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Abstract

By using the way of weight coefficients and the idea of introducing parameters and
by means of Hadamard's inequality, we give a more accurate half-discrete Hilbert's
inequality with a best constant factor. We also consider its best extension with
parameters, the equivalent forms, the operator expressions as well as some reverses.
2000 Mathematics Subject Classification: 26D15; 47A07.

Keywords: weight coefficient, parameter, equivalent form, reverse, Hilbert's inequality,
Hadamard's inequality

1 Introduction
Ifa, b,>0,0<) 2 a><ooand 0 <) 2, b2 < o0, then we have the following

well-known Hilbert’s inequality (cf. [1]):

mbUn 2 2
ZZm+n<n<Zaman> / (1)
where the constant factor r is the best possible. The integral analogue of inequality

(1) is given as follows (cf. [2]): If 0 < fooofz(x)dx <oo and 0 < fooo 2%(x)dx < oo, then

00 1/2

[ F(0)30) [
O/ ey dxdy < 7 0/f2(x)dx/g2(x)dx , ()

0

0\8

where the constant factor 7 is the best possible. We named inequality (2) as Hilbert’s
integral inequality. Hardy et al. [3] proved the following more accurate Hilbert’s

inequality:
mUn 2 2
E E m+n—1<n(2 amg bn) , ®3)
n=1 m=1 m=1 n=1

where the constant factor 7 is still the best possible. Inequalities (1)-(3) are impor-
tant in analysis and its applications [4]. There are lots of improvements, generaliza-
tions, and applications of inequalities (1-3), for more details, refer to literatures
[5-18].
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We find a few results on the half-discrete Hilbert-type inequalities with the non-
homogeneous kernel, which were published early ([[3], Th. 351], [19]). Recently, Yang
[20-22] gave some half-discrete Hilbert-type inequalities. A half-discrete Hilbert’s
inequality with the homogeneous kernel was derived as follows [20]: If

0< fooofz(x)dx <o0o and 0 < Y% a2 < oo, then

n=1%n

1/2

SN0 o [
an dx < a | fA(x)dx | (4)
S 10 (S ]

n=1

where the constant factor 7 is the best possible.

In this article, by using the way of weight coefficients and the idea of introducing
parameters and by means of Hadamard’s inequality, we give a more accurate inequality
of (4) with a best constant factor as follows:

1/2
oo

oof(x) - 2 [ 2 5
lean x+ndx<n ;an/lf (x)dx | . (5)

n= 1
2 2

We also consider its best extension with parameters, the equivalent forms, the opera-

tor expressions as well as some reverses.

2 Some lemmas
Lemma 1 Suppose 0 <ot <1, 0 < B < 1, Y€ (-00, ), k1 > 0,0 < A0t < 1, A = Ay + L.
Define the beta function (cf. [18]) and the weight coefficients as follows:

tlde ; R

B(u,v) := =
(u U) (1 + t)u+v (1 + t)uw
0 0

dt (u,v > 0), (6)

(o]

w . _ Ao (x_ y)Ala_l
mey / =) sty Y 7
Mo = (n - ’3))»2&71
(1) = (x =) Y , (< (7)) ®

(= v)"+ (= B)°]

Setting k., (o) := [ B(A1, A1), we have the following inequalities:

0 <k, (@)(1 = 6:(x)) < @ (x) < @(n) = ks, (), ©)

Ap—1

1-8\"
where, 1 ("*V> _ 1
6:(0) = 5oL /0 i Ldu> 0and6;(x) = O ((xf ) (x € (y,00)).

)2
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o
Proof. Putting u = (i:;) in (7), we have

= ! / e du = lB()\, A ) =k (a) 10
— u = , — .
J (1 )A 1/ A2 A ( )

For fixed x € (7, ), setting

Ao Ara—1
L o e pyp <O "

in view of the conditions, we find f (t) < 0 and f” (t) > 0. By the following Hadamard’s
inequality (cf. [18]):
1

f(n) < / f(t)dt(n e N), (12)

n—

f(0) =

2

and putting u = <l_§> , it follows

o (x) = Zf(n) Z / F(0)d = / f(t)di

/f(t)dt— /(1 u=;B(x2,m=kM(a),

00 1
()= f(n) > / oyt = / fode - [ rras
=l 1 B B

()

r Ar—1

= Iy, (@) — i / (;‘+ u)ldu = Iy, () (1 = 6,(x)) > O,
0

where

1-8\“
()
A—1

u’?

1
0 <6,(x)= B(1, ha) 0/ (1 u)ldu

()
r Ao
1 — 1-— 2 1
< / w2 = (1-4) w”
B(*1, 22) A2B(h1, A2) (x — y)™
Hence, we prove that (9) is valid.
Lemma 2 Suppose that ; + }] =1(p#0,1),0<x<1,0<B < ;, ye (-0 + ), Ay >

0,0 <o <1, =41 + Xy, o, 20, flx) 2 0 is a real measurable function in (),
then (i) for p > 1, we have the following
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00 py Up
- S _ gyhe-1 f(x)
]'_[;(" g U [(x—y)“+(n—ﬁ)“]kdx} ]

o0 1/p
< (kxl(a))l/qlf @ (x)(x — )’)p(lha)lfp(x)dxl ,
14

[ (x— )" & a T
= " d
B l @11(x) [Z [(x—y)“+(n—/3)“lk] }

o0 1/q
< {kxl(a) > ﬂ)"(”ﬂ“az} ,
n=1

where ®(x) and w(n) are indicated by (7) and (8).

(13)

(14)

(ii) for p < 1(p = 0), we have the reverses of (13) and (14).
Proof. (i) By (7)-(9) and Holder's inequality (cf. [18]), we find
%) p %)
f) 1
dx | =
{/ [(x =)+ (n = BT } [/ [(x = )"+ (n = BYT"
(x — ) 1m0/ (n— gyi—rella 7°
[( )1~ syl () (x— y)(l—xla)/qu

o0

/ 1 (x — y)(l—hﬂl)(ﬂ—l)
S =) e =BT (=)

i . (n - )1 !
" y/[(x—y)%(n—ﬂ)“r oy

[Py 00D e
-y e -y (n—ﬂ)l‘*w[("_ﬂ)q( =0 ()]

- (Tl _ ﬂ)lfpbakilfl(a)/fp(x)(x - V)
Y

1P (x)dx

(15)

(1-110)(p—1) 1
a aqr 1-A adx
[(x=»)*+(n—B)I" (n=p) "

o 7 (1-a)(p-1)
<V« fP(x) (x—v) i
AO)Y / e BT gy

n=1

loa—1
)/ > D e eV C LB

() f o () (x — y P HO P ().
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Hence (13) is valid. Using Holder's inequality again, we have

[i ¥ ﬂ)”FT ) {i 1

Hlx—y)+(n— S x—y) +(m-p)rT

5 |:(x _ ),)(1—)»101)/11:| |:(n _ ﬁ)(l—)\za)/ﬂan:| }q
(11 _ ﬁ)(l—)wzol)/q (x _ y)(l—kla)/q

(17)
_oy(-ra)-1]771 — al (n — p)1 P2l

= [zzr(x)(x ) ] HX:; [(x—J/)a+(Tl—,3)a]A (x—y)lf)‘la
R () (o s L B

o (x)(x ]/) nXZI: [(x_y)a+(n_ﬂ)a])» (x_y)lf)qaam

[ (1-720)(4-1)

Lq < 1 (" - ﬂ) Zd

1‘!% =y s =BT (=) e T

00 . 0 (x_ y))na*l - -
= _ ﬁ Ao d _ ﬁ g(1—ra)—1 Z (18)

>l / T = By
- Zw(n)(n _ 13)67(17)@1)71 q_ o, (o) Z (n— ﬁ)q(l—)da)—laz'

n=1 n=1

Hence (14) is valid.

(ii) For 0 <p < 1(q < 0) or p < 0(0 <q < 1), using the reverse Holder's inequality and
in the same way, we have the reverses of (13) and (14).

Lemma 3 As the assumptions of Lemmas 1 and 2, we set ¢(x) := (x — y)p(l—kla)—1’
Y(n) = (n— B)10-20=1, () := (n — B)I1—P2e)-1,
00 1/p
Loolr,00) = { il flpo = | [ 6@ @IPasf < oof,
%

o0 1/q
ll],w =44a= {an}; || a ” = {Zw(”)mﬂq} < 0

n=1

(Note. if p > 1, then L,,, (}, =) and 1, are normal spaces; if 0 <p < 1 or p < 0, then
both L,,,(, ) and l,,, are not normal spaces, but we still use the formal symbols in

the following.) For 0 <¢ < min{l, Lipos}, setting a = {dn}2;and f(x)as follows

0, xe(y,1+y),
Ala—s—
(x—v)

= (n— )"0 Fl) = {

1
P, xe[l+y,00),

(i) if p > 1, there exists a constant k > 0, such that

R i) -
. Zlay/ [(x = »)* +x(n gy el 12l (20)
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then it follows

e+1—B\Y 1 € € .
k((l—ﬁ)“l) = BOas L odie )= 00) (21)

(i) if 0 <p < 1, there exists a constant k > 0, such that

i F) o
I= an/ dv > kf| || ., 2
; ’ [(x—y)* +(n—B) H HW” oo (22)
then it follows
_ 1p 1(8+1—/3)1/ﬂ ( e 8)
k(1 —eO(1))"" < o\ (1- pyn B( M poz'kz + o) (23)
Proof. we obtain
X 1/p
Hpr«p ) /(x - y)p(l_m)_lf”(x)dx}
y 1/p (24)
i 1/p
[ e=nat -(1)
1+y

lalg, = > (n—=p) 0 Na =3 (- )
n=1

n=1

0 (25)
- - 1-8
1-p)1* f x—p) 1 fax= °F .
<0=p s [ A
(i) For p > 1, then q > 1, »a — ;=1 <0, by (20), (24), and (25), we find
. NPT e+1-8 7Y k[e+1—p8 7Y
I < k 1 = 1 ’
& e(1-B)" eL(1-p)"
00 0o ra—2—1
~ =81 (n—8) q
I= X — p dx
f ) (Z =)+ (n—ﬁ)“r) (26)
00 00 Joa—° -1
a=f- - q
> / (x_y))q p 1 / (y ;3) . )Ldy dx.
1 [ = )" + (r — B)]
+y 1
Settings =x -y, t= (1:5 ) in the above integral, we have
i . 00 00 e .
P> fs*“ / (2 g Jdt | ds=A+B, 27)
o J (1+71)
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where
1 &
1 00 ) t)LZ o 1
A: - /Sf e /  duds,
o (1+1)
| e
e
o0 o0 )\2,
1 t° 9«
B: = /5—1—5 = / dt
o J J (1+ t) ae (1+ t)
1 _ 1
=} 1 [ e 1 "o~
= N du > / . du
as ) (1+u) ae ) (1+u)l®
0 0
Since

1 1

Aa—
1 fl
0< /s’l’g / t dtds / / 72t S dtds<oo,
@ (1+1) (1+1)

1-8 (1?3) 1 B (1-B)"
then by Fubini's theorem, we have

& 1 1 &

o0 )‘Z_qa_l ) tkz—qa -1
/s / . dids— / s ¢ / ) dids
t t
J e S0 Ly
s Cs)
1 Ao— & o)
1 t°
= / N / sT1 e ds dt — O(1)
o (1+1)
0 1=p)/1()

1 Ao+ e

L 5,48 -1
(=B [ e - e _
S 0/(1”) 0(1) > /(1 et =0

In view of (28) and (29) and (6), it follows that

A1+

oe

1
A+B> ! g - dt—0O(1 1B A e ¢ O(1
= [ o Lo o) o
0

Then by (26) and (27), (21) is valid.
(ii) For 0 <p < 1, by (22) and (25), we find (notice that q < 0)

- Up
- 1
I>k 1-0 —y)'d d
T To( o]
+y
o 1/p
1 E IO B
1+y

-k C - 0(1))1/p< i; 1/3_)51)1/(;

= ’:(1 —80(1))1/P(

(28)

(29)

(30)
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On the other hand, setting t = (z:g )*in T, we have

00 0 - Ff -1
T_ _ —1—¢ 1 / L pe
- ; (1’1 IB) a (1 + t))\
- 1/(n—B)*
x A (31)
<) (n-py" / d
2. o iy

A

e+1—8 & )
s+1B<)\1_ ,)»2+ )
ae(1—B) pex po
In virtue of (30) and (31), (23) is valid.

3 Main results

Theorem 1 Suppose that p > 1, Il, + (17 =1,0<ax<1,0<B8=< é, Y € (-o0, +0), A1 > 0,
0 < Mot < 1, A = Ay+ha, p(x) = (x — p)PA=219)=1 () = (n — B)10-29)1, flx), a, >
0, such that fe Ly, (% ),a = {an}21 € lgy, [fllpe > 0, ||a|| gy > O, then we have the

following equivalent inequalities:

Sl 0
J [ =T (= )]

n=1

(32)

andx
f(x) < kyy, (@) ||f], , lallgy,
/ et gyt = @ Vgt

1
00

00 Py »p
J = Z(" _ pypret |:/ y f(x)dx ]A:| ] < I, (@) ”f”zw’ (33)

- J [ =+ =P

o]

1
0o q q
L = /(X — y)‘?)qa—l |:Z an ])\i| dx] < k)q ((X) ”a”[mbl (34‘)
Y

w1 [ — Y+ (n— B

where the constant factor ky, (a) = ;B (A1, Ap) is the best possible.

Proof. By Lebesgue term-by-term integration theorem [23], we find that there are two
expressions of I in (32). By (9), (13) and 0 < [[f][,e <o, we have (33). By Holder’s

inequality, we find

o] 1 X 1
NI | ot o= e
S =+ o= pr]

35)

'S 1/q
< J{Z(n — IRt aﬁ} = Jllallgy-

Hence (32) is valid by (33). On the other hand, setting

an := (n — )P}»za 1 / f @ ]A dx (n € N), (36)
[ = )% + (= p)°
Y

Page 8 of 12



Huang and Yang Journal of Inequalities and Applications 2012, 2012:106
http://www.journalofinequalitiesandapplications.com/content/2012/1/106

then we have
o0
lallf,, =Y (n — pI 20 gl = = 1. (37)
n=1

By (9), (13) and 0 < ||f]|,»e <o, it follows that J <eo. If J = 0, then (33) is trivially
valid. If J > 0, then 0 < ||a]|,,, = " <co. Assuming that (32) is valid, we have

lallfy =7 =1 <k, @ |f],4lalgy, ie T = laly, <k, @ [f],, 8)

Hence (33) is valid, which is equivalent to (32).
By (14) and (9), we obtain (34). By Holder’s inequality again, we have

r Ala 12 an 17)»105
=/|:(x— L Z } [(x—y)q f(x)]dx
) el O A M

0 1/p (39)
<L { / (x — py RO P () dx} = Lf],,
Y
Hence (32) is valid by using (34). Assuming that (32) is valid, setting
00 q-1
an
f(x) =(x — V)”’Ma_l[ } (x € (y, 00)), (40)
21: [ =)+ n— B
then we find
1, = [ = priotp e =10 =1 an
¥

By (14) and (9), it follows that L <eo. If L = 0, then (34) is trivially valid; if L > 0, i.e.
0 < ||Al|psp < oo, then by (32), we have

IFI0, =17 =1 < I (@) |fll, lallgy, ie L=|fI0" < ko (@) llallgy.

Hence (34) is valid, which is equivalent to (32). It follows that (32), (33), and (34) are
equivalent.

If there exists a positive number k < ky, (&), such that (32) is still valid as we
replace ky, (@), by k, then in particular, (20) is valid (g, ]N((x) are taken as (19)). Then
we have (21). For ¢ = 0" in (21), we have k > ;B(Az, A1) = ky, (¢). Hence,
k =k, (o) is the best value of (32). We conform that the constant factor k;, («) in

(33) [(34)] is the best possible, otherwise we can get a contradiction by (35) [(39)] that
the constant factor in (32) is not the best possible.

Remark 1 (i) Define a half-discrete Hilbert’s operator T : Ly g (v, 00) = lyy1-vas fol-
lows: For f€ Ly, (1, =), we define Tf € L, y1-0, satisfying

Tf(n) = / f® Ldx (n € N).
[(x = »)* + (n — BY]

Page 9 of 12
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Then by (33), it follows ||Tf||pyw17p < ky, (@) ”f”p,¢ . i.e. T is the bounded operator
with ||T|| < ky, («). Since the constant factor k;, (a) in (33) is the best possible, we
have |T|| = ky, ().

(ii) Define a half-discrete Hilbert’s operator T : lgw — Lgg1-a (v, 00) in the follow-

ing way: For a € I, we define T a € Lgg1-4, satisfying

o0

- Aap
Ta(x) = (x € (y, 00)).
Zl [ — ) + n - BT

Then by (34), it follows “TﬂHWH < ky, (@) llallgy, ie. T is the bounded operator
with “TH < ky, (). Since the constant factor ky, («) in (34) is the best possible, we
have HT” =lky, (o).

1

Theorem 2 Suppose that 0 <p <1, 11) + = 1,0<x<1,0<8< ;, ye (-o0, + ),

q
i > 0, 0 < Mo < 1, A = A + ko Y(n) = (n— B0l
) = .
$@) = (1-6,@) x— 9760 = 5oLy ¥ (’ff;)kdu € (0, 1)),f(x), a, =

0, such that f € L,j(y, 00), a = {an}32; € lgy, Hf“p,d? > 0, ||a||gy > O, then we

have the following equivalent inequalities:

N— f@
I = an/ dx
21 [ — %+ @ — BT

. (42)
> apdx
- [f® > o, @ [f], g lallyu
f D oy ™ @ Uyl
S py Up
. - f &)
iy gt | d
21 Jla=»+m=-pT (43)
> o @ |f]], 5
X \gma—1 [ q Ya
L:= / (=) Z n dx
=6 @I [ [@—p*+ 0 -p] (44)

i’
> ko, (@) llallg,y
where the constant factor k;, («) = iB (M1, A2) is the best possible.

Proof. By (9) and the reverse of (13) and 0 < ||f||p,¢; < 00, we have (43). Using the

reverse Holder’s inequality, we obtain the reverse form of (36) as follows
1= Jlally,- (45)

Then by (43), (42) is valid.

Page 10 of 12
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On the other hand, if (42) is valid, setting a,, as (36), then (37) still holds with 0 <p < 1.
By (42), it follows that J > 0. If /] = «, then (43) is trivially valid; if / <co, then

0 < llallyy = JP~' < 00, and we have
lallgy, =17 =1 >t @) |f],;lallgy ie T=lall" >k @ |f]

Hence (43) is valid, which is equivalent to (42).
By the reverse of (14), in view of @ (x) > ky, («) (1 — 6 (x)) and g < 0, we have

q-1 q-1 o0 1/q
Lk’ Lizk! @ {kxl @ > (n— ﬂ)"““““ai} = lo, (@) llallyy,

n=1

then (44) is valid. By the reverse Holder’s inequality again, we have

00 1
-y an
- DI »
5 La =6, ya n=1 [x—=p)* + (n = B)*]
1 1 (46)
x [(1 — 0, )P (x =) " f(x)} dx
= L|fl, s

Hence (42) is valid by (44). On the other hand, if (42) is valid, setting

(= et [ an "
1O =11 _ g, e [ [c= ) + (n — ﬂ)“]k] e

then ||f||z¢ = / [1—6, @] @x— )" 97 P (x)dx = L7 = I. By the reverse of
v

(14), it follows that | ~ . If [ = oo, then (44) is trivially valid; if 0 <« [ < oo>
then by (42), we have

05 =17 =1 > ko, @ |f],5lallqy,  ie L= ||f||§;;1 > ki, (@) lallyy.

Hence (44) is valid, which is equivalent to (42). It follows that (42), (43), and (44) are
equivalent.

If there exists a positive number k > k;, (a), such that (42) is still valid as we
replace k;, () by k, then in particular, (22) is valid. Hence we have (23). For ¢ — 0"
in (23), we obtain k < ;B(Al, A2) =k, (a). Hence k = k;, (o) is the best value of
(42). We conform that the constant factor ky, («) in (43) [(44)] is the best possible,
otherwise we can get a contradiction by (45) [(46)] that the constant factor in (42) is
not the best possible.

In the same way, for p < 0, we also have the following result:

Theorem 3 If the assumption of p > 1 in Theorem 1 is replaced by p < 0, then the
reverses of (32), (33), and (34) are valid and equivalent. Moreover, the same constant
factor is the best possible.

Remark 2 (i) For B =y=0, A = Ay = pz in (32), it follows

(101’

1/p

00 1/q
f® 1 ]
Z /(x“ + na)l/a < aB(q“ a) /fP (x) dx {Zan} . (47)

n=1

Page 11 of 12
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In particular, for . = 1, p = q = 2, (47) reduces to (4). (ii) For A = ¢ =1, A1 = [11,
Ay = in (32), it follows
o F F . o0 Ur oo Y1a
;an y/x +n—y — ﬁdx = sin (7 /p) y/fp(x)dx ;az . 4o

In particular, for y = —;, B = ;, p =q =2 in (48), we obtain (5). Hence, inequality
(32) is the best extension of (4) and (5) with parameters.
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