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L-CURVE CURVATURE BOUNDS
VIA LANCZOS BIDIAGONALIZATION ∗

D. CALVETTI†, P. C. HANSEN‡, AND L. REICHEL§

Abstract. The L-curve is often applied to determine a suitable value of the regularization parameter when
solving ill-conditioned linear systems of equations with a right-hand side contaminated by errors of unknown norm.
The location of the vertex of the L-curve typically yields a suitable value of the regularization parameter. However,
the computation of the L-curve and of its curvature is quite costly for large problems; the determination of a point on
the L-curve requires that both the norm of the regularized approximate solution and the norm of the corresponding
residual vector be available. Recently, the L-ribbon, which contains the L-curve in its interior, has been shown to
be suitable for the determination of the regularization parameter for large-scale problems. In this paper we describe
how techniques similar to those employed for the computation of the L-ribbon can be used to compute a “curvature-
ribbon,” which contains the graph of the curvature of the L-curve. Both curvature- and L-ribbon can be computed
fairly inexpensively by partial Lanczos bidiagonalization of the matrix of the given linear system of equations. A
suitable value of the regularization parameter is then determined from these ribbons, and we show that an associated
approximate solution of the linear system can be computed with little additional work.
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1. Introduction. Consider the linear system of equations

Ax = b, A ∈ R
m×n, x ∈ R

n, b ∈ R
m,(1.1)

with a matrix of ill-determined rank, i.e., A is assumed to have many singular values of dif-
ferent orders of magnitude close to the origin; some singular values may vanish. Matrices of
this kind arise when discretizing linear ill-posed problems; they are severely ill-conditioned.
We refer to (1.1) as a linear discrete ill-posed problem. The linear system (1.1) is not required
to be consistent.

Linear discrete ill-posed problems arise when seeking to determine the internal structure
of a system from external measurements. The measurements are represented by the right-
hand side b. Typically, the right-hand side of linear discrete ill-posed problems that arise in
the sciences and engineering is contaminated by an error e ∈ R

m, i.e.,

b = b̂ + e,

where b̂ ∈ R
m denotes the unknown error-free right-hand side. In the present paper, we

assume that neither the error e nor its norm are known. The linear system of equations with
the unknown error-free right-hand side

Ax = b̂(1.2)

is assumed to be consistent. We denote its solution of minimal Euclidean norm by x̂. We
would like to determine an approximation of x̂ by computing an approximate solution to the
available linear system (1.1). Due to the error e in b and the severe ill-conditioning of A,
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the least-squares solution of minimal Euclidean norm of (1.1) typically is not a meaningful
approximation of x̂. One therefore often replaces the discrete ill-posed problem (1.1) by a
related problem, whose solution is less sensitive to errors in the right-hand side b, and then
solves the new system obtained for an approximation of x̂. This replacement is referred to as
regularization.

One of the most popular regularization methods is Tikhonov regularization, which in its
simplest form replaces the linear system (1.1) by the minimization problem

min
x∈R

n
{‖Ax − b‖2 + µ2‖x‖2}.(1.3)

Here µ is the regularization parameter. Throughout this paper ‖ · ‖ denotes the Euclidean
norm. The solution xµ of (1.3) solves the linear system

(ATA+ µ2I)x = AT b,(1.4)

i.e.,

xµ = (ATA+ µ2I)−1AT b,(1.5)

where we define x0 := limµ→0 xµ = A†b, with A† denoting the Moore-Penrose pseudo-
inverse of A.

A proper choice of the value of the regularization parameter µ is essential for the success
of this regularization method. Specifically, we would like to determine µ ≥ 0, so that xµ is
an accurate approximation of the minimal-norm solution x̂ of (1.2). A popular method for
choosing a suitable value of the regularization parameter, when the norm of the error e is not
explicitly known, is based on the curve

L := {(log ‖xµ‖, log ‖Axµ − b‖) : µ ≥ 0}.(1.6)

This curve is usually referred to as the L-curve, because for a large class of problems it is
shaped like the letter “L.” Hansen and O’Leary [10, 13] propose to choose the value of the
parameter µ that corresponds to the point at the “vertex” of the “L,” where the vertex is
defined to be the point on the L-curve with curvature κµ of largest magnitude. We denote
this value of the regularization parameter by µL. A heuristic motivation for choosing the
value µL is that when µ ≥ 0 is “tiny,” the associated solution xµ of (1.3) is likely to be
severely contaminated by propagated errors due to the error e in the right-hand side b of
(1.1). On the other hand, when µ is large, the associated solution xµ of (1.3) is a poor
approximation of x̂. The choice µ = µL seeks to balance these sources of errors. Hansen [12]
provides an insightful discussion on the properties of this choice of regularization parameter,
and addresses both advantages and shortcomings.

A computational difficulty that arises, when seeking to determine the value µL of the
regularization parameter for large linear discrete ill-posed problems, is that it requires the
computation of the curvature at many points on the L-curve. These computations can be
quite expensive. It is the purpose of the present paper to describe how upper and lower
bounds for the curvature κµ can be computed quite inexpensively for several values of µ by
incomplete Lanczos bidiagonalization of the matrix A and by the application of Gauss-type
quadrature rules. The method proposed allows us to determine a ribbon that contains the
curve {(µ, κµ) : µ ≥ 0} in its interior. We refer to this ribbon as the curvature-ribbon. Its
width depends on the number of Lanczos bidiagonalization steps carried out; typically the
width decreases monotonically as the number of Lanczos steps increases.
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The techniques used to determine the curvature-ribbon are similar to those applied by
Calvetti et al. [2] for inexpensively computing rectangular regions that contain points on
the L-curve. The union of these rectangular regions for all µ ≥ 0 is in [2] referred to as
the L-ribbon; see also Section 4. It is attractive to compute both the curvature-ribbon and
the L-ribbon in order to determine an approximation of the value µL of the regularization
parameter.

This paper is organized as follows. Section 2 expresses the coordinates of points on the
L-curve and the curvature of the L-curve at these points in terms of certain matrix functionals
that depend on the regularization parameter µ. We can determine upper and lower bounds
for the abscissa and ordinate for each point on the L-curve, as well as for the curvature,
by computing upper and lower bounds for these matrix functionals. Section 3 describes
how Gauss and Gauss-Radau quadrature rules can be employed to compute such bounds
inexpensively. Section 4 describes algorithms for constructing the L-ribbon and the curvature-
ribbon. A few illustrative numerical examples are presented in Section 5, and Section 6
contains concluding remarks.

The method described in the present paper is well suited for linear discrete ill-posed
problems (1.1) with a matrix A of order m × n when m is larger than or of the same or-
der of magnitude as n. The method also can be applied when m is considerably smaller
than n; however, there are alternative approaches that require less computer storage when
m � n. The computation of L-ribbons for discrete ill-posed problems (1.1) with m � n is
discussed in [3, 4]. The latter methods can be extended to allow the efficient computation of
curvature-ribbons for discrete ill-posed problems with m � n. We also note that problems
and techniques related to those of the present paper are discussed by Golub and von Matt
[8, 9].

2. The L-curve, its Curvature, and Matrix Functionals. Let µ > 0 be a given value of
the regularization parameter for Tikhonov regularization and let Pµ = (log ‖xµ‖, log ‖Axµ−
b‖) be the corresponding point on the L-curve. It follows from (1.5) that

‖xµ‖2 = xT
µ xµ = bTA(ATA+ µ2I)−2AT b,(2.1)

and

‖Axµ − b‖2 = µ4bT (AAT + µ2I)−2b.

Introduce the function

φµ(t) := (t+ µ2)−2,(2.2)

and define the matrix functionals

ηµ := (AT b)Tφµ(ATA)AT b, ρµ := µ4bTφµ(AAT )b.(2.3)

Then

‖xµ‖ = η1/2
µ , ‖Axµ − b‖ = ρ1/2

µ .(2.4)

and therefore Pµ = 1
2 (log ηµ, log ρµ). Let

η̂µ := log ηµ, ρ̂µ := log ρµ.(2.5)

Then the curvature of the L-curve at the point Pµ is given by

κµ = 2
ρ̂′′µη̂

′
µ − ρ̂′µη̂

′′
µ

((ρ̂′µ)2 + (η̂′µ)2)3/2
,(2.6)
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where ′ denotes differentiation with respect to µ. It follows from (2.5) that

η̂′′µ =
η′′µηµ − (η′µ)2

η2
µ

, ρ̂′′µ =
ρ′′µρµ − (ρ′µ)2

ρ2
µ

.(2.7)

Furthermore, since ρ′µ = −µ2η′µ, we have

ρ′′µ = −2µη′µ − µ2η′′µ,(2.8)

Substituting (2.7) and (2.8) into (2.6) yields

κµ = 2
ηµρµ

η′µ

µ2η′µρµ + 2µηµρµ + µ4ηµη
′
µ

(µ4η2
µ + ρ2

µ)3/2
.(2.9)

Notice that only the first derivative of ηµ is required.
This paper describes how equation (2.9) can be used to inexpensively compute upper and

lower bounds of κµ for many values of µ. Introduce the function

ψµ(t) :=
dφµ

dµ
= −4µ(t+ µ2)−3.(2.10)

Then we can express η′µ as

η′µ = (AT b)Tψµ(ATA)(AT b).(2.11)

The key to obtaining computable bounds for ρµ, ηµ and η′µ is to express these quantities
as Stieltjes integrals. Assume for ease of notation that m ≥ n and introduce the Singular
Value Decomposition (SVD) of the matrix A,

A = Ũ

(
Σ̃
0

)
Ṽ T , Ũ ∈ R

m×m, Σ̃, Ṽ ∈ R
n×n,(2.12)

with Ũ and Ṽ orthogonal, and Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n). Then

AAT = ŨΛŨT , ATA = Ṽ Λ̂Ṽ T ,

where

Λ := diag[λ1, λ2, . . . , λn, 0, . . . , 0] ∈ R
m×m, Λ̂ := diag[λ1, λ2, . . . , λn] ∈ R

n×n,

and λi = σ̃2
i for 1 ≤ i ≤ n. Now let

h = [h1, h2, . . . , hm]T := µ2ŨT b, ĥ = [ĥ1, ĥ2, . . . , ĥn]T := Ṽ TAT b

and substitute the SVD of A (2.12) into (2.3) and (2.11). We obtain

ρµ = hTφµ(Λ)h =

n∑

k=1

φµ(λk)h2
k + φµ(0)

m∑

k=n+1

h2
k =

∫ ∞

−∞
φµ(t)dω(t),(2.13)

ηµ = ĥTφµ(Λ̂)ĥ =

n∑

k=1

φµ(λk)ĥ2
k =

∫ ∞

−∞
φµ(t)dω̂(t),(2.14)

η′µ = ĥTψµ(Λ̂)ĥ =
n∑

k=1

ψµ(λk)ĥ2
k =

∫ ∞

−∞
ψµ(t)dω̂(t).(2.15)
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The distribution functions ω and ω̂, defined by (2.13) and (2.14), respectively, are non-
decreasing step functions with jump discontinuities at the eigenvalues λk. Moreover, the
function ω generally has a jump discontinuity at the origin when m > n. We show in the
next section how Gauss and Gauss-Radau quadrature rules can be applied to cheaply compute
upper and lower bounds of the quantities ρµ, ηµ, and η′µ by using their representations (2.13),
(2.14) and (2.15), respectively, in terms of Stieltjes integrals.

3. Gauss Quadrature and Lanczos Bidiagonalization. The computation of the quan-
tities ρµ, ηµ and η′µ introduced in the previous section for several values of µ is very expensive
when the matrixA is very large. This section discusses how upper and lower bounds of these
quantities can be evaluated by using Gauss and Gauss-Radau quadrature rules. These bounds
can be substituted into (2.9) to determine upper and lower bounds of the curvature κµ. We re-
mark that the application of Gauss-type quadrature rules to compute bounds for certain matrix
functionals is well-known; see the paper by Golub and Meurant [7] and references therein. A
discussion on how to use these techniques to compute an L-ribbon that contains the L-curve
(1.6) is presented in [2].

We review some facts about Gauss quadrature rules and their connection with the Lanc-
zos process. Define the inner product induced by the distribution function ω̂ introduced in
(2.14),

〈f, g〉 :=

∫ ∞

−∞
f(t)g(t)dω̂(t) =

n∑

k=1

f(λk)g(λk)ĥ2
k = ĥT f(Λ̂)g(Λ̂)ĥ,(3.1)

and let q̂0, q̂1, q̂2, . . . be the family of orthonormal polynomials with positive leading coeffi-
cients with respect to this inner product; thus,

〈q̂k, q̂j〉 =

{
0, k 6= j,
1, k = j.

(3.2)

The polynomials q̂k satisfy a three-term recurrence relation of the form

tq̂k−1(t) = β̂kq̂k(t) + α̂k q̂k−1(t) + β̂k−1q̂k−2(t), k = 1, 2, 3, . . . ,(3.3)

where q̂−1(t) := 0, q̂0(t) := 〈1, 1〉−1/2 and β̂0 := 0. We remark that since the distribu-
tion function ω̂ has at most n distinct points of increase, there are at most n orthonormal
polynomials q̂j .

It is well-known that ` steps of the Lanczos algorithm applied to the matrix ATA with
initial vector AT b yields the symmetric positive definite or semidefinite tridiagonal matrix

T̂` :=




α̂1 β̂1

β̂1 α̂2 β̂2

. . .
. . .

. . .

β̂`−2 α̂`−1 β̂`−1

β̂`−1 α̂`



,(3.4)

whose entries are the first 2` − 1 coefficients in the recurrence relation (3.3); see, e.g., [7]
as well as the end of this section. We assume here that ` is sufficiently small to secure that
β̂j > 0 for 1 ≤ j < `.

The `-point Gauss quadrature rule associated with the distribution function ω̂ can be
expressed in terms of the tridiagonal matrix T̂` as follows:

Ĝ`(f) = ‖AT b‖2eT
1 f(T̂`)e1.(3.5)
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Here and throughout this paper ej denotes the jth axis vector.
Introduce the Cholesky factor of T̂`,

Ĉ` :=




γ̂1

δ̂2 γ̂2

. . .
. . .

δ̂`−1 γ̂`−1

δ̂` γ̂`




(3.6)

as well as the matrix

¯̂
C`−1 =

[
Ĉ`−1

δ̂`e
T
`−1

]
∈ R

`×(`−1),(3.7)

which is made up of the `− 1 first columns of Ĉ`.
In the cases of particular interest to us, when f := φµ or f := ψµ, where φµ and ψµ

are defined by (2.2) and (2.10), respectively, formula (3.5) can be evaluated easily by using
the Cholesky factor Ĉ` of the matrix T̂`; see Section 4. A discussion on how to compute
the matrix Ĉ` directly, without determining T̂`, by partial Lanczos bidiagonalization of A is
provided at the end of this section.

We use the matrix ¯̂
C`−1 in a representation analogous to (3.5) of the `-point Gauss-Radau

quadrature rule

R̂`(f) =
∑̀

k=1

f(θ̃k)η̃k ,(3.8)

associated with the distribution function ω̂(t) with one assigned node, say θ̃1, at the origin.
One can show that this quadrature rule can be expressed as

R̂`(f) = ‖AT b‖2eT
1 f(

¯̂
C`−1

¯̂
C

T

`−1)e1;(3.9)

see, e.g., [2] for a proof.
Let f be a 2` times differentiable function. Introduce the quadrature error

EQ`
(f) :=

∫ ∞

−∞
f(t)dω̂(t) −Q`(f),

where Q` = Ĝ` or Q` = R̂`. In the former case, there exists a constant θĜ`
, with λ1 ≤ θĜ`

≤
λn, such that

EĜ`
(f) =

f (2`)(θĜ`
)

(2`)!

∫ ∞

−∞

∏̀

i=1

(t− θi)
2dω̂(t),(3.10)

where f (j) denotes the jth derivative of the function f . On the other hand, if Q` = R̂`, then
there is a constant θR̂`

, with λ1 ≤ θR̂`
≤ λn, such that

ER̂`
(f) =

f (2`−1)(θR̂`
)

(2`− 1)!

∫ ∞

−∞
t
∏̀

i=2

(t− θ̃i)
2dω̂(t),(3.11)
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where we recall that θ̃1 = 0. We refer to Golub and Meurant [7] for details.
PROPOSITION 3.1. Assume that µ > 0 and let φµ and ψµ be defined by (2.2) and (2.10),

respectively. Then, for ` ≥ 1,

EĜ`
(φµ) > 0, ER̂`

(φµ) < 0(3.12)

and

EĜ`
(ψµ) < 0, ER̂`

(ψµ) > 0.(3.13)

Proof. Analogous results have been shown, e.g., by Golub and Meurant [7]. The jth
derivative of φµ(t) with respect to t is given by φ(j)

µ (t) = (−1)j(j + 1)!(t + µ)−j−2 and

it follows that φ(2`−1)
µ (t) < 0 and φ(2`)

µ (t) > 0 for t ≥ 0. Substituting these inequalities
into (3.10) and (3.11), and using the fact that all the jump discontinuities of ω(t) are on the
nonnegative real axis, gives (3.12). The inequalities (3.13) can be shown analogously.

It follows from Proposition 3.1 that upper and lower bounds for the quantities ηµ and
η′µ can be determined by replacing the Stieltjes integrals in (2.14) and (2.15) by Gauss and
Gauss-Radau quadrature rules.

We turn to bounds for the quantity ρµ defined by (2.3). Let T` ∈ R
`×` denote the

tridiagonal matrix obtained by ` steps of the Lanczos process applied to AAT with initial
vector b, and let C` denote the lower bidiagonal Cholesky factor of T`. Then analogous to
the representation (3.5), the `-point Gauss quadrature rule, with respect to the distribution
function ω(t) defined by (2.13), can be written as

G`(φµ) = µ4‖b‖2eT
1 φµ(T`)e1.(3.14)

Similarly to (3.9), the `-points Gauss-Radau rule, associated with the distribution function
ω(t) with one node assigned at the origin, can be evaluated as

R`(φµ) = µ4‖b‖2eT
1 φµ(C̄`−1(C̄`−1)

T )e1,(3.15)

where the matrix C̄`−1 consists of the ` − 1 first columns of the matrix C`. We obtain
analogously to (3.12) that

EG`
(φµ) > 0, ER`

(φµ) < 0.(3.16)

Thus, lower and upper bounds for the quantity ρµ defined by (2.3) can be determined by
replacing the Stieltjes integral in (2.13) by the Gauss and Gauss-Radau quadrature rules (3.14)
and (3.15), respectively.

We conclude this section with some remarks on the computation of the Cholesky factors
used for the evaluation of the quadrature rules. Application of ` steps of the Lanczos bidi-
agonalization algorithm bidiag1, described by Paige and Saunders [14] to the matrix A with
initial vector b, yields the decompositions

AV` = U`C` + δ`+1u`+1e
T
` , ATU` = V`C

T
` , b = δ1U`e1,(3.17)

where the matrices U` ∈ R
m×` and V` ∈ R

n×` satisfy UT
` U` = I` and V T

` V` = I`, and the
unit vector u`+1 ∈ R

m is such that UT
` u`+1 = 0. The matrixC` ∈ R

`×` is lower bidiagonal.
Combining the equations (3.17) suitably shows that

AATU` = U`C`C
T
` + δ`+1γ`u`+1e

T
` ,(3.18)
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where γ` = eT
` C`e`.

Let uj := U`ej , 1 ≤ j ≤ `. It is straightforward to verify that {uj}`+1
j=1 are Lanczos

vectors and that T` := C`C
T
` is the tridiagonal matrix obtained when applying ` steps of

the Lanczos algorithm to the matrix AAT with initial vector b. In particular, the bidiagonal
matrix C` in (3.17) is a Cholesky factor of T`.

Let vj := V`ej , 1 ≤ j ≤ `. Multiplying the equation on the left-hand side in (3.17) from
the left by AT shows that {vj}`

j=1 are Lanczos vectors that can be generated by applying `
steps of the Lanczos algorithm to the matrixATA with starting vectorAT b. The correspond-
ing tridiagonal matrix is given by T̂` := C̄T

` C̄`, where the lower bidiagonal (`+1)× `matrix
C̄` is defined analogously to (3.7).

We remark that the lower bidiagonal Cholesky factor Ĉ` of T̂` can be computed, without
forming T̂`, from the QR-factorization C̄` = Q̄`Ĉ

T
` , where Q̄` ∈ R

(`+1)×` satisfies Q̄T
` Q̄` =

I` and ĈT
` is upper bidiagonal. Note that the matrix Q̄` can be represented by ` Givens

rotation and, therefore, Ĉ` can be computed from C̄` in only O(`) arithmetic operations.

4. The L- and Curvature-Ribbons. We show how to compute upper and lower bounds
of the abscissa and ordinate of points on the L-curve and of the curvature of the L-curve at
these points. These bounds yield the L-ribbon and the curvature-ribbon defined below. The
evaluation of the bounds requires that the bidiagonal matrix C` and the coefficient δ`+1 in
(3.17) be available; the width of the ribbons decreases as ` increases. Results from [2] show
how to cheaply compute an approximate solution xµ,` of (1.3) and (1.4) associated with a
desired value of µ

We first discuss the computation of bounds for ρµ defined by (2.3). It follows from (3.16)
that

G`(φµ) ≤ ρµ ≤ R`+1(φµ)(4.1)

and (3.14) and (3.15) yield

G`(φµ) = µ4‖b‖2eT
1 (C`C

T
` + µ2I`)

−2e1,(4.2)

R`+1(φµ) = µ4‖b‖2eT
1 (C̄`C̄

T
` + µ2I`+1)

−2e1.(4.3)

We evaluate the Gauss quadrature rule (4.2) by first determining the vector yµ := (C`C
T
` +

µ2I`)
−1e1, which is computed as the solution of the least-squares problem

min
y∈R

`

∥∥∥∥
[
CT

`

µI`

]
y − µ−1

[
0

e1

]∥∥∥∥ , 0 ∈ R
`.

Eldén [5] describes how this problem can be solved efficiently with the aid of Givens rota-
tions. Note that the matrix C` is independent of the regularization parameter µ. Therefore,
given this matrix, the Gauss rule (4.2) can be evaluated in only O(`) arithmetic floating point
operations for each value of µ. The evaluation of the Gauss-Radau rule (4.3) can be carried
out similarly.

We determine bounds for ‖xµ‖ by computing bounds for the quantity ηµ, defined in
(2.3). It follows from (3.12) that, analogously to (4.1),

Ĝ`(φµ) ≤ ηµ ≤ R̂`(φµ),(4.4)

and similarly to the representations (4.2) and (4.3), we have

Ĝ`(φµ) = ‖AT b‖2eT
1 (Ĉ`Ĉ

T
` + µ2I`)

−2e1,

R̂`(φµ) = ‖AT b‖2eT
1 (

¯̂
C`−1(

¯̂
C`−1)

T + µ2I`)
−2e1.
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We evaluate these quadrature rules similarly as (4.2).
Combining (2.4) and the inequalities (4.1) and (4.4) yields the following bounds

(G`(φµ))1/2 ≤‖b−Axµ‖≤ (R`+1(φµ))1/2,

(Ĝ`(φµ))1/2 ≤ ‖xµ‖ ≤ (R̂`(φµ))1/2.

Introduce the quantities

ρ−µ := G`(φµ), ρ+
µ := R`+1(φµ),

η−µ := Ĝ`(φµ), η+
µ := R̂`(φµ),

(4.5)

as well as

ρ̂−µ := log ρ−µ , ρ̂+
µ := log ρ+

µ , η̂−µ := log η−µ , η̂+
µ := log η+

µ ,(4.6)

for µ > 0. We define the L-ribbon as the union of rectangular regions with vertices deter-
mined by ρ̂±µ and η̂±µ ,

⋃

µ>0

{(η̂, ρ̂) : η̂−µ ≤ η̂ ≤ η̂+
µ , ρ̂

−
µ ≤ ρ̂ ≤ ρ̂+

µ }.(4.7)

We turn to the derivation of bounds for the curvature κµ of the L-curve. Our bounds are
based on formula (2.9) and require that bounds for η′µ be evaluated. Equation (2.15) and the
inequalities (3.13) yield

R̂`(ψµ) ≤ η′µ ≤ Ĝ`(ψµ),

where

Ĝ`(ψµ) = −4µ‖AT b‖2eT
1 (Ĉ`Ĉ

T
` + µ2I`)

−3e1,

R̂`(ψµ) = −4µ‖AT b‖2eT
1 (

¯̂
C`−1(

¯̂
C`−1)

T + µ2I`)
−3e1.

(4.8)

The quadrature rules (4.8) can be evaluated analogously as (4.2).
For future reference, we introduce

(η′µ)− := R̂`(ψµ), (η′µ)+ := Ĝ`(ψµ).(4.9)

The bounds (4.5) and (4.9) of ρµ, ηµ and η′µ allow us to derive easily computable lower
and upper bounds for the curvature κµ at the point Pµ = 1

2 (η̂µ, ρ̂µ). Define the auxiliary
quantities

τµ := 2
ηµρµ

(µ4η2
µ + ρ2

µ)3/2
,

ξµ := µ2ρµ + µ4ηµ + 2µρµ
ηµ

η′µ
.

Then, by (2.9),

κµ = τµξµ.(4.10)

PROPOSITION 4.1. Assume that ρ−µ ≥ 0, η−µ ≥ 0, (η′µ)+ < 0 and µ4(η−µ )2+(ρ−µ )2 > 0.
Let

τ−µ := 2
η−µ ρ

−
µ

(µ4(η+
µ )2 + (ρ+

µ )2)3/2
, τ+

µ := 2
η+

µ ρ
+
µ

(µ4(η−µ )2 + (ρ−µ )2)3/2
,(4.11)
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and

ξ−µ := µ2ρ−µ + µ4η−µ + 2µρ+
µ

η+
µ

(η′µ)+
, ξ+µ := µ2ρ+

µ + µ4η+
µ + 2µρ−µ

η−µ
(η′µ)−

.(4.12)

Then

0 ≤ τ−µ ≤ τµ ≤ τ+
µ , ξ−µ ≤ ξµ ≤ ξ+µ .(4.13)

Proof. The inequalities (4.13) follow from the bounds (4.5) of ρµ and ηµ, and the bounds
(4.9) of η′µ. Note that the first two terms in the expressions for ξ±µ are nonnegative, while the
last term is nonpositive.

PROPOSITION 4.2. Assume that ρ−µ ≥ 0, η−µ ≥ 0, (η′µ)+ < 0 and µ4(η−µ )2+(ρ−µ )2 > 0.
Let τ±µ and ξ±µ be defined by (4.11) and (4.12), respectively. Then

κ−µ ≤ κµ ≤ κ+
µ ,(4.14)

where

κ−µ :=

{
τ−µ ξ

−
µ , if ξ−µ ≥ 0,

τ+
µ ξ

−
µ , if ξ−µ < 0,

(4.15)

κ+
µ :=

{
τ+
µ ξ

+
µ , if ξ+µ ≥ 0,

τ−µ ξ
+
µ , if ξ+µ < 0.

(4.16)

Proof. The inequalities (4.14) follow from (4.10) and Proposition 4.1).
A curvature-ribbon, which contains the graph {(µ, κµ) : µ > 0} can be defined as the

union of intervals with endpoints (4.15) and (4.16),

⋃

µ>0

{(µ, κ) : κ−µ ≤ κ ≤ κ+
µ }.

The curvature κµ as defined by (2.6) is negative at the “vertex” of the L-curve. Generally,
we find it more pleasing to plot the curvature-ribbon associated with the negative curvature
−κµ. This ribbon is given by

⋃

µ>0

{(µ,−κ) : −κ+
µ ≤ −κ ≤ −κ−µ }(4.17)

and will also be referred to as a curvature-ribbon. We display the latter curvature-ribbon in
the computed examples of Section 5.

The following algorithm determines rectangles associated with the L-ribbon and intervals
associated with the curvature-ribbon for the parameter values µj , 1 ≤ j ≤ p.

ALGORITHM 1 (L- and Curvature-Ribbon Algorithm).
Input: b ∈ R

m, A ∈ R
m×n, `, {µj}p

j=1;
Output: {ρ̂+

µj
}p

j=1, {ρ̂−µj
}p

j=1, {η̂+
µj
}p

j=1, {η̂−µj
}p

j=1, {κ+
µj
}p

j=1, {κ−µj
}p

j=1;

i) Compute the entries of the bidiagonal matrix C̄`. Determine Ĉ` by QR-
factorization of C̄`.
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ii) for j = 1, 2, . . . , p do
Evaluate the quadrature rules G`(φµj

), R`+1(φµj
),

Ĝ`(φµj
), R̂`(φµj

), Ĝ`(ψµj
) and R̂`(ψµj

) to determine
the bounds (4.5)-(4.6) and (4.15)-(4.16);

end j

We conclude this section by noting that an approximate solution of (1.4), and thereby
of (1.1), that corresponds to a point in the L-ribbon (4.7), can easily be evaluated using the
partial Lanczos bidiagonalization (3.17). Let µ∗ > 0 be the chosen value of the regularization
parameter and consider the Galerkin equation

V T
` (ATA+ µ2

∗In)V`y = V T
` A

T b.(4.18)

The solution yµ∗,` of (4.18) yields the approximate solution xµ∗,` = V`yµ∗,` of (1.4). It is
shown in [2] that

log ‖xµ∗,`‖ = η̂−µ∗ , log ‖Axµ∗,` − b‖ = ρ̂+
µ∗ .

We refer to [2] for details on the computation of yµ∗,`.

5. Computed Examples. We illustrate the techniques from the previous sections with
two numerical examples, both of which are Fredholm integral equations of the first kind,

∫ β

α

K(s, t)x(t) dt = b(s), α ≤ s ≤ β.(5.1)

All computations were performed with Matlab, version 5.3, on a personal computer with
about 16 significant decimal digits.
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FIG. 5.1. Example 5.1: 8 Lanczos bidiagonalization steps: (a) L-ribbon (4.7), (b) curvature-ribbon (4.17).

Example 5.1. We consider the test problem shaw from the REGULARIZATION TOOLS

package [11]. This problem is an integral equation of the form (5.1) with

K(s, t) := (cos(s) + cos(t))
2

(
sin(u(s, t))

u(s, t)

)2

,

u(s, t) := π(sin(s) + sin(t)),

x(t) := 2 exp
(
−6(t− 0.8)2

)
+ exp

(
−2(t+ 0.5)2

)
(5.2)



ETNA
Kent State University 
etna@mcs.kent.edu

L-curve and curvature bounds 31

2.56 2.58 2.6 2.62 2.64 2.66 2.68 2.7 2.72 2.74
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

10
−3

10
−2

10
−1

10
0

−10

0

10

20

30

40

50

60

70

(a) (b)

FIG. 5.2. Example 5.1: 9 Lanczos bidiagonalization steps: (a) L-ribbon (4.7), (b) curvature-ribbon (4.17).
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FIG. 5.3. Example 5.1: 9 Lanczos bidiagonalization steps: Computed solution (blue dashed curve) and exact
solution to noise-free problem (black solid curve).

and α := −π/2, β := π/2. The right-hand side function b in (5.1) is determined by the
kernel K and the solution x.

The matrix A of the linear system (1.1) is obtained by discretizing the integral in (5.1)
by a Nyström method. Specifically, the integral is replaced by the composite midpoint rule
with nodes

ti :=
2i− 201

400
π, 1 ≤ i ≤ 200,

and the discretized integral so obtained is required to equal the right-hand side function b of
(5.1) at the points si := ti, 1 ≤ i ≤ 200. This determines the matrix A ∈ R

200×200, which is
symmetric, indefinite and numerically singular.

Let the vector x̂ = [x(t1), x(t2), . . . , x(t200)]
T be the tabulation of the solution (5.2)

at the nodes ti and compute the “noisy” right-hand side vector b in (1.1) according to b :=
Ax̂ + e, where e is an unbiased Gaussian noise vector with ‖e‖/‖Ax̂‖ = 1 · 10−2. We seek
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to determine an accurate approximation of the vector x̂ by computing a suitable approximate
solution of the linear system (1.1).

While the linear system of equations (1.1), determined in this manner, is fairly small, it
illustrates the behavior of the L- and curvature-ribbons as the number of Lanczos bidiagonal-
ization steps ` is increased.

Figure 5.1 shows the L-ribbon (4.7) and curvature-ribbon (4.17) obtained with ` = 8
Lanczos bidiagonalization steps. Figure 5.1(a) displays rectangles of the L-ribbon obtained
for 40 logarithmically equispaced values µj of µ in the interval 1√

10
[1 · 10−2, 1]. The upper

left corner {η̂−µj
, ρ̂+

µj
} of each rectangle, associated with the Galerkin solution of (4.18) for

µ∗ = µj , is marked by a red cross. When the rectangles are tiny, only this cross is visible of
the rectangle. Points associated with the exact solution (1.5) for µ = µj of the minimization
problem (1.3) are marked by black circles.

The bounds are always tight for large values of µ, which correspond to imposing a large
amount of regularization on the problem, while they deteriorate as µ gets smaller. The latter
is due to the singularity of the integrands φµ and ψµ in (2.13)-(2.15) at t = −µ2; since the
support of the measure is on the nonnegative real axis, as µ decreases the singularity moves
closer to the support, thus making the quadrature rules less accurate. In Figure 5.1(a) the
rectangles of the L-ribbon (shown in blue) are invisible for values of µ close to 1/

√
10, but

fairly large for values of µ near 10−2.5.
Similarly, the curvature-ribbon in Figure 5.1(b) is “thinner,” indicating that the curvature

bounds are tighter, for large values of µ than for small values. Here the dashed (blue) graph
shows −κ−µ and the continuous (black) graph shows −κ+

µ .
When ` Lanczos bidiagonalization steps are carried out, the Gauss and Gauss-Radau

rules determined have ` or `+1 nodes. We therefore expect the computed bounds to improve
as ` increases. This, indeed, can be observed in Figures 5.2, which is analogous to Figure 5.1,
and correspond to ` = 9 Lanczos bidiagonalization steps. The rectangles of the L-ribbon can
be seen to be significantly smaller in Figure 5.2(a) than in Figure 5.1(a). Moreover, the upper
and lower bounds of the curvature-ribbon are so close that they cannot be distinguished in
Figure 5.2(b).

It is natural to increase the number of Lanczos bidiagonalization steps ` until the upper
and lower curvature bounds are within a prescribed tolerance in an interval around the location
of the maximum absolute value of the curvature. In the present example, this condition may
be satisfied when either ` = 8 or ` = 9 Lanczos bidiagonalization steps have been carried
out, depending on the prescribed tolerance. Figure 5.2(b) indicates that −κµ is maximal for
µ ≈ 2 · 10−2. The Galerkin solution obtained from (4.18) with µ∗ = 2 · 10−2 and ` = 9 is
shown in Figure 5.3 (blue dashed curve). The figure also displays the exact solution (5.2) of
the noise-free continuous problem (black continuous curve).

This example illustrates that by using both the L- and curvature-ribbons, it is easy to de-
termine a suitable number of Lanczos bidiagonalization steps and a value of the regularization
parameter that corresponds to a point in the vicinity of the vertex of the L-curve.

Example 5.2. The integral equation (5.1) in this example is a test problem from geomag-
netic prospecting (see [15]), namely, a deconvolution problem with

K(s, t) :=
d

(d2 + (s− t)2)3/2
, d :=

1

4
,

x(t) := sin(πt) +
1

2
sin(2πt),(5.3)

and α := 0, β := 1. The right-hand side function b in (5.1) models the vertical compo-
nent of the magnetic field from a source distribution x of magnetic dipoles at depth d. Dis-



ETNA
Kent State University 
etna@mcs.kent.edu

L-curve and curvature bounds 33

2.535 2.54 2.545 2.55 2.555 2.56 2.565
−2.622

−2.62

−2.618

−2.616

−2.614

−2.612

−2.61

−2.608

−2.606

−2.604

10
−3

10
−2

10
−1

0

50

100

150

200

250

(a) (b)

FIG. 5.4. Example 5.2: 12 Lanczos bidiagonalization steps: (a) L-ribbon (4.7), (b) curvature-ribbon (4.17).
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FIG. 5.5. Example 5.2: 13 Lanczos bidiagonalization steps: (a) L-ribbon (4.7), (b) curvature-ribbon (4.17).

cretization by a simple Nyström method gives the symmetric, numerically singular, matrix
A ∈ R

256×256 of the linear system (1.1), similarly as in Example 5.1. Let x̂ ∈ R
256 be the

tabulation of the solution (5.3) at the nodes of the quadrature rule, and define the “noisy”
right-hand side vector of (1.1) by b := Ax̂ + e, where e ∈ R

256 is an unbiased Gaussian
noise vector with ‖e‖/‖Ax̂‖ = 1 · 10−3. We seek to compute an accurate approximation of
x̂ by determining a suitable approximate solution of the linear system (1.1).

Figure 5.4 shows the L-ribbon (4.7) and curvature-ribbon (4.17) obtained with ` = 12
Lanczos bidiagonalization steps for 10−2.5 ≤ µ ≤ 10−1.5. The figure is analogous to Figure
5.1. The large rectangles of the L-ribbon shown in Figure 5.4(a) and the large distance be-
tween the curves of −κ+

µ and −κ−µ in Figure 5.4(b) near the maximum of −κµ suggests that
more Lanczos bidiagonalization steps should be carried out.

Figure 5.5 is analogous to Figure 5.4 and shows the L- and curvature-ribbons obtained
with ` = 13 Lanczos bidiagonalization steps. The rectangles in Figure 5.5(a) are smaller than
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FIG. 5.6. Example 5.2: 14 Lanczos bidiagonalization steps: (a) L-ribbon (4.7), (b) curvature-ribbon (4.17).
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FIG. 5.7. Example 5.2: 14 Lanczos bidiagonalization steps: (a) Computed solution associated with µ = 9 ·

10
−3 (blue dashed curve) and exact solution to the noise-free continuous problem (black solid curve), (b) Computed

solution associated with µ = 3 · 10
−2 (blue dashed curve) and exact solution to the noise-free continuous problem

(black solid curve).

in Figure 5.4(a), and the distance between the curves of −κ+
µ and −κ−µ is smaller in Figure

5.5(b) than in Figure 5.4(b). The former figure suggests that −κµ achieves its maximum for
about µ = 9 · 10−3. This is confirmed by Figure 5.6, which shows the L- and curvature-
ribbons obtained with ` = 14 Lanczos bidiagonalization steps.

The Galerkin solution obtained from (4.18) with µ∗ = 9 · 10−3 and ` = 14 (blue dashed
curve) and the exact solution (5.3) of the noise-free continuous problem (black continuous
curve) are shown in Figure 5.7(a). We remark that the computed Galerkin solutions for µ∗ =
9 · 10−3 and ` = 12 or ` = 13 look the same as the Galerkin solution displayed.

The value of the regularization parameter µ associated with the vertex of the L-curve
often is somewhat too small in the sense that for many linear discrete ill-posed problems
(1.1) a better approximation of the solution of the associated, and generally unknown, noise-
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free problem (1.2) can be obtained by choosing a value of µ that is somewhat larger than
the value associated with the vertex. For instance, the Galerkin solution obtained from (4.18)
with µ∗ = 3·10−2, shown in Figure 5.7(b), yields a better approximation of the exact solution
(5.3) of the noise-free continuous problem than the Galerkin solution shown in Figure 5.7(a).
Nevertheless, the L- and curvature-ribbons provide valuable estimates of the size of suitable
values of the regularization parameter for many linear discrete ill-posed problems (1.1).

6. Conclusion. We have derived computable bounds for the log residual norm, the log
solution norm, and the curvature of the L-curve. The bounds are inexpensive to compute
during a Lanczos bidiagonalization process, thus providing a convenient way for using the
L-curve as an aid for choosing the regularization parameter. In addition, the bounds pro-
vide information about when to stop the Lanczos iterations, namely, when the bounds are
sufficiently close for regularization parameters in an interval around the optimal one. This
is an important step towards making Lanczos bidiagonalization a practical general-purpose
regularization algorithm.
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