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ON PARALLEL TWO-STAGE METHODS FOR HERMITIAN POSITIVE
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Abstract. Parallel two-stage iterative methods for the solution of linear systems are analyzed. Convergence
properties of both block and multisplitting two-stage methods are investigated either when the number of inner iter-
ations becomes sufficiently large or when the matrix of the linear system is Hermitian positive definite. Comparison
theorems for the parallel two-stage methods, based on the number of inner iterations performed, are given. Compu-
tational results of these methods on two parallel computing systems are included to illustrate the theoretical results.
Also, the use of these methods as preconditioners is studied from the experimental point of view.
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1. Introduction. We are interested in the iterative solution, on a parallel computer, of
nonsingular linear systems of equations

Ax = b,(1.1)

where A ∈ Cn×n, and x and b are n–vectors. Suppose that A is partitioned into r× r blocks,

with square diagonal blocks of order nj ,

r
∑

j=1

nj = n, such that system (1.1) can be written

as

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,(1.2)

where x and b are partitioned according to the size of the blocks of A. This partition may
arise naturally due to the structure of the problem or it may be obtained using some block
partitioning algorithm; see e.g., [35].

Classical block iterative methods can be used for the solution of (1.2). The advantages
over point methods lie in the adaptability of these methods for parallel processing and, gen-
erally, in faster convergence. Descriptions of these methods can be found, e.g., in Berman
and Plemmons [2], Ortega [37], [38] or Varga [47]. Particularly, in the Block-Jacobi type
methods we use a splitting A = M −N (i.e., M nonsingular), where M is a block diagonal
matrix, denoted by

M = diag(M1, . . . , Mj , . . . , Mr),(1.3)

and the blocks Mj are of order nj , 1 ≤ j ≤ r. With this notation we have the following
algorithm.
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ALGORITHM 1. (BLOCK-JACOBI TYPE).

Given an initial vector x(0) =
(

(x
(0)
1 )T , . . . , (x

(0)
r )T

)T

.

For l = 0, 1, 2, . . ., until convergence.

For j = 1 to r

Mjx
(l+1)
j = (Nx(l) + b)j .(1.4)

Note that in the standard Block-Jacobi method, the block diagonal matrix M , defined in
(1.3), consists of the diagonal blocks of A in (1.2).

At each iteration l, l = 0, 1, 2, . . . , of a Block-Jacobi type method, r independent linear
systems of the form (1.4) need to be solved; therefore each linear system (1.4) can be solved
by a different processor. However, when the order of the diagonal blocks Mj , 1 ≤ j ≤ r,
is large, it is natural to approximate their solutions by using an iterative method, and thus we
are in the presence of a two-stage iterative method; see e.g., [16], [26], [29], [33]. In a formal
way, for a block two-stage method, let us consider the splittings

Mj = Fj −Gj , 1 ≤ j ≤ r,(1.5)

and at each outer lth iteration perform, for each j, 1 ≤ j ≤ r, q(l, j) inner iterations of the
iterative procedure defined by the splittings (1.5) to approximate the solution of (1.4); i.e., the
following algorithm is performed.

ALGORITHM 2. (BLOCK TWO-STAGE).

Given an initial vector x(0) =
(

(x
(0)
1 )T , . . . , (x

(0)
r )T

)T

, and a sequence of numbers of

inner iterations q(l, j), 1 ≤ j ≤ r, l = 0, 1, 2, . . . .

For l = 0, 1, 2, . . ., until convergence.

For j = 1 to r

y
(0)
j = x

(l)
j

For k = 1 to q(l, j)

Fjy
(k)
j = Gjy

(k−1)
j + (Nx(l) + b)j(1.6)

x(l+1) =
(

(y
(q(l,1))
1 )T , (y

(q(l,2))
2 )T , . . . , (y

(q(l,r))
r )T

)T

.

When the number of inner iterations q(l, j) used to approximate each of the linear systems
(1.4) is the same for each j, 1 ≤ j ≤ r, and for each outer step l = 0, 1, 2, . . . , it is said that
the method is stationary, while a non-stationary block two-stage method is such that a dif-
ferent number of inner iterations may be performed in each block and/or each outer step; see
e.g., [6] and [17]. Convergence properties of these algorithms were studied when the num-
ber of inner iterations becomes sufficiently large. Furthermore, convergence for monotone
matrices and H–matrices was shown for any number of inner iterations; see e.g., Berman
and Plemmons [2] and Ostrowski [39] for definitions. Parallel generalizations of those block
two-stage methods, called two-stage multisplitting methods, have been analyzed by Bru, Mi-
gallón, Penadés and Szyld [8]; see also, [6], [40] and [45]. Convergence was shown under
conditions similar to those for the block methods.

The multisplitting technique was introduced by O’Leary and White [34] and was further
studied by other authors, e.g., Frommer and Mayer [12], [13], Neumann and Plemmons [32],
White [48], [49], [50], Szyld and Jones [46], Mas, Migallón, Penadés and Szyld [28] and
Fuster, Migallón and Penadés [18]. This method consists of having a collection of splittings

A = Pj −Qj , 1 ≤ j ≤ r,(1.7)
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and diagonal nonnegative weighting matrices Ej which add to the identity, and the following
iteration is performed

x(l+1) =

r
∑

j=1

EjP
−1
j Qjx

(l) +

r
∑

j=1

EjP
−1
j b, l = 0, 1, 2, . . . ,(1.8)

where x(0) is an arbitrary initial vector. As it can be appreciated, Algorithm 1 can be seen
as a special case of the iterative scheme (1.8) when all the splittings (1.7) are the same, with
Pj = M = diag(M1, . . . , Mr) and the diagonal matrices Ej have ones in the entries corre-
sponding to the diagonal block Mj and zeros otherwise. As in the case of the Block-Jacobi
type methods, at each iteration l of (1.8), r independent linear systems need to be solved.
When these linear systems are not solved exactly, but rather their solutions approximated by
using iterative methods based on splittings of the form

Pj = Bj − Cj , 1 ≤ j ≤ r,(1.9)

we obtain a two-stage multisplitting method, which corresponds to the following algorithm;
see [8].

ALGORITHM 3. (TWO-STAGE MULTISPLITTING).
Given an initial vector x(0), and a sequence of numbers of inner iterations q(l, j), 1 ≤

j ≤ r, l = 0, 1, 2, . . . .

For l = 0, 1, 2, . . ., until convergence.

For j = 1 to r

y
(0)
j = x(l)

For k = 1 to q(l, j)

Bjy
(k)
j = Cjy

(k−1)
j + (Qjx

(l) + b)(1.10)

x(l+1) =

r
∑

j=1

Ejy
(q(l,j))
j .

Note that Algorithm 2 can be seen as a particular case of Algorithm 3, setting Pj = M, 1 ≤
j ≤ r, where M is the block diagonal matrix defined in (1.3), Bj = diag(F1, . . . , Fr), with
Fj , 1 ≤ j ≤ r, defined in (1.5), and Ej , 1 ≤ j ≤ r, are block matrices partitioned according
to the size of the blocks of A, with the jth diagonal block equal to the identity and zeros
elsewhere.

On the other hand, Algorithm 3 reduces to the multisplitting method (1.8) when the inner
splittings are Pj = Pj − O and q(l, j) = 1, 1 ≤ j ≤ r, l = 0, 1, 2, . . . . Moreover, Model
A in Bru, Elsner and Neumann [4] is a special case of Algorithm 3 when the outer splittings
(1.7) are all A = A−O. The convergence of that Model A has been established for monotone
matrices [4], H–matrices [28], and Hermitian positive definite matrices [9].

In this paper we concentrate our study on Algorithms 2 and 3 when the coefficient matrix
of the linear system (1.1) is Hermitian positive definite. Furthermore, we investigate the case
when the number of inner iterations becomes sufficiently large. Convergence of Algorithm
2 together with its generalization to the two-stage multisplitting Algorithm 3 is analyzed in
§3. We show that the convergence properties of Algorithm 2 cannot always be extended to
Algorithm 3. In §4 we study monotonicity results for the two-stage methods. Finally, in §5
we give some numerical results on distributed memory multicomputers, using these block
two-stage methods not only as iterative methods but also as preconditioners for the conjugate
gradient method. In §2, we present some definitions and preliminaries used later in the paper.
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2. Notation and preliminaries. The transpose and the conjugate transpose of a matrix
A ∈ Cn×n are denoted by AT and AH , respectively. Similarly, given a vector x ∈ Cn,
xT and xH denote the transpose and the conjugate transpose of x, respectively. A matrix
A ∈ Cn×n is said to be symmetric if A = AT , and Hermitian if A = AH . Clearly, a
real symmetric matrix is a particular case of a Hermitian matrix. A complex, not necessarily
Hermitian matrix A, is called positive definite (positive semidefinite) if the real part of xHAx
is positive (nonnegative), for all complex x 6= 0. When A is Hermitian, this is equivalent to
requiring that xHAx > 0 (xHAx ≥ 0), for all complex x 6= 0. We use the notation A � O
(A � O) for a matrix to be Hermitian positive definite (Hermitian positive semidefinite).
In addition, a general matrix A is positive definite (positive semidefinite) if and only if the
Hermitian matrix A + AH is positive definite (positive semidefinite). Given a matrix A ∈
Cn×n, the splitting A = M − N is called P–regular if the matrix MH + N is positive
definite. For any Hermitian positive definite matrix A ∈ Cn×n, 〈x, y〉 = xHAy defines an
inner product on Cn. Thus, ‖x‖A = (xHAx)1/2 is a vector norm on Cn. The matrix norm
induced by that vector norm will also be denoted by ‖ · ‖A. Furthermore, by ‖ · ‖∞ we denote
the infinite matrix norm; see e.g., [2], [37], [38], for an extensive bibliography on Hermitian
matrices and positive definite matrices.

THEOREM 2.1. Let A = M − N be a P–regular splitting of a Hermitian matrix A.
Then ρ(M−1N) < 1 if and only if A is positive definite.

Proof. The proof of this theorem can be found, e.g., in Berman and Plemmons [2, Corol-
lary 7.5.44] and Keller [25, Theorem 3].

LEMMA 2.2. Given a nonsingular matrix A, and a matrix T such that (I − T )−1

exists, there is a unique pair of matrices P, Q such that P is nonsingular, T = P−1Q and
A = P −Q. The matrices are P = A(I − T )−1 and Q = P −A.

Proof. See Lemma 8 of Lanzkron, Rose and Szyld [26].
LEMMA 2.3. Let A � O. Assume the splitting A = B − C is P–regular. Given s ≥ 1,

there exists a unique splitting A = P − Q such that (B−1C)s = P−1Q. Moreover, the
splitting is P–regular.

Proof. This result is Lemma 3.1 of [9].
LEMMA 2.4. Let T (l), l = 0, 1, 2, . . ., be a sequence of square complex matrices.

If there exists a matrix norm ‖ · ‖ such that ‖T (l)‖ ≤ θ < 1, l = 0, 1, 2, . . ., then
lim
l→∞

T (l)T (l−1) · · ·T (0) = O.

Proof. See Lemma 2 of Bru and Fuster [5].
THEOREM 2.5. Let A, B ∈ Cn×n be Hermitian matrices. If either is positive definite,

then AB has real eigenvalues and is diagonalizable. If both A and B are positive definite,
then the eigenvalues of AB are positive. Conversely, if AB has positive eigenvalues and
either A or B is positive definite, then both are positive definite.

Proof. See Theorem 6.2.3 of [37].

3. Convergence. In order to analyze the convergence of the block two-stage method
and its generalization to the two-stage multisplitting method, we write Algorithm 3 as the
following iteration.

x(l+1) =

r
∑

j=1

Ej



(B−1
j Cj)

q(l,j)x(l) +

q(l,j)−1
∑

i=0

(B−1
j Cj)

iB−1
j

(

Qjx
(l) + b

)



 ,(3.1)

cf. [8]. Let ξ be the exact solution of (1.1) and let ε(l+1) = x(l+1)− ξ be the error at the l +1
iteration. It is easy to prove that ξ is a fixed point of (3.1). Thus

ε(l+1) = T (l)ε(l) = . . . = T (l)T (l−1) · · ·T (0)ε(0), l = 0, 1, 2, . . . ,
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where T (l) are the iteration matrices

T (l) =

r
∑

j=1

Ej



(B−1
j Cj)

q(l,j) +

q(l,j)−1
∑

i=0

(B−1
j Cj)

iB−1
j Qj



 ,

or equivalently

T (l) =

r
∑

j=1

Ej

[

(B−1
j Cj)

q(l,j) +
(

I − (B−1
j Cj)

q(l,j)
)

P−1
j Qj

]

,(3.2)

cf. [8]. Thus, the sequence of error vectors {ε(l)}∞l=0 generated by iteration (3.1) converges to
the null vector if and only if lim

l→∞
T (l)T (l−1) · · ·T (0) = O. Since the product of convergent

matrices is not necessarily convergent, see e.g., Johnson and Bru [23], or Robert, Charnay
and Musy [42], the convergence of Algorithm 3 needs tools other than the spectral radius for
its analysis.

We first analyze the convergence of Algorithm 3 for any convergent outer and inner
splittings, and requiring that enough inner iterations are performed.

THEOREM 3.1. Consider the nonsingular linear system (1.1). Suppose that the outer
splittings (1.7) are all A = P −Q, such that ρ(P−1Q) < 1. Let P = Bj − Cj , 1 ≤ j ≤ r,
be convergent splittings. If lim

l→∞
q(l, j) = ∞, 1 ≤ j ≤ r, then the two-stage multisplitting

Algorithm 3 converges to the solution of the linear system (1.1), for any initial vector x(0).
Proof. Since A = P − Q is a convergent splitting, there exists an induced matrix

norm ‖ · ‖ such that ρ(P−1Q) ≤ ‖P−1Q‖ < 1. Moreover, since ρ(B−1
j Cj) < 1, and

lim
l→∞

q(l, j) = ∞, then lim
l→∞

(B−1
j Cj)

q(l,j) = O, 1 ≤ j ≤ r. Therefore, this implies

lim
l→∞

r
∑

j=1

Ej(B
−1
j Cj)

q(l,j) = O. Hence, for all ε > 0 there exists an index l0 such that

‖

r
∑

j=1

Ej(B
−1
j Cj)

q(l,j)‖ ≤ ε, for all l ≥ l0. Then, for l ≥ l0, from (3.2) we obtain

‖T (l)‖ = ‖
r

∑

j=1

Ej(B
−1
j Cj)

q(l,j) + (I −
r

∑

j=1

Ej(B
−1
j Cj)

q(l,j))P−1Q‖

≤ ε + (1 + ε)‖P−1Q‖ = αε.

Setting ε < 1−‖P−1Q‖
1+‖P−1Q‖ , we have ‖T (l)‖ ≤ αε < 1. Hence, from Lemma 2.4, the convergence

is proved.
Theorem 3.1 may be regarded as an extension of Theorem 2.4 of [16]. Moreover, it

generalizes Theorem 3.1 of [8], when all the outer splittings in Algorithm 3 are the same,
and also Theorem 1 of [7]. Specifically, the assumption on the outer splitting A = P − Q,
in [7] and [8], was ‖P−1Q‖∞ < 1. Here we weaken that assumption by the more general
ρ(P−1Q) < 1. We point out that the formulation of Algorithm 3, with all the outer splittings
being the same, allows us to include not only the block two-stage Algorithm 2 but methods
with overlapping in the above convergence result; see e.g., [14], [15], [24]. However, when
there are different outer splittings, Theorem 3.1 may not be true as we illustrate with the
following example.

EXAMPLE 3.2. Consider the matrix

A =

[

2 −1
−1 2

]

,
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and the splittings A = P1 −Q1 = P2 −Q2, where

P1 =

[

2 1
−1 1

]

and P2 =

[

1 −1
1 2

]

.

Since P−1
1 Q1 =

[

0 1
0 0

]

and P−1
2 Q2 =

[

0 0
1 0

]

, then both splittings are convergent.

Furthermore, consider the trivial inner splittings P1 = P1−O and P2 = P2−O. Setting E1 =
[

1 0
0 0

]

and E2 =

[

0 0
0 1

]

, for any number of inner iterations the iteration matrices of

Algorithm 3 are

T (l) = E1P
−1
1 Q1 + E2P

−1
2 Q2 =

[

0 1
1 0

]

, l = 0, 1, 2, . . . ,

which are not convergent.
We recall, as was shown in [8], that Theorem 3.1 holds for different outer splittings

A = Pj −Qj , 1 ≤ j ≤ r, with the additional hypothesis ‖P−1
j Qj‖ < 1, where ‖ · ‖ denotes

a weighted max-norm associated with a positive vector such as the infinite norm; see e.g.,
[22], [41].

REMARK 3.3. As an immediate consequence of Theorem 3.1 we obtain the convergence
of Algorithm 3, and therefore of Algorithm 2, applied to Hermitian positive definite matrices,
when all outer splittings are the same, and both inner and outer splittings are P -regular.

On the other hand, numerical experiments reported by some authors, see e.g., [6], [7],
[8], show that often few inner iterations produce good overall convergence results. In the rest
of this section we analyze the convergence of algorithms 2 and 3 for any number of inner
iterations. When A is Hermitian and positive definite, algorithms 2 and 3 may not converge
even if the splittings are P–regular. We give here an example that illustrates this situation.

EXAMPLE 3.4. Consider the symmetric positive definite matrix

A =

[

3 −1
−1 3

]

,

and let the P–regular splitting A = P −Q be given by

P =

[

3 0
0 3

]

, Q =

[

0 1
1 0

]

.

Note that the matrix Q is not positive semidefinite. Consider further the P–regular splittings
of P = B1 − C1 = B2 − C2, where

B1 = B2 =

[

2 0
0 2

]

, C1 = C2 =

[

−1 0
0 −1

]

.

Setting E1 =

[

1 0
0 0

]

and E2 =

[

0 0
0 1

]

, a simple calculation shows that the iteration

matrices of the two-stage multisplitting method with q(l, j) = 1, j = 1, 2, l = 0, 1, 2, . . . ,
are all

T (l) =

[

−0.5 0.5
0.5 −0.5

]

, l = 0, 1, 2, . . . ,

that have spectral radius equal to 1, and thus are not convergent.
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THEOREM 3.5. Consider the linear system (1.2), with A � O. Let A = M −N , where
M = diag(M1, . . . , Mr) is the block diagonal matrix defined in (1.3). Suppose that M is
Hermitian and N is positive semidefinite. Let Mj = Fj − Gj , 1 ≤ j ≤ r, be P–regular
splittings. Assume that the sequences of inner iterations q(l, j), l = 0, 1, 2, . . . , 1 ≤ j ≤ r,
are bounded. Then, the block two-stage Algorithm 2 converges to the solution of the linear
system (1.2), for any initial vector x(0).

Proof. In order to analyze the convergence of the block two-stage Algorithm 2, let us
denote

H(l) = diag
(

(F−1
1 G1)

q(l,1), . . . , (F−1
r Gr)

q(l,r)
)

, l = 0, 1, 2, . . . .(3.3)

Then, from (3.2), the iteration matrices of Algorithm 2 can be written as follows

T (l) = H(l) + (I −H(l))M−1N.(3.4)

By hypotheses, Mj = Fj − Gj is a P–regular splitting of the Hermitian positive definite
matrix Mj , 1 ≤ j ≤ r. Then, from Theorem 2.1, ρ(F−1

j Gj) < 1, 1 ≤ j ≤ r, and

therefore I − (F−1
j Gj)

q(l,j) is a nonsingular matrix, for all j, l, 1 ≤ j ≤ r, l = 0, 1, 2, . . . .

Thus, for each j, l, from Lemma 2.2, there exists a unique pair of matrices P
(l)
j = Mj(I −

(F−1
j Gj)

q(l,j))−1 and Q
(l)
j = P

(l)
j −Mj such that (F−1

j Gj)
q(l,j) = (P

(l)
j )−1Q

(l)
j . Moreover,

from Lemma 2.3, the splitting Mj = P
(l)
j −Q

(l)
j is also P–regular.

For each l, l = 0, 1, 2, . . . , let us consider the matrices

P (l) = diag(P
(l)
1 , . . . , P (l)

r ), Q(l) = diag(Q
(l)
1 , . . . , Q(l)

r ).

Clearly, M = P (l) −Q(l) is a P–regular splitting and P (l) = M(I −H(l))−1.
From (3.4), it follows that

T (l) = I − (I −H(l))(I −M−1N)(3.5)

= I − (I −H(l))M−1A = I − (P (l))−1A.

Thus, it is easy to see that

A− (T (l))HAT (l) =
(

(P (l))−1A
)H [

(P (l))H + P (l) −A
] (

(P (l))−1A
)

=
(

(P (l))−1A
)H [

(P (l))H + Q(l) + N
] (

(P (l))−1A
)

.(3.6)

Since (P (l))H + Q(l) is positive definite and N is positive semidefinite, from (3.6) it follows
that the Hermitian matrix A− (T (l))HAT (l) is positive definite. Then, using the vector norm
‖ · ‖A we obtain

‖T (l)x‖2
A = xH(T (l))HAT (l)x < xHAx = ‖x‖2

A, for all x 6= 0, l = 0, 1, 2, . . . .

Thus, ‖T (l)‖A < 1, l = 0, 1, 2, . . . . Since the sequences {q(l, j)}∞l=0, 1 ≤ j ≤ r, are
bounded, there is a finite number of different iteration matrices and therefore there exists a
real constant 0 ≤ θ < 1 such that ‖T (l)‖A ≤ θ < 1, l = 0, 1, 2, . . . . Then, from Lemma 2.4,
the proof is completed.

We point out that in Theorem 3.5, the hypotheses on the outer splitting A = M−N imply
that this splitting is P–regular. However, Example 3.4 shows that the P–regularity of the outer
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splitting A = M−N alone does not guarantee convergence, when N is not positive semidef-
inite. On the other hand, the hypothesis on the sequences of inner iterations in Theorem 3.5
is very realistic in practice, since there is always a maximum number of inner iterations in
each block. Nevertheless, following [5] this condition can be weakened by the assumption
that there exists a subsequence {lk}∞k=0 such that the sequences {q(lk, j)}∞k=0, 1 ≤ j ≤ r,
are bounded.

On the other hand, the proof of Theorem 3.5 shows that each iteration matrix of the block
two-stage Algorithm 2 is induced by a unique P–regular splitting. We establish this result in
the following corollary.

COROLLARY 3.6. Consider the linear system (1.2), with A � O. Let A = M − N ,
where M = diag(M1, . . . , Mr) is the block diagonal matrix defined in (1.3). Suppose that
M is Hermitian and N is positive semidefinite. Let Mj = Fj−Gj , 1 ≤ j ≤ r, be P–regular
splittings. Then, the unique splitting induced by each iteration matrix T (l), l = 0, 1, 2, . . . ,
of the block two-stage Algorithm 2 is P–regular.

Proof. From the proof of Theorem 3.5, ρ(T (l)) < 1, l = 0, 1, 2, . . . . Then, for each l,
from Lemma 2.2, there exists a unique pair of matrices Bl = A(I−T (l))−1 and Cl = Bl−A
such that T (l) = B−1

l Cl. From (3.5), Bl = A(I −T (l))−1 = M(I −H(l))−1, where H(l) is
given in (3.3). Now, following the proof of Theorem 3.5, the matrix BH

l +Cl = BH
l +Bl−A

is positive definite.
Convergence results of Theorem 3.5 are based on P–regular splittings of a Hermitian

matrix. It is well-known when the Jacobi, Gauss-Seidel and SOR splittings (and their blocks
versions) of a Hermitian positive definite matrix are P–regular; see e.g., [2], [36]. Another
class of P–regular splittings is given by the unique splitting induced by the iteration matrix
of an alternating method, such as the SSOR method, based on two P–regular splittings; see
[1]. However, in Theorem 3.5 we have also assumed that in the outer splitting A = M −N ,
N is positive semidefinite. A simple way to ensure the hypotheses on the outer splitting in
that theorem is done as follows. Let A = M̄ − N̄ be the Block-Jacobi splitting of A, i.e.,
M̄ = diag(A11, . . . , Arr). Let us consider square diagonal nonnegative matrices Dj , of size
nj , 1 ≤ j ≤ r, such that N̄ + diag(D1, . . . , Dr) is positive semidefinite. Then the splitting
A = M −N , where

M = diag(M1, . . . , Mr), Mj = Ajj + Dj , N = N̄ + diag(D1, . . . , Dr),(3.7)

satisfies the assumptions of Theorem 3.5.
Another way to get splittings satisfying the hypotheses of that theorem consists in using

a relaxation parameter ω in the outer splitting so that the new splitting will be A = 1
ωM −

( 1−ω
ω M + N). If A = M −N is a P -regular splitting, for certain values of ω (0 < ω ≤ 0.5)

we obtain the assumptions needed in Theorem 3.5.
THEOREM 3.7. Consider the linear system (1.1), with A � O. Let A = Pj −Qj , 1 ≤

j ≤ r, where Pj is Hermitian and Qj is positive semidefinite. Let Pj = Bj −Cj , 1 ≤ j ≤ r,

be P–regular splittings and Ej = αjI, 1 ≤ j ≤ r, with αj > 0,

r
∑

j=1

αj = 1. Assume

further that the sequences of numbers of inner iterations q(l, j), l = 0, 1, 2, . . . , 1 ≤ j ≤ r,
are bounded. Then, the two-stage multisplitting Algorithm 3 converges to the solution of the
linear system (1.1), for any initial vector x(0).

Proof. Define T
(l)
j = (B−1

j Cj)
q(l,j) +

(

I − (B−1
j Cj)

q(l,j)
)

P−1
j Qj , l = 0, 1, 2, . . . ,

1 ≤ j ≤ r. For each l, j, T
(l)
j is the iteration matrix of a two-stage iterative method to

solve the linear system (1.1), where the outer splitting is A = Pj −Qj , the inner splitting is
Pj = Bj−Cj , and q(l, j) is the number of inner iterations, cf. [33]. Then, from Corollary 2.1
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of [29], the unique splitting A = R
(l)
j −S

(l)
j induced by the iteration matrix T

(l)
j is P–regular.

Thus, we can write the iteration matrices T (l) defined in (3.2) as follows.

T (l) =

r
∑

j=1

EjT
(l)
j , with T

(l)
j = (R

(l)
j )−1S

(l)
j .

For each l, l = 0, 1, 2, . . . , the matrix T (l) can be viewed as the iteration matrix of a multi-
splitting method using the P–regular splittings A = R

(l)
j − S

(l)
j , 1 ≤ j ≤ r, and weighting

matrices Ej , 1 ≤ j ≤ r. Hence, from Theorem 3.2 of [31], if Ej = αjI , the unique
splitting A = U (l) − V (l) induced by each iteration matrix T (l) is also P–regular, and then
ρ(T (l)) < 1, l = 0, 1, 2, . . . . Taking into account that T (l) = (U (l))−1V (l), it is easy to see
that, for l = 0, 1, 2, . . . ,

A− (T (l))HAT (l) =
(

(U (l))−1A
)H [

(U (l))H + U (l) −A
] (

(U (l))−1A
)

,

and then, since the splittings A = U (l) − V (l) are P–regular, the Hermitian matrices A −
(T (l))HAT (l) are positive definite, i.e.,

xH
[

A− (T (l))HAT (l)
]

x = xHAx− (T (l)x)HAT (l)x > 0, for all x 6= 0.

Then ‖T (l)x‖A < ‖x‖A, for all x 6= 0, and therefore ‖T (l)‖A < 1, l = 0, 1, 2, . . . . Since
the sequences of number of inner iterations q(l, j), l = 0, 1, 2, . . . , 1 ≤ j ≤ r, are bounded,
there is a finite number of different iteration matrices T (l). Thus, there exists a real constant
θ, 0 ≤ θ < 1, such that ‖T (l)‖A ≤ θ < 1, l = 0, 1, 2, . . . , and, from Lemma 2.4, the proof
is completed.

We point out that under the hypotheses of the above theorem, each iteration matrix of
the two-stage multisplitting Algorithm 3 is induced by a unique P–regular splitting. On the
other hand, the assumption on the weighting matrices is very restrictive in practice because it
forces each processor to update all components of the actual iterate. This result can be seen
more as a theoretical result than as a computational recipe. The following example shows that
the hypothesis on the weighting matrices in Theorem 3.7, cannot be weakened as was done
in Theorem 3.5 for Algorithm 2.

EXAMPLE 3.8. Consider the symmetric positive definite matrix

A =

[

0.5 0.25
0.25 0.5

]

,

and the outer splittings A = P1 − Q1 = P2 − Q2, with P = P1 = P2, Q = Q1 = Q2,
where

P =

[

0.75 0
0 0.75

]

, Q =

[

0.25 −0.25
−0.25 0.25

]

.

Note that P is Hermitian and Q is positive semidefinite. Consider also the P–regular inner
splittings P1 = B1 − C1, and P2 = B2 − C2, where

B1 =

[

4 1
−1 0.5

]

, and B2 =

[

0.5 −1
1 4

]

.
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Setting E1 =

[

1 0
0 0

]

, E2 =

[

0 0
0 1

]

, and for all l = 0, 1, 2, . . . , j = 1, 2, q(l, j) = 1,

the iteration matrices of Algorithm 3 are

T (l) =

2
∑

j=1

Ej

[

B−1
j Cj +

(

I −B−1
j Cj

)

P−1Q
]

=

[

1 0.125
0.125 1

]

, l = 0, 1, 2, . . . ,

which have spectral radius equal to 1.125, and therefore Algorithm 3 is not convergent.
We finish this section with a few remarks about the use of relaxation parameters in Algo-

rithms 2 and 3. A relaxation parameter ω 6= 0 can be introduced in Algorithm 2 and replace
the computation of y

(k)
j in (1.6) with the equations

Fjy
(k)
j = ω

(

Gjy
(k−1)
j + (Nx(l) + b)j

)

+ (1− ω)Fjy
(k−1)
j .

This is equivalent to replacing the splittings (1.5) by

Mj =
1

ω
Fj −

(

1− ω

ω
Fj + Gj

)

, 1 ≤ j ≤ r.

In the case of ω 6= 1, we have a relaxed block two-stage method. It is easy to show that, if
we assume 0 < ω ≤ 1, Theorem 3.5 and Corollary 3.6 hold for that relaxed method. In the
same way, we can introduce a relaxation parameter ω 6= 0 in Algorithm 3 by replaying the
computation of y

(k)
j in (1.10) with the equations

Bjy
(k)
j = ω

(

Cjy
(k−1)
j + Qjx

(l) + b
)

+ (1− ω)Bjy
(k−1)
j .

With 0 < ω ≤ 1, Theorem 3.7 holds for the relaxed two-stage multisplitting algorithm. If, in
addition, we assume 0 < ω < 2/(1+ρ), with ρ = max

1≤j≤r
ρ(B−1

j Cj), Theorem 3.1 also holds

for that relaxed algorithm.

4. Monotonicity. In this section we give comparison theorems for Algorithms 2 and 3
based on the number of inner iterations performed. For that purpose we use the following
result given by Nabben [31]. Here we use the partial order introduced by Löwner [27]; see
also e.g., [21]. Let B, C ∈ Cn×n be Hermitian matrices, then B � C (B � C) if and only if
B − C is positive definite (positive semidefinite).

THEOREM 4.1. Let A = M1 −N1 = M2 −N2 be two splittings of A, with A � O. If
O � N1 � N2, then

ρ(M−1
1 N1) ≤ ρ(M−1

2 N2) < 1.(4.1)

If O � N1 ≺ N2, then

ρ(M−1
1 N1) < ρ(M−1

2 N2) < 1.(4.2)

Note that with the assumptions of Theorem 4.1 we have N1 ≺ N2 ⇔ M1 ≺ M2 ⇔
M−1

1 � M−1
2 ; see e.g., the proof of Corollary 7.7.4 of [21] and the remarks of Theorem 2.4

of [31].
THEOREM 4.2. Let A � O. Consider the splitting A = M − N , where M =

diag(M1, . . . , Mr) is the block diagonal matrix defined in (1.3). Suppose that M is Her-
mitian, and N is positive semidefinite. Let Mj = Fj − Gj , 1 ≤ j ≤ r, such that Fj is
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Hermitian and Gj is positive definite. Let q1(j), q2(j), 1 ≤ j ≤ r, be positive integers.
Consider further two block two-stage methods differing only in the number of inner itera-
tions of each block, staying fixed at each outer iteration, q1(j), 1 ≤ j ≤ r, in one case and
q2(j), 1 ≤ j ≤ r, in the other. Let T1, T2 be the iteration matrices of Algorithm 2 with q1(j)
and q2(j), 1 ≤ j ≤ r, inner iterations, respectively. If q1(j) > q2(j), 1 ≤ j ≤ r, then
ρ(T1) < ρ(T2) < 1.

Proof. Let us consider, for k = 1, 2

Tk = Hk + (I −Hk)M−1N,(4.3)

with Hk = diag
(

(F−1
1 G1)

qk(1), . . . , (F−1
r Gr)

qk(r)
)

. Note that Tk is the iteration matrix of
a two-stage iterative method defined by Algorithm 2 when the number of inner iterations are
qk(j), 1 ≤ j ≤ r. From Corollary 3.6 the unique splitting A = MTk

− NTk
, induced by

the iteration matrix Tk is P–regular, and MTk
= M(I −Hk)−1. Then, the matrix MTk

and
therefore the matrix M−1

Tk
are positive definite. On the other hand, it is easy to see that

M−1
Tk

= diag





qk(1)−1
∑

i=0

(F−1
1 G1)

iF−1
1 , . . . ,

qk(r)−1
∑

i=0

(F−1
r Gr)

iF−1
r



 .

Since Mj and Fj are Hermitian, Gj = Fj −Mj , 1 ≤ j ≤ r, is also Hermitian. Then, it is

easy to see that
qk(j)−1

∑

i=0

(F−1
j Gj)

iF−1
j is Hermitian. Thus the block diagonal matrix M−1

Tk
,

and therefore MTk
, and NTk

= MTk
−A are Hermitian matrices.

Next, let us consider the Hermitian matrix NTk
= MTk

Tk. Clearly, this matrix can be
written as

NTk
= MTk

Hk + N.(4.4)

Since N and NTk
are Hermitian, the matrix MTk

Hk is also Hermitian. Moreover, from
Theorem 2.5, (F−1

j Gj)
qk(j), 1 ≤ j ≤ r, and therefore Hk have positive eigenvalues. Since

M−1
Tk

is a Hermitian positive definite matrix, again from Theorem 2.5 it follows that MTk
Hk

is positive definite. Then, from (4.4) it follows that NTk
is positive definite. Now suppose

that q1(j) > q2(j), and consider the Hermitian matrix M−1
T1

−M−1
T2

. Clearly

M−1
T1

−M−1
T2

= diag





q1(1)−1
∑

i=q2(1)

(F−1
1 G1)

iF−1
1 , . . . ,

q1(r)−1
∑

i=q2(r)

(F−1
r Gr)

iF−1
r



 .

It is easy to see that
q1(j)−1

∑

i=q2(j)

(F−1
j Gj)

i, 1 ≤ j ≤ r, has positive eigenvalues. Then,

since Fj , 1 ≤ j ≤ r, is Hermitian positive definite, from Theorem 2.5 it follows that
qj(1)−1

∑

i=q2(j)

(F−1
j Gj)

iF−1
j , 1 ≤ j ≤ r, is positive definite and therefore the block diagonal matrix

M−1
T1

−M−1
T2

is also positive definite. Then, from Theorem 4.1, the proof is complete.
The result of the above theorem seems intuitive but, as we illustrated in Example 1 of

[30], if the conditions shown are not satisfied, the result may not hold. On the other hand,
we remark that if qk(j), 1 ≤ j ≤ r, k = 1, 2 are even we can weaken the assumption
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on the matrix Gj , 1 ≤ j ≤ r, by the P -regularity of the splitting Mj = Fj − Gj . With
these hypotheses one obtains ρ(T1) ≤ ρ(T2). This is due to the fact that, now, the matrices
NTk

, k = 1, 2 and M−1
T1

−M−1
T2

are positive semidefinite.
THEOREM 4.3. Let A � O. Consider the splittings A = Pj − Qj , 1 ≤ j ≤ r, such

that Pj is Hermitian and Qj is positive semidefinite. Let Pj = Bj − Cj , 1 ≤ j ≤ r, such
that Bj is Hermitian and Cj is positive definite. Consider Ej = αjI, 1 ≤ j ≤ r, with

αj > 0,
r

∑

j=1

αj = 1. Consider further two two-stage multisplitting methods differing only

in the number of inner iterations of each outer splitting, staying fixed at each outer iteration,
q1(j), 1 ≤ j ≤ r, in one case and q2(j), 1 ≤ j ≤ r, in the other. Let T1, T2 be the iteration
matrices of Algorithm 3 with q1(j) and q2(j), 1 ≤ j ≤ r, inner iterations, respectively. If
q1(j) > q2(j), 1 ≤ j ≤ r, then ρ(T1) < ρ(T2) < 1.

Proof. For k = 1, 2 define Tk,j = (B−1
j Cj)

qk(j) +
(

I − (B−1
j Cj)

qk(j)
)

P−1
j Qj , 1 ≤

j ≤ r. For each j, Tk,j is the iteration matrix of a two-stage method where the outer splitting
is A = Pj − Qj , the inner splitting is Pj = Bj − Cj , and qk(j) is the number of inner
iterations. Then, from Corollary 2.1 of [29] and Lemma 2.2, the unique splitting A = Rk,j −
Sk,j induced by the iteration matrix Tk,j is P–regular. Thus, each iteration matrix Tk, k =
1, 2, can be written as

Tk =
r

∑

j=1

EjTk,j , with Tk,j = R−1
k,jSk,j and Rk,j = Pj

(

I − (B−1
j Cj)

qk(j)
)−1

.

Each matrix Tk can be viewed as the iteration matrix of a multisplitting method using the P–
regular splittings A = Rk,j−Sk,j , 1 ≤ j ≤ r, and weighting matrices Ej , 1 ≤ j ≤ r. More-

over, if we suppose q1(j) > q2(j), taking into account that Rk,j =

qk(j)−1
∑

i=0

(B−1
j Cj)

iB−1
j ,

and reasoning in a similar way as in Theorem 4.2, it is easy to see that

O � S1,j ≺ S2,j .(4.5)

Hence, from Theorem 3.3 of [31], if Ej = αjI , for k = 1, 2, the unique splitting A = Uk−Vk

induced by each iteration matrix Tk satisfies U−1
k =

r
∑

j=1

EjR
−1
k,j , and Vk = Uk − A are

Hermitian positive definite matrices. Moreover, from (4.5), it is easy to see that O � U1 ≺ U2

and therefore O � V1 ≺ V2. Then, from Theorem 4.1, the proof is complete.

5. Numerical experiments on distributed memory multiprocessors. In this section
we implemented block iterative methods based on Algorithm 2 described in §1, and we use
them as preconditioners for the conjugate gradient method. We present results for three model
problems. In the first numerical experiments we use two test problems arising from finite
element approximations to problems in structural engineering. These problems are included
in the Harwell-Boeing sparse matrix collection [11] under the name of LANPRO. Here we use
the problems LANPRO (NOS5) and LANPRO (NOS7). The stiffness matrices are symmetric
and positive definite of order 468 and 729, respectively.

In the second numerical experiments the problem to be solved comes from the discretiza-
tion of the Laplace’s equation,∇2u = uss+utt = 0, satisfying Dirichlet boundary conditions
on the unit square Ω = [0, 1]× [0, 1], u(s, 0) = u(0, t) = u(s, 1) = 0, u(1, t) = 100, 0 ≤
s ≤ 1, 0 ≤ t ≤ 1. The discretization of the domain Ω, using five point finite differences,
with J × J points equally spaced by h, yields a linear system Ax = b, where A is block
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tridiagonal, A = tridiag[−I, C,−I ], where I and C are J × J matrices, I is the identity,
and C = tridiag[−1, 4,−1]. Note that A has J × J blocks of size J × J . Clearly, A is a
symmetric positive definite matrix. Here we discuss the results for matrices of sizes 4096,
16384, 40000 and 262144, which correspond to square grid sizes of 64, 128, 200 and 512
nodes in each direction, respectively.

The last model problem used can be associated with the deflection u(s, t) of a square
plate, clamped at all four sides. If p(s, t) denotes the load on the plate at the point (s, t),
this deflection can be modeled using an elliptic partial differential equation which relates the
biharmonic operator

∇4 =
∂4

∂s4
+ 2

∂4

∂s2∂t2
+

∂4

∂t4
,

with the load on the plate p. More specifically, the deflection u(s, t) satisfies

∇4u = p, in the interior,

u = 0,
∂u

∂~v
= 0, on the boundary.

(5.1)

The discretization for the problem of the clamped plate, using J × J points equally spaced
by h, yields (see e.g., [43]) a linear system Ax = b, where A is a block pentadiagonal matrix
A = pentadiag(I, G, B, G, I), where I is the identity, B = pentadiag(1,−8, 20,−8, 1)
and G = tridiag(2,−8, 2). For this problem we present results with matrices of sizes 4096,
10000 and 40000.

In order to ensure the convergence of Algorithm 2 we define the block outer splitting A =

M −N as in (3.7), where D = diag





n
∑

j=1,j 6=1

|n̄1j |, . . . ,

n
∑

j=1,j 6=n

|n̄nj |



. In the experiments

reported here, we use as inner iterative procedures the Gauss-Seidel, SOR or SSOR methods.

The outer stopping criterion used was
n

∑

i=1

|x
(l)
i −x

(l−1)
i | < 10−δ. For the LANPRO problems

we set δ = 4, while for the Laplace and biharmonic problems we use a δ such that τ T τ <
10−7, where τ is the residual at the corresponding iteration. This is done in that way in order
to compare the two-stage methods with preconditioned conjugate gradient methods we will
present in this section. The right hand side for the LANPRO and biharmonic problems was
b = (1, 1, . . . , 1)T and for the Laplace problem b = (bT

1 , bT
2 , . . . , bT

J )T , bi ∈ RJ , bi =
(0, . . . , 0, 100)T . On the other hand, the initial vector for the LANPRO problems was x(0) =
(0.5, 0.5, . . . , 0.5)T and for the Laplace and biharmonic problems we used the null vector.

The parallel experiments were run on two different parallel computer systems. The first
platform is an IBM RS/6000 SP with 8 nodes (“SP2”). These nodes are 120 MHz Power2
Super Chip and they are connected through a high performance switch with latency time
of 40 microseconds and a bandwidth of 30 to 35 Mbytes per second. The second platform
(“cluster”) is an Ethernet network of five 120 MHz Pentiums. The peak performance of
this network is 100 Mbytes per second with a bandwidth around 6.5 Mbytes per second. In
order to manage the parallel environment we have used the PVM library of parallel routines
[19]. Also, we used the BLAS [3] routines for vector computations and the SPARSKIT [44]
routines for handling sparse matrices. All times are reported in seconds. The conclusions are
similar on both multiprocessors. However, obviously the computing platform has an influence
in the performance of a parallel implementation.

In the first results presented in Table 5.1 we show the behaviour, for the LANPRO prob-
lems, of some block two-stage methods on both multiprocessors using as inner procedure
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TWO-STAGE BLOCK-JACOBI

# Size of

Proc. blocks q It. Time Cluster Time SP2 It. Time Cluster Time SP2

2 1 3318 11.19 1.40 909 10.22 1.07
234 2 2151 8.42 1.10
234 3 1789 8.53 1.06

4 1615 8.26 1.10
5 1518 8.73 1.17
6 1458 9.44 1.25

3 1 3784 13.44 1.65 1711 14.82 1.53
156 2 2702 10.65 1.31
156 3 2382 10.09 1.29
156 4 2240 10.39 1.34

5 2165 10.86 1.42
6 2119 11.50 1.53

2 1 65 0.24 0.04 15 1.03 0.53
364 2 42 0.19 0.02
365 3 33 0.17 0.02

4 29 0.17 0.02
5 27 0.18 0.02
6 25 0.18 0.02

3 1 66 0.28 0.02 17 0.68 0.19
240 2 46 0.23 0.02
245 3 38 0.21 0.02
244 4 35 0.20 0.02

5 33 0.22 0.02
6 31 0.21 0.02

TABLE 5.1
Block two-stage methods with Gauss-Seidel inner iterations for LANPRO problems.

the Gauss-Seidel method and performing at each block a fixed number of inner iterations
(q(l, j) = q, 1 ≤ j ≤ # Proc., l = 0, 1, 2, . . .). We have considered block partitions of these
matrices such that processor computations were balanced. We compare these methods with
the well-known Block-Jacobi method. In this case, the subdomain problems are solved by
using the Choleski complete factorization (see e.g., [38]). One can observe that the use of
two-stage methods gives better results than the use of the Block-Jacobi method.

Table 5.2 shows the behaviour of these block two-stage methods for the Laplace’s
problem using, as above, as inner procedure the Gauss-Seidel method. In Table 5.3
we report the results for the Block-Jacobi method. The speed-up is calculated as
CPU time of sequential algorithm
REAL time of parallel algorithm . One can observe that the best sequential two-stage algorithm

does not obtain the best time when it solves the same problem in parallel. This is due to the
fact that when the parameters q(l, j) increase, the number of global iterations of the block
two-stage method decreases. Therefore the communications among processors are reduced.
Moreover, if the decrease in the number of global iterations balances the realization of more
inner updates then, less execution time is observed. On the other hand, we observed that
the efficiency ( Speed-up

processors’s number ) increases with the number of inner iterations. However, the
efficiency decreases notoriously when the number of processors increases. This fact is due
to the inadequate use of the processors when the number of processors increases for a fixed
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FIG. 5.1. Block two-stage SOR for Laplace’s problem. Size of matrix A:4096. IBM RS/6000 SP using two
processors.

matrix, because the cost of the operations performed in parallel can be smaller than the cost
of communication. For example, in the last block partitioning of Table 5.2 using four proces-
sors for the cluster of Pentiums we obtained REAL times between 23.99 and 51.14 seconds.
However, the CPU times were between 14.72 and 20.59 seconds. Here the network is very
slow compared with the network in the other computing platform.

One of the most critical problems in a two-stage method is the choice of the number
of inner iterations. Table 5.4 presents results obtained for the matrix of Table 5.2 partitioned
into three blocks using as inner procedure the Gauss-Seidel method and varying the number of
inner iterations at some outer step. In this table Niter indicates the outer iteration count and [·]
denotes the integer part of a real number. If we compare this table with the numerical results
of Table 5.2 we observe no significant differences. Our experience indicates that an optimal
sequence of inner iterations is a little greater than one and constant, producing a priori a load
balance based on the block size assigned to each processor. We also experimented using
different stopping criteria for the number of inner iterations by specifying a certain tolerance
for the inner residual and the conclusions were similar.

The use of these inner iterations can be also seen in Figures 5.1 and 5.2, where we
illustrate the influence of the relaxation parameter when we use as inner procedures the SOR
and SSOR methods, respectively. We consider different block two-stage methods depending
on the number of inner iterations performed at each block, and for each method we recorded
the time in seconds on the IBM RS/6000 SP in relation to different relaxation parameters. In
these figures we have considered the Laplace matrix of size 4096 partitioned into two blocks
of equal size. Note that the size of the two blocks are 2048. Note that the choice of one
method or another depends on the chosen relaxation parameter. That is, for ω = 1, it is more
efficient to use the method with symmetric Gauss-Seidel inner iterations; on the other hand,
as the relaxation parameter increases the conclusion inverts. For example, for the optimal
ω the best result is obtained when the SOR method is used as inner procedure. This fact is
illustrated in Figure 5.3 for the Laplace matrix of size 16384 using four processors and with
a block partition of sizes 4096.

In Table 5.5 the behaviour of the block two-stage methods for the biharmonic problem is
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FIG. 5.2. Block two-stage SSOR for Laplace’s problem. Size of matrix A: 4096. IBM RS/6000 SP using two
processors.

(a) ω = 1 (b) ω = 1, 8

FIG. 5.3. Block two-stage SOR and SSOR for Laplace’s problem. Size of matrix A:16384. IBM RS/6000 SP
using four processors.

illustrated. The results correspond to matrices of sizes 4096 and 10000 on the IBM RS/6000
SP. As it can be appreciated, for this problem the method needs too many iterations for con-
vergence, and thus the execution times are very high. Later, we will present more results
about this problem using the block two-stage method as preconditioners.

We want to point out that, in the above numerical experiments, we have chosen as outer
splitting a Block-Jacobi type splitting satisfying (3.7). This choice has been made in this
way in order to ensure the convergence of Algorithm 2 according to the theoretical results
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of §3. However, this choice does not include the classical Block-Jacobi splitting. Since the
matrices arising from the discretization of Laplace’s equation are not only positive definite
but also M–matrices, following [8], we could have selected as outer splitting the splitting of
the Block-Jacobi method. This is not the case for the LANPRO and biharmonic matrices. In
selected cases, we ran experiments using this outer splitting for Laplace’s problem. We have
observed that comparing the times with those corresponding to the other outer splitting, the
Block-Jacobi two-stage method is only about 5− 10% faster.

In order to improve these numerical results, it seems natural to construct a parallel pre-
conditioned conjugate gradient (PCG) algorithm based on block two-stage methods. Note that
the theoretical study of the convergence of the block two-stage methods made in this work
allows us to use these methods as preconditioners; see also [10]. The idea of the PCG method
consists of applying the conjugate gradient method (see [20]) to a better conditioned linear
system Âx̂ = b̂, where Â = SAST , x̂ = S−T x, and b̂ = Sb. The matrix M = (ST S)

−1

is called the preconditioner or preconditioning matrix. The PCG method may be applied
without computing Â, but solving the auxiliary system

Ms = τ,

at each conjugate gradient iteration, where τ = b − Ax is the residual at the corresponding
iteration; see e.g., [38].

We construct a preconditioned conjugate gradient method where the preconditioning ma-
trix M is obtained using truncated series preconditioning as follows. To solve the auxiliary
system Ms = τ of the PCG algorithm we use m steps of a Block two-stage method toward
the solution of As = τ , choosing s(0) = 0. Particularly, in the numerical experiments we use
as outer splitting the same as the above results and as inner procedure the SSOR method (say
m-step Block two-stage SSOR PCG). The convergence test used was τT τ < 10−7, and the
initial vector was the null vector.

It is well-known that a bound on the convergence rate of PCG is given by the condition
number of Â. In Table 5.6 we show the condition number of Â as a function of the number of
inner iterations and the number of steps of the preconditioning, for two and four processors,
using symmetric Gauss-Seidel inner iterations. These condition numbers have been calcu-
lated for two matrices of size 1024 corresponding to the Laplace and biharmonic problems
and using MATLAB. The condition number for the Laplace matrix is 440.68 and for the bi-
harmonic matrix is 65549.09. It is observed that the condition number of Â is always less
than the condition number of A. Moreover, the condition number decreases when the number
of inner iterations or the number of steps increases. Furthermore, one can observe, as is to be
expected, that the larger the number of processor (i.e., the number of diagonal blocks in the
outer block Jacobi type splitting), the larger the condition number of Â.

Table 5.7 shows the behaviour of this Block two-stage PCG method for the Laplace ma-
trix of size 4096 using two processors and with a block partition of size 2048. If we compare
the parallel times of this table with Figures 5.1 and 5.2, it can be appreciated that the best
times are obtained with the m-step Block two-stage SSOR PCG methods. Similar conclu-
sions can be observed for the biharmonic problem, as we show in Figure 5.4 for the matrix
of size 10000, using two processors (see also Table 5.5). However, as it can be appreciated in
Table 5.7, when the matrix is small, this parallel method is slower than the sequential m-step
SSOR preconditioned conjugated gradient (SSOR PCG) method (see e.g., [38]). Different
conclusions were obtained when the size of the matrix increases. In this way, Table 5.8 shows
the results for the Block two-stage PCG methods with symmetric Gauss-Seidel (SGS) inner
iterations and for the sequential m-step symmetric Gauss-Seidel PCG, for a Laplace matrix
of size 40000. We use two processors and the matrix is partitioned into two blocks of sizes
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FIG. 5.4. Block two-stage SGS PCG method for biharmonic problem. Size of matrix A: 10000. IBM RS/6000
SP using two processors.

FIG. 5.5. 1-step Block two-stage SSOR PCG (q=2) versus 1-step SSOR PCG for Laplace’s problem. Size of
matrix A: 40000. IBM RS/6000 SP using two processors.

20000. It can be observed in this table that Block two-stage SGS PCG methods accelerate the
classical sequential SGS PCG method.

Figures 5.5 and 5.6 compare the behaviour of these methods for the Laplace problem
using the matrix of size 40000 and a matrix of size 262144, respectively, in relation to the
relaxation parameter used in the SSOR procedure. Here we also use two processors and
the matrix of size 262144 is partitioned into two blocks of sizes 131072. Figure 5.7 shows
the behaviour of the Block two-stage SSOR PCG methods for a biharmonic matrix of size
40000 and using two processors. We want to point out that, in general in our experiments,
the optimal number of steps m was one or two, and the best times were obtained with ω
around 1.8 in the Laplace problem and 1.9 in the biharmonic problem. On the other hand,
it is observed that the parallel times and the sequential time are similar when the relaxation
parameter is close to the optimal. However, this optimal parameter is not easy to obtain
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FIG. 5.6. Block two-stage SSOR PCG (1-step) versus 1-step SSOR PCG for Laplace’s problem. Size of matrix
A: 262144. IBM RS/6000 SP using two processors.

(a) Steps of the preconditioning: 1. (b) Steps of the preconditioning: 2.

FIG. 5.7. Block two-stage SSOR PCG for biharmonic problem. Size of matrix A: 40000. IBM RS/6000 SP
using two processors.

a priori, and then it is customary to choose a relaxation parameter neither too big nor too
small to ensure the convergence. In this way, Figure 5.8 compares the behaviour of some
Block two-stage SSOR PCG methods for the Laplace matrix of size 262144 in relation to
the number of SSOR inner iterations performed (q = 1, 2, 3, 4 and 5) for ω = 1.5, and using
three processors with block partitions of sizes 87040, 87040 and 88064. As it can be observed
in this figure, the parallel algorithms always accelerate the sequential PCG algorithm.
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IBM RS/6000 SP CLUSTER

# Proc. Size of q Iter. Par. t. Seq. t. Speed-up Par. t. Seq. t. Speed-up

blocks

2 1 4337 8.5 8.88 1.04 41.92 42.14 0.99
2 2412 6.35 8.24 1.29 30.49 37.85 1.24
3 1741 5.74 8.34 1.45 26.95 37.80 1.40

2048 4 1400 5.60 8.66 1.54 25.96 38.80 1.49
2048 5 1194 5.57 8.97 1.61 26.06 40.27 1.54

3 1 4428 9.19 9.18 0.99 44.19 43.74 0.98
2 2506 6.30 8.57 1.36 29.52 39.25 1.32

1344 3 1804 5.43 8.61 1.58 25.25 39.51 1.56
1344 4 1503 5.09 9.04 1.77 23.87 40.96 1.71
1408 5 1300 4.98 9.99 2.00 23.20 43.05 1.85

4 1 4513 10.76 9.47 0.88 51.14 44.38 0.86
1024 2 2593 7.03 8.72 1.24 33.37 39.54 1.18
1024 3 1932 5.86 8.97 1.53 27.57 39.96 1.44
1024 4 1599 5.35 9.47 1.77 25.10 41.76 1.66
1024 5 1399 5.15 10.09 1.95 23.99 44.18 1.84

TABLE 5.2
Block two-stage methods with Gauss-Seidel inner iterations for Laplace’s problem. Size of matrix A: 4096.

IBM RS/6000 SP CLUSTER

#

Proc. Iter. Par. t. Seq. t. Speed-up Par. t. Seq. t. Speed-up

2 235 13.55 26.25 1.93 90.77 177.82 1.95
3 296 7.46 19.14 2.56 55.50 157.77 2.84
4 362 5.24 16.06 3.06 41.30 149.49 3.61

TABLE 5.3
Block-Jacobi for Laplace’s problem. Size of matrix A: 4096.

# Inner Iter. = # Inner Iter. =

max(1, q − [ Niter

k
]) q + [ Niter

k
]

q k Iter. Par. t. Iter. Par. t.

1 250 4428 9.19 1681 5.60
5 250 2494 6.25 1115 5.12
6 250 1694 5.05 1043 5.20
7 250 1250 4.78 980 5.22
8 250 1122 4.88 932 5.35
1 500 4428 9.19 2162 6.08
5 500 1482 5.03 1210 5.04
6 500 1254 4.91 1112 5.07
7 500 1115 4.94 1036 5.13

TABLE 5.4
Block two-stage methods with Gauss-Seidel inner iterations for Laplace’s problem. Size of matrix A: 4096.

IBM RS/6000 SP using three processors.
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ω = 1.2 ω = 1.4 ω = 1.6
q Iter. Time Iter. Time Iter. Time

4096 2 451488 2222.18 368562 1812.82 313507 1543.73
3 373215 2497.43 318090 2125.96 279363 1869.03
4 334473 2829.03 293481 2482.21 263936 2231.12
6 296216 3556.91 269384 3234.95 249737 2997.69

10000 2 3916601 26942.73 1878772 21525.19 1499680 17189.03
3 2417216 26792.23 1550807 24834.74 1288571 20630.13

TABLE 5.5
Block two-stage SSOR for the biharmonic problem. IBM RS/6000 SP using two processors.

Laplace Biharmonic
2 proc. 4 proc. 2 proc. 4 proc.

m q cond(Â) cond(Â) cond(Â) cond(Â)
1 1 66.67 76.89 7227.35 8669.72

2 39.84 50.03 4686.32 6116.39
3 31.53 41.80 3904.07 5359.72
4 27.66 37.96 3532.66 5008.51
5 25.47 35.79 3317.80 4808.51

2 1 35.59 38.69 3613.92 4335.11
2 20.17 25.26 2343.41 3058.44
3 16.02 21.15 1952.28 2680.11
4 14.08 19.23 1766.58 2504.50
5 12.99 18.14 1659.15 2404.50

3 1 22.56 25.96 2409.45 2890.24
2 13.62 17.01 1562.44 2039.13
3 10.85 14.27 1301.69 1786.90
4 9.56 12.99 1177.88 1669.83
5 8.83 12.26 1106.26 1603.17

4 1 17.04 19.60 1807.21 2167.80
2 10.34 12.88 1171.95 1592.47
3 8.26 10.83 976.39 1340.30
4 7.30 9.87 883.54 1252.50
5 6.75 9.33 829.82 1202.50

5 1 13.74 15.78 1445.87 1734.34
2 8.37 10.41 937.66 1223.67
3 6.72 8.77 781.21 1072.34
4 5.94 8 706.93 1002.10
5 5.51 7.56 663.96 962.10

6 1 11.53 13.23 1204.97 1445.37
2 7.07 8.76 781.47 1019.81
3 5.68 7.39 651.09 893.70
4 5.04 6.75 589.19 835.16
5 4.68 6.39 553.38 801.83

TABLE 5.6
Condition number of matrix Â, using symmetric Gauss-Seidel inner iterations. Laplace matrix 1024,

cond(A)=440.68. Biharmonic matrix 1024, cond(A)=65549.09.
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m-step Block two-stage SSOR PCG Sequential m-step SSOR PCG

m ω q Iter. Time Iter. Time

1 1 1 65 0.52 62 0.30
1 1.7 1 42 0.32 33 0.16
1 1.9 1 59 0.48 27 0.13
1 1 2 48 0.44
1 1.7 2 34 0.32
1 1.9 2 44 0.40
1 1 3 39 0.40
1 1.7 3 33 0.35
1 1.9 3 40 0.42

2 1 1 46 0.56 43 0.33
2 1.7 1 29 0.36 22 0.17
2 1.9 1 41 0.50 18 0.14
2 1 2 48 0.55
2 1.7 2 34 0.39
2 1.9 2 44 0.53
2 1 3 39 0.56
2 1.7 3 33 0.47
2 1.9 3 40 0.56

TABLE 5.7
m-step Block two-stage SSOR PCG and sequential m-step SSOR PCG methods for Laplace’s problem. Size

of matrix A: 4096. IBM RS/6000 SP using two processors.

m-step Block two-stage SGS PCG Sequential m-step SGS PCG

m q Iter. Par. t. Seq. t. Speed-up Iter. Time

1 1 171 7.79 8.22 1.05 167 8.12
1 2 122 7.17 9.05 1.26
1 3 104 7.51 10.38 1.38
2 1 120 7.99 9.28 1.66 117 9.17
2 2 86 8.06 11.11 1.37
2 3 74 8.92 13.42 1.50

TABLE 5.8
Block two-stage SGS PCG and sequential m-step SGS PCG methods for Laplace’s problem. Size of matrix

A: 40000. IBM RS/6000 SP using two processors.
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