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The peristaltic flow of a Prandtl fluid in an asymmetric channel has been investigated both analytically 
and numerically. This is the first article describing feature of Prandtl fluid model in peristaltic literature. 
The governing equations for the proposed Prandtl fluid model are derived in Cartesian coordinates 
system. Asymmetric channel have been taken into account for the present analysis. Longwave length 
and low Reynolds number assumptions have been utilized to simplify the problem. Regular 
perturbation method and shooting method were used to get the analytical and numerical solutions for 
velocity, stream function and pressure gradient. Some special cases of this problem are compared with 
the existing literature. The effects of physical parameters on the velocity, pressure rise and streamlines 
are examined by plotting graphs. 
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INTRODUCTION 
 
Peristalsis is a radially symmetrical contraction of 
muscles which propagates in a way down a muscular 
tube. This process is quite important for fluid transport in 
living organisms and industry. Blood pumps in dialysis 
and heart lung machine works because of the peristaltic 
phenomena. Further, peristalsis occurs in swallowing 
food through the esophagus, chyme motion in the 
gastrointestinal tract, in the vasomotion of small blood 
vessels such as venules, capillaries and arterioles, urine 
transport from kidney to bladder, in sanitary fluid 
transport, transport of corrosive fluids, a toxic liquid 
transport in the nuclear industry etc. Latham (1996) and 
Jaffrin and Shapiro (1971) presented the initial research 
work on the peristalsis. They discussed the fluid motion in 
a peristaltic pump. Non-linear peristaltic flow of a fourth 
grade fluid in an inclined asymmetric channel was 
discussed by Haroun (2007). Mekheimer (2008) analyzed 
the effects of the induced magnetic field on peristaltic 
flow of a couple stress fluids. Influence of heat transfer on 
peristaltic transport  of  a  Johnson-Segalman  fluid  in  an  
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inclined asymmetric channel was observed by Nadeem 
and Akbar (2008). Yildrim and Sezer (2010) discussed 
the effects of partial slip on the peristaltic flow of a 
magnetohydrodynamic (MHD) Newtonian fluid in an 
asymmetric channel. During the past few years, many 
authors have discussed the study of peristaltic flow of 
different non-Newtonian fluid models. Mention may be 
made to the works of Mekheimer and Elmaboud (2008), 
Nadeem and Akbar (2010), Srinivas et al. (2009), Akbar 
et al. (2011) and Hayat et al. (2008). 

Most of the fluids in nature possess non-Newtonian 
characteristics. Non-Newtonian fluids change their 
viscosity or flow behaviour under stress. Not all non-
Newtonian fluids behave in the same way when stress is 
applied; some become more solid while others more fluid. 
Some non-Newtonian fluids react as a result of the 
amount of stress applied, while others react as a result of 
the length of time that stress is applied. Recently, a most 
important article of stress strain relationship for viscous-
inelastic non-Newtonian fluids has been discussed by 
Patel and Timol (2010). They have made a detail analysis 
for some important non-Newtonian fluids. According to 
them, academic curiosity and practical applications have 
generated considerable interest in finding the solutions of  
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differential equations governing the motion of non-
Newtonian fluids. Prandtl fluid model is also a non-
Newtonian fluid model, which is given in the study of 
Patel and Timol (2010). Prandtl fluid model has all the 
characteristics of non-Newtonian fluid. Some other impor-
tant articles related to the topic are cited in the reference 
(Rico Garcia, 2011; Ellahi, 2009; Okosun and Makinde, 
2011). 

Thus, the purpose of the current study is to examine 
the peristaltic flow of a Prandtl fluid in an asymmetric 
channel. The study of Prandtl model for peristaltic flow 
problems are not explored so far. Therefore, to fill this 
gap in the present analysis, we have discussed the 
peristaltic flow of Prandtl fluid model in an asymmetric 
channel. The governing equations of Prandtl fluid model 
have been developed and then simplified under the 
assumptions of longwave length and low Reynolds 
number approximation. Expressions of stream function, 
longitudinal pressure gradient and pressure rise have 
been computed using perturbation technique. To validate 
the perturbation results, numerical solutions have been 
calculated using shooting method. Comparisons have 
been made through tables and figures. Graphical results 
have been presented and analyzed for various 
parameters entering into the present analysis. 
 
 
MATHEMATICAL DEVELOPMENT 
 
Consider an incompressible Prandtl fluid in an 

asymmetric channel of width 21 dd  . The channel has a 

sinusoidal wave propagating with constant speed c  on 
the channel walls induces the flow. The asymmetric of 
the channel is due to different amplitudes. The wall 
surfaces are selected to satisfy the following expressions: 
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In Equations 1, 1a  and 1b  are the waves amplitudes,   

is the wave length, 21 dd   is the channel width, c  is the 

wave speed, t  is the time, X  is the direction of wave 

propagation and Y  is perpendicular to X . The phase 

difference   varies in the range  0 . When 

0 , then symmetric channel with waves out of phase 

can be described and for ,   the waves are in phase. 

Moreover, 2111 ,,, ddba  and   satisfies the following 

relation: 
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in the laboratory frame, the following equations can 
govern the flow: 
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where U and V  are the velocities in the X  and Y  

directions in fixed frame,   is the density and P  is the 

pressure. 
The coordinates, velocity components and pressure 

between fixed and wave frames are related by the 
following transformations: 
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in which  ,, yx  vu ,  and p  are the coordinates, 

velocity components and pressure in the wave frame, 
respectively. 

Expression of an extra stress tensor for Prandtl fluid is 
given by Patel and Timol. (2010)  
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in which S  is the extra stress tensor, A  and C  are 

material constant of Prandtl fluid model. 
Making use of velocity stream function relation and 

non-dimensional quantities, we have: 
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Equations 2 to 6 after using the long wavelength and low 
Reynolds number approximation take the following form. 
We finally obtain the following system of equations: 
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where 
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Corresponding boundary conditions for asymmetric 
channel in non-dimensional form take the following form: 
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The time mean Q   in the wave frame  are defined as: 
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SOLUTION OF THE PROBLEM 
 
Series expressions 

 
We note that the resulting Equation 9 is highly nonlinear. Hence, 

the solutions for small Prandtl parameter   can be expressed as: 
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Substituting Equations 14, 15 and 16 into Equations 9 to 12 and 
then solving the resulting systems, we finally obtain: 
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and the dimensionless pressure rise P  is defined as: 
 

.

1

0

dx
dx

dP
P 








    (19) 

 

 
Numerical solutions 

 
Here, the problem consisting of Equations 9, 11 and 12 are also 
solved numerically by employing shooting method. The numerical 
solutions are  also  compared  with  the  perturbation  solution.  The  

 
difference between the values of two solutions is shown in Tables 1 
and 2. 

 
 
RESULTS AND DISCUSSION 
 
In this section, we have examined the pressure rise, 
pressure gradient, velocity and streamlines for Prandtl 
fluid model through graphs. In order to analyze the 
pressure rise per wavelength, numerical integration has 
been carried out. The pressure rise  against  volume  flow  
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Table 1. Comparison of velocity profile for fixed ,1.0a  5.0b , ,1d  ,2.0  

,2Q  ,1x  ,5.1  .2.0   

 

y u(x,y) Perturbation solution u(x,y) Numerical solution 

-1.5 -1.0000 -1.0000 

-1.2 -0.5235 -0.5236 

-0.9 0.0045 0.0045 

-0.6 0.4225 0.4226 

-0.3 0.6345 0.6345 

0.0 0.5961 0.5962 

0.3 0.3154 0.3154 

0.6 -0.1481 -0.1481 

0.9 -0.6827 -0.6827 

1.2 -1.0000 -1.0000 

 
 
 

Table 2. Comparison of velocity profile for fixed ,1.0a  5.0b , ,1d  ,2.0  ,2Q  ,1x  ,5.1  

.2.0   

 

y u(x,y) for present work when α = 1, β = 0 u(x,y) (Yildirim and Sezer, 2010) 
when M = 0, β = 0 

-1.5 -1.0000 -1.0000 

-1.2 -0.4034 -0.4034 

-0.9 0.0555 0.0555 

-0.6 0.3533 0.3533 

-0.3 0.4902 0.4902 

0.0 0.4659 0.4659 

0.3 0.2808 0.2808 

0.6 -0.0653 -0.0653 

0.9 -0.5725 -0.5725 

1.2 -1.0000 -1.0000 
 

 

rate is shown in Figures 1a to d. It is observed that the 
pressure rise and volume flow rate are giving opposite 
behaviour. From Figures 1a to 1d, it is also noticed that in 

pumping region ( 0P ), the pressure rise increases 

with the increase of Prandtl fluid parameter   and 

amplitude .b  The pressure rise decreases when Prandtl 

fluid parameter   and phase difference   are 

increased. Figures 1a to d also show that in the 

augmented pumping region for ( 0P ), the pressure 

rise decreases when we increase Prandtl fluid 

parameter  and amplitude .b  However, the pressure 

rise increases when Prandtl fluid parameter   and 

phase difference   are increased. Free pumping region 

holds when  0P . Variations of Prandtl fluid 

parameter ,  Prandtl fluid parameter   and flow Q  on 

the velocity profile are shown in the Figures 2a to c. 
Figures 2a and c  depicts  that  the  behavior  of   velocity 

near the channel walls and at center are not similar in 

view of the Prandtl fluid parameters   and  . The 

velocity field increases with the increase of   in the 

region  6.0,4.0 y  while velocity field decreases in the 

other region; by increasing , velocity field decreases in 

the region  6.0,4.0 y  and increases in rest of the 

region .  The velocity for the flow rate Q  is plotted in 

Figure 2c. It is found that the velocity field increases with 
an increase in the flow rate. 

Figures 3a to d show the pressure gradient for different 

values of ,  ,  a  and b . The magnitude of pressure 

gradient increases with increase in a,  and b . Note 

that the pressure gradient decreases by increasing . It 

is also observed that the maximum pressure gradient 
occurs when 48.0x  and near the channel walls 

pressure gradient is small. It means flow can easily pass 
in the middle of the channel. 
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Figure 1. Comparison of velocity profile for fixed ,1.0a  5.0b  , ,1d  ,2.0  ,2Q  
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The trapping for different values of   and   are shown 

in the Figures 4a to d and 5a to d. As shown in Figure 4a 
and b, the size of the trapping bolus decreases with an 
increase in  (in the upper part of the channel) and size 

of trapping bolus increases in the lower parts of the 
channel when we increased .  Figure 4a and d show 

that the size of trapping bolus decreases with an increase 

in   in the upper and lower parts of the channel, while 

the number of the trapping bolus increases in the upper 
half of the channel. 

In order to make the comparison of the present and 
previous results, we prepared Tables 1 and 2. 
 
 

Conclusion 
 

The present study looks at the peristaltic flow of a Prandtl  
fluid in an asymmetric channel. The main points of the 
performed analysis are as follows: 
 

1. The qualitative behaviors of Prandtl fluid parameter    

and amplitude b  on the pressure rise are similar. 

2. The pressure rise increases when we increase Prandtl 

fluid parameter   and amplitude .b   

3. Pressure rise decreases with an increase in Prandtl 

fluid parameter   and phase difference    

4. The effects of   and Q  on the velocity profile are 

similar in qualitative sense.  
5. Velocity profile decreases in view of increase in .   

6. The magnitude of pressure gradient increases with the 

increase in a,  and b  . 

7. The qualitative behaviour of   on magnitude of 

pressure gradient is not similar as compared to the a,  

and b  . 

8. The size of the trapping bolus decreases with an 
increase in   (in the upper part of the channel) and size 

of trapping bolus increases in the lower parts of the  

channel when we increased .   
9. The size of trapping bolus decreases with  an  increase 
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Figure 2. Variation of pressure rise versus flow rate for (a) ,4.0  ,7.0a  ,5.0b  ,1d  .1.0  (b) ,05.0  

,3.0a  ,5.0b  ,3.0  .1d  (c) ,05.0  ,3.0a  ,5.0b  ,03.0  .1d  (d) ,05.0  ,3.0a  

,1d  ,5.0  .03.0   
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Figure 3. Variation of velocity profile for (a) ,1.0a  ,1d  ,5.0b  ,2.0  ,2Q  ,5.1  .1x  (b) ,1.0a  ,1d  

,5.0b  ,2.0  ,2Q  ,5.1  1x  . (c) ,1.0  ,1d  ,5.0b  ,2.0  ,2.0a  ,5.1  1x  . 

 
 

 
in   in the upper and lower parts of the channel, while 

the number of the trapping bolus increases in the 
upper half of the channel. 
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Figure 4. Variation of pressure gradient for (a) ,03.0  ,2.0a  ,1d  ,5.0b  .1Q  (b) ,3.0  ,5.1  ,1d  
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Figure 5. Stream lines for panels     ba  and  for ,2.0  ,4.0      dc  and  for ,1.0  ,2.0  while the other 
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