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The heat and mass transfer characteristics of non-Darcy mixed convective flow of a viscous electrically 
conducting fluid through a porous medium in a circular cylindrical annulus in the presence of 
temperature gradient heat sources with Soret and Dufour effects have been analyzed. The partial 
differential equations governing the problem under consideration are transformed into a system of 
ordinary differential equations and are solved numerically by using the Galerkin finite element method. 
The velocity, temperature and concentration profiles are presented graphically for various values of the 
parameters. 
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INTRODUCTION 
 
Convection flows driven by temperature and 
concentration differences have been studied extensively 
in the past and various extensions of the problems have 
been reported in the literature. With both temperature and 
concentration interacting simultaneously, the convection 
has become quite complex. Bejan and Khair [1985] have 
investigated the vertical free convection flow embedded 
in a porous medium resulting from the combined heat 
and mass transfer. Jang and Chang [1987] have used an 
implicit finite difference method to study the buoyancy 
induced inclined boundary layer in a porous medium 
resulting from the combined heat and mass buoyancy 
effects. 

Heat transfers in thermal insulation within vertical 
cylindrical annuli provide us insight into the mechanism of 
energy transport and enable engineers to use insulation 
more  efficiently . In  particular  design  engineers  require 
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relationship between heat transfer, geometry and boun-
dary conditions which can utilize cost-benefit analysis to 
determine the amount of insulation that will yield the 
maximum investment.  

An understanding of convective heat transfer in porous 
annuli is essential for its applications in packed-bed 
catalytic reactors, geo-physics, thermal insulation, design 
of regenerative heat exchangers, geological disposal of 
high-level nuclear waste, petroleum resources and many 
other uses. Free convection in a vertical porous annulus 
has been extensively studied by Prasad [1984], Prasad 
and Kulacki [1985] and Prasad et al. [1985] both theo-
retically and experimentally. Convection through annular 
regions under steady conditions has also been discussed 
with the two cylindrical surfaces kept at different 
temperatures [Bejan and Lazzari, 1985]. This work has 
been extended in temperature dependent convection flow 
[Muthukumara et al., 2007] as well as convection flow 
through horizontal porous channel whose inner surface is 
maintained at constant temperature, while the other 
surface    is    maintained    at    circumferentially   varying 
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sinusoidal temperature [Vasseur et al.,1984].       

 The application of electromagnetic fields in controlling 
the heat transfer as in aerodynamic heating leads to the 
study of Magneto hydrodynamic heat transfer. This MHD 
heat transfer has gained significance owing to recent 
advancement of space technology. The MHD heat 
transfer can be divided into two sections. One contains 
problems in which the heating is an incidental by product 
of the electromagnetic fields as in MHD generators and 
pumps etc. and the second consists of problems in which 
the primary use of electromagnetic fields is to control the 
heat transfer [Chandra, 1961]. With fuel crisis deepening 
all over the world, there is a great concern to utilize the 
enormous power beneath the earth’s crust in the 
geothermal region [Nanda and Mohan, 1978]. Liquid in 
the geothermal region is an electrically conducting liquid 
because of high temperature and that they undergo the 
influence of magnetic field. 

In many industrial applications of transient free 
convection flow problems, there occurs a heat source or 
a sink which is either a constant or temperature gradient 
or temperature dependent heat source. This heat source 
occurs in the form of a coil or a battery. Gokhale and 
Behnaz-Farman [2007] analyzed transient free con-
vection flow of an incompressible fluid past an isothermal 
plate with temperature gradient dependent heat sources. 
Implicit finite difference scheme which is unconditionally 
stable has been used to solve the governing partial 
differential equations of the flow. Transient temperature 
and velocity profiles are plotted to show the effect of heat 
source. Muthukumara et al. [2007] have analyzed the 
radiation effect on moving vertical plate with variable 
temperature and mass diffusion. Sreevani [2003] has 
analyzed the Soret effect on convective heat and mass 
transfer flow of a viscous fluid in a cylindrical annulus with 
heat generating sources. Sivaiah [2004] has discussed 
the convective heat and mass transfer flow in a circular 
duct with Soret effect. 
    Literature suggests that the effect of viscous 
dissipation on heat transfer has been studied for different 
geometries. Brinkman [1948] has studied the viscous dis-
sipation effect on natural convection in horizontal cylinder 
embedded in porous medium. Their study showed that 
the viscous dissipation effect might not be neglected. 
Saffman [1971] has studied the viscous dissipation effect 
on natural convection in a porous cavity and found that 
the heat transfer rate at hot surface decreases with 
increase of viscous dissipation parameter. Thermal 
radiation plays a significant role in the overall surface 
heat transfer where convective heat transfer is small. 
Verschoor [1992] have studied the effect of viscous 
dissipation and radiation on unsteady magneto hydro 
dynamic free convection flow fast vertical plate in porous 
medium. They found that the temperature profile 
increases when viscous dissipation increases. A good 
amount of  work  has  been  done  to  understand  natural  
 

 
 
 
 
convection in porous cavity. In spite of endeavor efforts to 
study heat transfer in porous cavity, the combined effect 
of viscous dissipation and radiation on porous medium 
filled inside a square cavity has not received attention. 
The Soret and Dufour effects have garnered considerable 
interest in both Newtonian and non-Newtonian convective 
heat and mass transfer. Such effects are significant when 
density differences exist in the flow regime. Soret and 
Dufour effects are important for intermediate molecular 
weight gases in coupled heat and mass transfer in binary 
systems, often encountered in chemical process 
engineering and also in high-speed aerodynamics. Soret 
and Dufour effects are also critical in various porous flow 
regimes occurring in chemical and geophysical systems. 
There are few studies about the Soret and Dufour effects 
in a Darcy or non-Darcy porous medium. Anghel et al. 
[2000] have examined the composite Soret and Dufour 
effects on free convective heat and mass transfer in a 
Darcian porous medium with Soret and Dufour effects. 
Recently, Barletta et al. [2008] have studied on mixed 
convection with heating effects in a vertical porous 
annulus with a radially varying magnetic field. Emmunuel 
et al. [2008] have discussed Thermal-diffusion and 
diffusion thermo effects on combined heat and mass 
transfer of a steady MHD convective and slip flow due to 
a rotating disk with viscous dissipation and ohmic 
heating. Very recently, Sallam (2009) has analysed 
thermal-diffusion and diffusion-thermo effects on mixed 
convection heat and mass transfer in a porous medium. 

The weighted residual method is of the generalization 
of the Ritz-variational method wherein we seek an 
approximate solution in the form of linear combination of 
suitable approximation functions. The parameters in the 
linear combination are determined by setting integral of a 
weighted residual of the approximation over the domain 
zero. A comprehensive description of a weighted residual 
method has been given. In many situations the Galerkin 
method which is one of the important weighted residual 
methods is equivalent to the Ritz method for solving 
variational problems. The finite Element method is   
piece-wise   application of weighted residual method in   
which the Ritz-Galerkin type methods are employed over 
each element of the domain. The finite element method 
was initially developed as an adhoc engineering 
procedure for constructing matrix solutions to stress and 
displacement calculations in structural analysis. Very few 
fluid dynamic problems can be expressed in a variational 
form. Consequently, most of the finite element applica-
tions in fluid dynamics have been used in Galerkin finite 
element formulation. The Galerkin finite element method 
has two important futures. Firstly the approximate 
solution is written directly as a linear combination of 
approximating functions in terms of the nodal unknowns. 
Secondly the approximating functions or the shape 
functions are chosen exclusively from low order 
piecewise polynomials restricted to contiguous elements.  
 



 
 
 
 

In this paper we discuss the mixed convective viscous 
dissipative flow through a porous medium in a circular 
cylindrical annulus with Thermal-Diffusion and Diffusion-
Thermo effects in the presence of temperature gradient 
heat source, where the inner wall maintained constant 
temperature and the outer wall maintained constant heat 
flux, with the concentration being constant on both walls. 
The coupled momentum, energy and diffusion equations 
are solved by using finite element analysis with quadratic 
interpolation polynomials. The effect of temperature 
gradient heat sources on the flow and heat transfer 
characteristics are analyzed. The stress, rate of heat 
transfer and the rate of mass transfer are discussed 
numerically for different variations of the governing 
parameters. 
 
 
FORMULATION OF THE PROBLEM 
 
We consider free and force convective flow of a viscous, 
electrically conducting fluid through a porous medium in a 
circular cylindrical annulus with Thermal-Diffusion and 
Diffusion-Thermo effects in the presence of temperature 
gradient heat source, whose inner wall is maintained at a 
constant temperature and the outer wall is maintained at 
constant heat flux. Also the concentration is constant on 
the both walls. A uniform radial magnetic field is applied 
on the flow. The flow, temperature and concentration in 
the fluid are assumed to be fully developed. Both the fluid 
and porous region have constant physical properties and 
the flow is a mixed convection flow taking place under 
thermal and molecular buoyancies and uniform axial 
pressure gradient. The boussenissque approximation is 
invoked so that the density variation is confined to the 
thermal and molecular buoyancy forces.  The Brinkman-
Forchhimer-Extended Darcy model which accounts for 
the inertia and boundary effects has been used for the 
momentum equation in the porous region.  In the 
momentum, energy and diffusion are coupled and non-
linear. Also the flow in is unidirectional along the axial 
cylindrical annulus. Making use of the above   
assumptions the governing equations are: 
 
Equation of linear momentum 
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Equation of energy 
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Equation of diffusion 
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Equation of state 
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Where u is the axial velocity in the porous region, T and 
C are the temperature and concentrations of the fluid, k is 
the permeability of porous medium, F is a function that 
depends on Reynolds number and the microstructure of 
the porous medium and D1 is the Molecular diffusivity , 
Dm is the coefficient of mass diffusitivity, Tm is the mean 
fluid temperature, Kt is the thermal diffusion, Cs is the 
concentration susceptibility, Cp is the specific heat, � is 
density, g is gravity, � is the coefficient of thermal 
expansion,  �* is the coefficient of volume expansion, � is 
the electrical conductivity, µe is the magnetic permeability. 
 

0=u      ,    T=Ti ,   C = Ci       at    r=a                          (5) 
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The axial temperature gradient 
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respectively. Using Equations (5) and (6), Equations (2) 
and (3) reduce to  
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We now define the following non-dimensional variables
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Introducing    these     non-dimensional     variables,    the 
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governing equations in the non-dimensional form are (on 
removing the stars): 
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With the corresponding boundary conditions as: 
 

0=u  ,   0θ =  ,    C=1   at   r=1                                 (13)                                  
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NUMERICAL ANALYSIS  
 
The finite element method has been implemented to 
obtain numerical solutions of Equations (11) to (13) under 
boundary conditions (14) and (15). This technique is ex-
tremely efficient and allows robust solutions of   complex 
coupled, nonlinear multiple degree differential equation 
systems. The fundamental steps comprising the method 
are now summarized:   
 
Phase 1. Discretization of the domain into elements   
Phase 2. Derivation of element equations   
Phase 3. Assembly of Element Equations   
Phase 4. Imposition of boundary conditions   
Phase 5. Solution of assembled equations  
 
The shear stress are evaluated on the cylinder using the 
formula,                       
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The rates of heat transfer (Nusselt number) are evaluated 
on the cylinder using the formula, 
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The rate of mass transfer (Sherwood Number) is 
evaluated using the formula, 
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DISCUSSION OF THE NUMERICAL RESULTS   
 
In this analysis we investigate thermo-Diffusion and 
Diffusion-Thermo effects on convective heat and mass   
transfer flow of a viscous conducting fluid through a 
porous medium in circular annulus in the presence of 
temperature gradient dependent heat source with viscous 
dissipation. The inner cylinder is maintained at constant 
temperature, the outer wall is maintained at constant heat 
flux while the concentration is maintained constant on 
both the cylinders. The axial flow is in vertically down 
ward direction, u › 0 indicates a reversal flow. The 
velocity, temperature and concentration distributions are 
shown in Figures 1-27 for different values of the 
parameters G, D-1 , M, Sc , Sr , Du ,N , � and Ec. 

The variation of u with Grashof number G shows that 
the axial flow enhances increase in G and the region of 
reversal flow enhances increase in G (Figure 1).  

With respect to the variation of u with D-1 we found  that  
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Figure 1.  Variation of u with G P = 0.71, Sr = 0.5, D-1 = 2 × 103, M = 2, � = 2, N = 2, Du = 0.5, Ec = 
0.01, Sc = 1.3. 

 
 

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

2.5

 D -1  = 103

 D -1  = 2X 103

 D -1  = 3X103

 D -1  = 4X103

u

r  
 
Figure 2. Variation of u with D-1 P = 0.71, Sr = 0.5, G = 2 × 103, � = 2,M = 2, N = 2, Du = 0.5, Ec = 0.01, Sc = 
1.3. 

 
 
 
the lesser the permeability of porous medium, the smaller 
the magnitude of u; and for further lowering of the 
permeability, the larger the magnitude of  u  in  the  entire 

flow region, the more the region of reversal flow shrinks 
with D-1 

� 2X103 and enhances higher D-1 
� 3X103  

(Figure 2).  From Figure 3 we  found  that  the  higher  the 
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Figure 3. Variation of u with MP = 0.71, Sr = 0.5, G = 2 × 103, D-1 = 2 × 103, N = 2, � = 2, Du = 0.5, Ec = 
0.01, Sc = 1.3. 
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Figure 4. Variation of u with Sc P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, � = 2, N = 2, Du = 0.5, Ec = 
0.01, D-1=2 × 103. 

 
 
 
Lorentz force, the larger the velocity in the flow region. 
Also the region of reversal flow enhances increase in M. 
Figure 4 represents the variation of u with Sc. We noticed 

that the lesser the molecular diffusitivity, the smaller the 
|u|; and for further lowering of molecular diffusitivity it 
experiences a depreciation in the entire  flow  region  and  
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Figure 5. Variation of u with So P = 0.71, D-1 = 2 × 103, G = 2 × 103, M = 2, N = 2, � = 2, Du = 0.5, 
Ec = 0.01, Sc = 1.3.         
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Figure 6.  Variation of u with Du P = 0.71, Sr = 0.5, G = 2X103, M = 2, N = 2, D-1 = 2 × 103, � = 2, 
Ec = 0.01, Sc = 1.3. 

 
 
 
attains maximum at r = 1.5. 

The variation of u with Soret parameter Sr shows that 
the velocity experiences an  enhancement  with  increase 

in Sr � 0.8 and for further increase in Sr � 1 it depreciates 
in its magnitude (Figure 5). From Figure 6 we observe 
that the region of reversal velocity enlarges  with increase   
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Figure 7. Variation of u with N P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, D-1 = 
2X103, � = 2, Du = 0.5, Ec = 0.01, Sc = 1.3. 
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Figure 8.  Variation of u with � P = 0.71, Sr = 0.5, G = 2 × 103, � = 2, M 
= 2, N = 2, Du = 0.5, Ec = 0.01, Sc = 1.3 

 
 
 
in Du  and |u| enhances Du. The variation of u with N 
shows that when the molecular buoyancy force 
dominates over the thermal buoyancy force the actual 
axial  velocity   experiences   a   depreciation   when   the  

buoyancy forces act in the same direction while for the 
forces acting in the opposite  directions it  experiences an 
enhancement in the flow region (Figure 7). The influence 
of heat source parameter � on u is shown in Figure 8.  An  
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Figure 9. Variation of u with Ec P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, N = 2, Du = 
0.5, � = 2, Ec = 0.01, Sc = 1.3. 
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Figure 10. Variation of � with G P = 0.71, Sr = 0.5, D-1 = 2 × 103, M = 2, � = 2, N = 2, 
Du = 0.5, Ec = 0.01, Sc = 1.3. 

 
 
 
increase in � < 0 enhances the actual axial velocity u that 
in the presence of the temperature, heat u is shown 
source depreciates the velocity in the flow region with 
maximum in the mid region. The influence of dissipative 

effect on u is shown in Figure 9. We conclude that the 
axial velocity u experiences an enhancement with Ec. 

The non-dimension tempreture (8) is shown in Figures 
10- 18 for different values of the  parameters.  It  is  found 



246        Afr. J. Math. Comput. Sci. Res. 
 
 
 

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 D-1  = 103

  D-1 = 2X 103

  D-1 = 3X103

  D-1 = 4X103

θ

r  
 
Figure 11. Variation of � with D-1P = 0.71, Sr = 0.5, G = 2 × 103, � = 2, M = 2, N = 2, Du 
= 0.5, Ec = 0.01, Sc = 1.3. 
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Figure 12.  Variation of � with M P = 0.71, Sr = 0.5, G = 2 × 103, D-1 = 2 × 103, N = 
2, � = 2, Du = 0.5, Ec = 0.01, Sc = 1.3. 

 
 
 
that the non-dimensional temperature gradually increases 
from its prescribed value 0 on r = 1 to attain its prescribed 
value 1 at r =  2.  An  increase  in  G  enhances  the  tem- 

perature (Figure 10). The variation of � with D-1 shows 
that the lesser the permeability of porous medium, the 
larger the  temperature  in  the  flow   region  (Figure  11). 
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Figure 13.  Variation of � with Sc P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, � = 2, N = 2, Du = 
0.5, Ec = 0.01, D-1 = 2 × 103. 
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Figure 14. Variation of � with So P = 0.71, D-1 = 2 × 103, G = 2 × 103, M = 2, N = 2, � = 2, 
Du = 0.5, Ec = 0.01, Sc = 1.3. 

 
 
 
From Figure 12 we find that lesser the Lorentz force 
larger the temperature. With respect to Sc we notice that 
lesser the molecular diffusitivity  smaller  the  temperature 

in the flow region (Figure 13). An increase in Soret   
parameter  Sr  results  in  a  depreciation  in the actual 
temperature in the region (Figure 14). The  variation  of  � 
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Figure 15. Variation of � with Du P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, N = 2, � = 2, 
D-1 = 2 × 103, Ec = 0.01, Sc = 1.3. 
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Figure 16. Variation of � with N P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, D-1 = 2 × 103, � = 2, Du 
= 0.5, Ec = 0.01, Sc = 1.3. 

 
 
 
with Dufour parameter Du shows that the actual 
temperature enhances gradually with increase in Du   
(Figure   15).   When   the   molecular    buoyancy    force  

dominates over the thermal buoyancy force the actual 
temperature decreases irrespective of the directions of 
the   buoyancy   forces   (Figure   16).   The  influence   of 
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Figure 17. Variation of � with � P = 0.71, Sr = 0.5, G = 2 × 103, � = 2, M = 2, N = 2, Du = 
0.5, Ec = 0.01, Sc = 1.3. 
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Figure 18. Variation of � with Ec P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, N = 2, Du = 0.5, � = 2, Ec = 
0.01, Sc = 1.3. 

 
 
 
temperature gradient heat source parameter � on � is 
shown in Figure 17. It is found that the temperature is 
negative  for � = 0, � < 0 andpositive for � > 0. The actual 

temperature experiences depreciation with increase in 
the strength of the heat sources. The variation of � with 
Eckert number Ec is shown in Figure 18.  We  found  that 
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Figure 19. Variation of � with GP = 0.71, Sr = 0.5, D-1 = 2 × 103, M = 2, � = 2, N = 2, Du = 
0.5, Ec = 0.01, Sc = 1.3. 
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Figure 20. Variation of � with D-1 P = 0.71, Sr = 0.5, G = 2 × 103, � = 2, M = 2, 
N = 2, Du = 0.5, Ec = 0.01, Sc = 1.3. 

 
 
 
the actual temperature enhances increase in Ec.  

The non-dimensional concentration (�) is shown in 
Figures 19-27 for different values of the parameters G, D-

1 , M, Sc , Sr , Du ,N , � and Ec.  It is found that the non-
dimensional concentration gradually increases from its 
prescribed value 0 on r = 1 and attain its prescribed value 
1 at r = 2. Figure 19 shows the variation of � with G.  It  is 

noticed that the concentration depreciates with increase 
in the Grashof number G. The variation of � with D-1 

shows that the lesser the permeability of porous medium, 
the higher the actual concentration in the flow region; and 
for further lowering of the permeability, the smaller the 
actual concentration in the flow region (Figure 20). From 
Figure 21 we found that the higher the Lorentz  force,  the 
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Figure 21. Variation of � with MP = 0.71, Sr = 0.5, G = 2 × 103, D-1 = 2 × 103, N = 2, � = 2, Du = 
0.5, Ec = 0.01, Sc = 1.3. 
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Figure 22. Variation of � with ScP = 0.71, Sr = 0.5, G = 2 × 103, M = 2, � = 2, N = 2, Du = 
0.5, Ec = 0.01, D-1 = 2 × 103. 

 
 
 
larger the concentration  in  the  flow  region.  The lesser 
the molecular diffusitivity is, the smaller the concentration 

in the flow field (Figure 22). An increase in the Soret 
parameter Sr enhances the concentration  everywhere  in 
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Figure 23.  Variation of � with So P = 0.71, D-1 = 2 × 103, G = 2 × 103, M = 2, N = 2, � = 2, Du 
= 0.5, Ec = 0.01, Sc = 1.3. 
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Figure 24. Variation of � with Du P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, N = 2, � = 2, D-1 = 2 × 
103, Ec = 0.01, Sc = 1.3. 

 
 
 
the flow region (Figure 23). The variation of � with Dufour 
parameter Du shows that the concentration experiences 
a marginal depreciation  in  the  flow  region  (Figure  24). 

The variation of � with N shows that when the molecular 
buoyancy force dominates over the thermal buoyancy 
force     the     actual     concentration     experiences    an 
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Figure 25. Variation of � with NP = 0.71, Sr = 0.5, G = 2 × 103, M = 2, D-1 = 2 × 103, � 
= 2, Du = 0.5, Ec = 0.01, Sc = 1.3. 
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Figure 26. Variation of � with � P = 0.71, Sr = 0.5, G = 2 × 103, � = 2, M = 2, N = 2, Du = 0.5, 
Ec = 0.01, Sc = 1.3. 

 
 
 
enhancement when the buoyancy forces act in the same 
direction while for the forces acting in the opposite 
directions it experiences depreciation  in  the  flow  region 

(Figure 25). From Figure 26, we observe that � 
experiences a marginal enhancement with � > 0 and 
depreciation with � < 0. The inclusion of the dissipation in 
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Figure 27. Variation of � with Ec P = 0.71, Sr = 0.5, G = 2 × 103, M = 2, N = 2, Du = 0.5, � = 2, 
Ec = 0.01, Sc = 1.3. 

 
 
 
the flow enhances the concentration in the flow region 
(Figure 27). 
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