using
asequential updating, plus the agent moving to the
cell. This leads to the expected production, defined
as:

(7)

 

If the expected value of production is:

(8)

the location is considered to be an option. Tmin might
be higher than 1 if we include transaction costs of
movement and if the agent wants to move to another
location that is at least better than the current
location. The agent moves to the best location drawn
from the options and the relative values of expected
production.

Population dynamics

The total number of agents—the population of the
system—changes over time. Agents have offspring
and can die. Although agents represent a group of
individuals, the proportional level can be mimicked
by assuming that each agent has a chance to die or
to generate offspring. The annual levels of death and
birth rates are based on the amount of food produced
by the agent during the year.

The death rate is defined as rd * (2 – hi/100), with
rd equal to 0.02. The birth rate is defined as rb *
hi/100, with rb equal to 0.03. This leads to a linear
relationship between expected population change
and level of corn consumption. The expected
population change is zero for a consumption level
of 80, and 0.25% a year when the consumption level
is equal to 85, the values of hmin in the base case
simulations. Thus, the population growth rate is
0.25% at the maximum growth rate when no food
shortages are experienced, which is in line with the
maximum “natural” level of population growth as
observed in historical data (Cowgill 1975).

Parameter values

The parameter values used in the default case are
listed in Table 2. We also list the boundaries of the
parameter ranges we will explore in the sensitivity
analysis. The stylized model is not based on specific
empirical data, so we tried to define a set of relative
values that would enable us to explore the
consequences of different assumptions on the
spatial and temporal population dynamics.
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Table 2. Parameter values of the default version of the model.

Parameter Description Range Default value

Degradation factor [0, 2] 1

g
r

Regeneration level of soil per year [0.05, 0.1188] 0.0844

Annual depletion rate of resource per household 0.5

Production elasticity 0.2

y
s

Years of storage [1, 9] 5

l
s

Loss rate storage [0,0.5] 0.25

lf Learning factor [0,2] 1

T
min

Threshold of expected food available in other cell in order to migrate [1,2] 1.5

h
min

Minimum level of food a year 85

d
max

Maximum level of debt [0, 100000] 100

r
max

Radius around existing settlement as migration opportunities [1, 9] 5

b Buffer [0,100] 50

b
m

Minimum relative size of buffer [0, 1] 0.5

r
d

Annual death rate 0.02

r
b

Annual birth rate 0.03

RESULTS

Default case

We ran the model for a 10,000-year period to
explore the long-term population dynamics. Before
discussing a sensitivity analysis of the parameter
values, we discuss a few individual runs in more
detail. We ran the model for each of the three types
of sharing mechanisms. Figure 4 shows that the
population size in the whole landscape is fluctuating
and experiencing periods of overshoot and collapse
(Fig. 5). There are no clear statistically significant
differences between the various assumptions of
sharing if we compare the average population levels
of many runs. In all cases, population size builds up
over a long period and triggers a resource scarcity
that causes the population level to decline.

These population cycles are 1,000 to 2,000 years
long. Over a shorter period, several decades, there
are cycles of aggregation and disaggregation (Fig.
6). Figure 6 shows clearly the short- and long-term
cycles. The long-term cycles are caused by decline
and recovery of soil quality, whereas the short-term
cycles are triggered by climate variability as we will
show in the next paragraphs.

We analyze how precipitation affects aggregation,
measured as the density of agents per occupied cell.
If there are 400 agents in 200 cells, leaving 200 cells
unoccupied, the density of agents per occupied cell
is 2. We expect that a change in population density
is caused by precipitation changes. More
specifically, we expect an increase in density during
periods of low precipitation because larger
settlements are more efficient (economics of scale
in technological knowledge and expertise, the value
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Fig. 4. Population sizes for typical runs for three types of sharing mechanisms within the settlement.
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Table 3. Results of linear regressions for three types of sharing.

 

None Pooling Restricted

a
0

2.1761*** 1.4607*** 0.5494***

a
1
 (density

t-1
) 0.8066*** 0.8502*** 0.9310***

a
2
 (PDSI) -0.0873*** -0.0630*** -0.0289***

i 2 2 2

R2 0.6814 0.7362 0.8698

***Significant with p < 0.001.

of  in eq. (3)). For the last 5,000 time steps of the
three simulations, we estimate the following
functions:

(9)

 
Where PDSIMA(i) is the moving average of the last
i timesteps. We check for different values of i which
moving average leads to the best fit.

The average aggregation per occupied cell increases
after a few (2) years of droughts (Table 3). There is
not much variation between the cases, but the case
without sharing seems to be more sensitive to
fluctuations in precipitation. Restricted sharing is
least sensitive to fluctuations in precipitation
because agents within the settlements have different
histories and levels of storage available. Note that
in all three cases the average PDSI of the last 2 years
is used, which indicates that aggregation is a
response to a multiyear drought. This result explains
the short-term variations in densities as depicted in
Fig. 6.

We now compare the baseline simulation with other
simulations to assess the impact of climate
variability and population dynamics. If we reduce
climate variability, assuming  of eq. (1) to be equal

to 1, the level of fluctuations in population size
increases (Fig 7). Climate variability acts as a
stabilizer of the population level by perturbing the
settlements regularly. When there is no climate
variability, there is less aggregation and less local
depletion of soil quality. This leads to longer
population growth periods and deeper declines
because the soils have been depleted more evenly.
This can also be seen in Fig. 8, where the aggregated
soil depletion is more severe for the simulation
without climate variability. Note that with a stable
population level of 650 the relative resource level
declines to a stable level.

Figure 9 shows that, with a constant population level
and no climate variability, we still have periods of
aggregation and disaggregation. Above, we have
related the change in density to climate variability,
so how can we explain this? As we will see in the
sensitivity analysis, a crucial assumption in the
model is that agents need to accumulate knowledge
of a location to reach maximum productivity of that
location. This leads to agents holding on to their
land until the productivity declines to such a level
that replacement and loss of local knowledge is
outweighed by the value of a more productive
location. If we exclude the experience component
of the model, we still see fluctuations in densities.
Just the initial random allocation of agents on the
landscape leads to differences in soil quality among
the settlements and contributes to the spatial
dynamics.
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Fig. 6. Population density for typical runs for three types of sharing mechanisms within the settlement.

Settlement sizes of up to 50 agents are observed, but
most of the settlement sizes are between 10 and 15
agents. In the simulation without climate variability,
there is a larger number of small settlements because
this simulation experiences large collapses of the
population level (Fig. 10).

In sum, we can synthesize what is happening in the
model. When a cell is occupied for a longer period,
it becomes used more efficiently, by which we mean
the same production can be derived with a lower
soil quality. This attracts more agents, which
increases the relative production level due to
increasing levels to scale. But this depletes the soil,
and when the agents cannot meet the minimum level
of production and cannot derive food from other
sources, they will leave if a better spot is nearby.
Consequently, depending on the assumed resource
dynamics, the depleted soil will have time to
recover.

Rainfall variability leads to short-term shocks that
lead to agents leaving, on average, at a lower level
of depletion, meaning the soil is able to recover

faster. Note that we assume that, due to erosion, the
soil recovers slowly and, therefore, regular
movement increases long-term productivity. Thus,
climate variability shakes the system regularly to
redistribute the pressure on the landscape. From a
resilience perspective, climate variability maintains
the resilience of the system and reduces severe
overshoot and collapse at the system level.

Sensitivity analysis

In the sensitivity analysis, we vary the parameters
in Table 2 from relatively low to high in the
uncertainty range. For each parameter combination,
the model is run 100 times, each for 10,000 time
steps. Although we could analyze the data using
many indicators, the basic statistic we will look at
is the average population level over the 10,000 time
steps (Table 4).

The standard deviation of the population size is
typically about 10% and, thus, the differences
between the different assumptions of sharing (no
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Fig. 7. Population size for typical simulations with constant population size, and no climate variability,
next to the default scenario.
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Fig. 9. Even a flat landscape with a fixed number of agents without rainfall variability has periods of
aggregation and disaggregation.
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Table 4. The average population level over 10,000 time steps of 100 runs for various parameter combinations
and assumptions.

None Pooling Restricted

Default 238 304 303

Degradation factor = 0 , regeneration rate 0.05 24 76 24

Degradation factor = 2, regeneration rate 0.1188 96 70 96

Loss rate storage = 0 385 273 361

Loss rate storage = 0.5 20 35 19

Learning factor = 0 749 763 744

Learning factor = 2 12 19 14

Radius = 1 13 15 13

Radius = 9 311 342 266

No rain variability 333 296 352

More variability 583 565 587

Years of storage = 1 9 16 9

Years of storage = 9 285 385 243

T
min
 = 1 461 491 461

T
min
 = 2 10 13 11

d
max
 = 0 16 18 19

d
max
 = 1000000 407 420 413

Buffer = 0 250 233 270

Buffer = 100 40 123 38

B
m
 = 0 146 274 156

B
m
 = 1 289 357 289

sharing, pooling, and restricted sharing) are in
general not significant. In the sharing case where
resources are pooled together in settlements, higher
population levels are derived. There are some
notable exceptions such as when there is no climate
variability, when agents do not keep a buffer before
exchanging resources, when erosion increases, and
when storage is not lost. Pooling can, therefore, be

considered the most resilient strategy of sharing at
the system level. This conclusion is in contrast to
Hegmon (1996), who concludes that pooling leads
more households to fall below the minimum
nutrition level. However, in Hegmon (1996), agents
could neither move to another location during
periods of scarcity nor exchange resources with
other settlements.
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The effect of different assumptions of sharing is
relatively small compared with a number of other
assumptions. The most sensitive assumption is the
learning factor, which indicates how much agents
need to learn from the local environment before
reaching maximum productivity. If there is no
delay, and agents immediately have all the
necessary knowledge when they move to a new
location, the population levels more than double.
There is less benefit from aggregation and
economies of scale, and agents are more spread over
the landscape. Another sensitive assumption is the
threshold level Tmin, which determines when agents
will move to another location. If agents are more
selective about when to move to another location, a
high value of Tmin, the agent will stay longer in one
place and locally deplete the soil before moving on.
This local depletion leads to a long recovery time,
too long for the population to be able to use this
location again when other cells are depleted. Thus,
the population collapses rapidly, leading to a low
average population level.

The third most influential parameter is the
assumption about how much debt settlements can
accept until they will refuse to donate resources to
settlements with shortages. If settlements will
accept no debt, no exchange will happen and the
population will collapse rapidly. This indicates that
exchange is necessary for this environment to
persist at the system level. Allowing a very high
debt load, encouraging agents always to give when
asked for a donation, leads to a somewhat higher
population level.

When we assume that the carrying capacity Cj is
drawn from a uniform distribution [0,200] instead
of being 100 for each cell, the population level
increases, and there is a higher density of agents per
occupied cell. Thus, heterogeneity again leads to an
increase in capacity of the system. The assumptions
of soil quality regeneration rate and erosion are
varied, and we found that population levels are much
lower in both scenarios (no erosion but low
regeneration rate, and high degradation and higher
regeneration rate). This indicates that more detailed
information about the resource dynamics can have
important consequences for the results when using
a model like this.

Figures 11 and 12 provide more information about
the sensitivity analysis. In general, we see that there
is more migration for higher levels of aggregation
(Fig. 12). This means that there are larger

settlements, which are of shorter duration as they
lead to rapid decline in local soil quality. The most
extreme case is with Tmin = 1, which leads to a
migration rate of 25% a year and an average density
of 12 agents per cell. In fact, groups of agents are
hopping around on the landscape. More reasonable
migration rates are around 10% for the American
Southwest, which is observed for most of the
parameter settings. We see that higher population
levels coincide with higher levels of aggregation,
except when the average population level is really
high and agents are spread over the landscape more
evenly, which is the case when the learning factor
is equal to zero (agents have perfect knowledge of
local conditions of new locations).

Evolution of strategies

We close the model analysis by examining agents
with different strategies and let those strategies
evolve over time. We are interested in what mix of
strategies evolve and how they differ for various
assumptions of the environment and resource
dynamics.

Agents differ in the strategy of sharing, the years of
storage, the buffer level of storage before they
exchange, the relative buffer below which they will
decide to move to another location, the maximum
debt tolerated, and the threshold Tmin when to move
to another location. The initial values of the agents
are drawn from uniform distributions as defined in
Table 2, and with a one-third probability that an
agent will have one of the three sharing strategies.
Every time a new agent is generated, it copies the
values of its parents and adds some white noise
(standard deviation 1%) or changes the sharing
strategy with a probability of 1%.

Some decisions of agents are settlement based, such
as the decision whether to exchange with another
settlement. We assume that the most intolerant agent
in a settlement with a surplus defines the average
level of debt it will tolerate from a settlement with
a shortage. When agents like to pool resource, they
only pool with other agents in the settlement who
also like to pool. Similar agents who restrictedly
share their resources within the settlement do this
only with other agents with a similar strategy in the
settlement.

We ran the model 100 times for 10,000 time steps
and found that no dominant sharing strategies
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Table 5. Average values of the evolved parameters during the last 1,000 time steps. Based on 100 simulations
of 10,000 time steps. Rows with an x indicate that less than 5% of the simulations did not collapse before
9,000 time steps, and thus, no data could be derived.

Distribution

ys Buffer B
m

d
max

T
min

None Pooling Restricted

Default 5.3 70.3 0.67 468 1.10 0.31 0.41 0.28

Degradation factor = 0,
regeneration rate 0.05

5.3 73.0 0.71 534 1.09 0.31 0.37 0.32

Degradation factor = 2,
regeneration rate 0.1188

x x x x x x x X

Loss rate storage = 0 5.3 69.2 0.70 535 1.14 0.26 0.40 0.34

Loss rate storage = 0.5 5.8 66.8 0.67 614 1.08 0.34 0.34 0.32

Learning factor = 0 5.8 57.2 0.55 536 1.08 0.35 0.34 0.32

Learning factor = 2 x x x x x x x x

Radius = 1 x x x x x x x x

Radius = 9 5.3 66.8 0.65 554 1.12 0.30 0.37 0.34

No rain variation 4.7 64.4 0.63 515 1.12 0.36 0.32 0.32

More variation 5.5 74.6 0.71 576 1.11 0.30 0.36 0.34

emerged (Table 5). The reason for this is that
benefits can only be derived when multiple agents
with the same strategy are in the same settlement
for a longer period, which is not common in a
landscape where the population is so dynamic. The
most significant evolved parameter is the threshold
Tmin, which evolves to a value around 1.1 for all
scenarios. Another finding is that the buffer level is
around 70 and lower than the default case, whereas
bm is higher than the default situation.

When degradation is more severe than in the default
case, or the radius of movement is small, or it takes
more time to derive local knowledge, the evolution
of individual strategies goes too slowly to avoid
collapse of the population before 9,000 time steps,
after which we define the evolved parameter values.
The differences in evolved parameters are modest,
partly because the agents experience many different
conditions and evolutionary pressures. In future, we

may include cultural transmission of strategies,
which may lead to domination of certain strategies.

DISCUSSION

This paper presents an initial version of a stylized
agent-based model to capture population dynamics
on an artificial landscape that mimics some basic
characteristics of the ancient American Southwest.
We find that the temporal and spatial population
dynamics are affected by many assumptions of the
model. Resource dynamics affect the long-term
population levels, whereas climate variability
affects the short-term aggregation levels.
Assumptions about how much learning is needed to
reach maximum productivity, when agents move to
another location, and when to exchange resources,
affect the long-term population levels.
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Fig. 11. Average density vs. population size for the different cases of Table 4.
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Despite the many shortcomings of the model, we
conclude that climate variability had an important
impact on the possible factors leading to
aggregation and abandonment in the ancient
Southwest. Climate variability leads to an increased
resilience of the population at the system level.
Although individual settlements are abandoned due
to climate fluctuations, this causes the soils to
recover quickly. If there were no climate variability,
settlements would be occupied for a very long time,
leading to severe soil degradation and causing the
settlement to collapse.

Populations in the American Southwest are known
for their mobility to adapt to the harsh arid
environment. The limited ability of settlements to
derive resources over large distances led them to
degrade local resources. Climate variability, such
as long-term droughts, is thought to have led to
abandonment of settlements and collapse of ancient
societies. The results of the model described in this
paper suggest that, without climate variability, the
rise and fall of societies would have been more
severe. Thus, climate variability may have triggered
the regular reorganizations that maintained the
resilience of the prehistoric populations in
American Southwest.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol15/iss2/art19/
responses/
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