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ZEROS OF SECTIONS OF THE BINOMIAL EXPANSION *

SVANTE JANSON AND TIMOTHY S. NORFOLK!
Dedicated to Richard S. Varga, on the occasion of his 80tthtay.

Abstract. We examine the asymptotic behavior of the zeros of sectionisedhinomial expansion, that is, we
consider the distribution of zeros &, (z) = >_}_, ()", wherel <r < n.
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1. Preliminaries. A problem of great interest in the classical complex functioeory
is the following: given a functiory(z) = Y ;- ax2", analytic atz = 0, determine the
asymptotic distribution of the zeros of tpartial sumss,,(z) = >, _, arz".

Some contributors to this area include Jentz€gjh \who explored the problem for a
finite radius of convergence; Szefl 3], who explored the exponential functieri; Rosen-
bloom [12], who discussed the angular distribution of zeros using@ptid! theory, and ap-
plied his work to the sub-class of confluent hypergeometnicfions; Erés and Tuan [4],
who used minimization techniques to discuss angular Higions of zeros; Newman and
Rivlin [7, 8], who related the work of Szégto the Central Limit Theorem; Edrei, Saff and
Varga [3], who gave a thorough analysis for the family of Mittag-Lefffunctions; Carpenter,
Varga and Waldvogel?], who refined the work of Szé&g Norfolk [9, 10], who refined the
work of Rosenbloom on the confluent hypergeometric funstiamd a related set of integral
transforms.

In this paper, we will analyze the behavior of the zeros ofieas of the binomial ex-
pansion, that is

B, (2) = Z (Z)zk', 1<r<n.

k=0

This investigation not only fits into the general theme ofwweks cited, but also arises
from matroid theory. Specifically (cf.1f]), the univariate reliability polynomialfor the
uniform matroidU.. ,, is given by

Relrn(q) = (1 —¢)"Brn (ﬁq) = Z (Z) (1 -k,

k=0

which can be written aRel, ,,(¢) = (1 — ¢)" "H, »(q), where

@ =3 (et = -0 (7).

k=0

Some special cases are easy to analyze, and may thus beséidpath. In particular,
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. B1n(2) = 14 nz, which has its only zero at= — 1.

. Bpn(2) = (1 + 2)™, which clearly has a zero of multiplicity atz = —1.
3. Bn_1n(2) = (1+2)™—2". Noting that this polynomial cannot have positive zeros,

we obtain the zeros = % for1 <k < n— 1, wherew = exp (22!) is the
principaln-th root of unity, all of which lie on the vertical linBe z = —%.

In what follows, we will therefore focus on the cases< » < n — 1, and give two
collections of results. The first are concerned with bougdégions for the zeros @8, ,, (=),
the rest with convergence results.

We note that this problem was investigated independentl@$tyovskii [L1], who ob-
tained many of the results that we present here. The metha&t$ there involved using a
bilinear transformation to convert the problem to an indormulation. This choice of
formulation makes the proofs more involved and requiresesadditional constraints. By
contrast, we claim that our methods descend directly fragrsthucture of the problem, and
yield additional results, in terms of additional bounds be zeros, and limiting cases. The
paper [L1] also gives a result on the spacing of the zeros on the limitegwising classical
potential-theoretic methods. We do not duplicate thatltdsre, but give formulations in
terms of specific points on the curve.

Our methods generate a set of constants and two relatedclimies for0 < o < 1,
defined by

N -

1
(1.2) 3 <K,=a%(1-a)'7 <1,
2| a

. a = : = Na, < — )
(1.3) C {z Tt K, |7 T—a
and

1.4 D P e a e
(1.9 Ca={s s s = K o <1

The properties of these curves are outlined in Len®iria Section3 also presents bounds
which are used to simplify the proofs of some of the resulésented here.

2. Main Results. As discussed above, we begin with a theorem on bounds of the ze
of B, ,(z), and follow with results on convergence of those zeros.

THEOREM 2.1. Letr, n be positive integers, with < r» < n — 1, and letz* be any
zero of B, (2) = >, _, (1)2". Then,z* lies in a region defined by the intersection of two
circles, a plane closed curve, and the half plane on the rafla vertical line. Specifically,

andz* lies exterior to the curve’,. /,,, defined in(1.2~(1.3).
Proof. We begin by considering the ratio of coefficients

(Z) n—k+1

(1) koo
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which is decreasing ih.
Hence, writingB, ,, (n_;Hz) = 22=o arz*, we have that

ay n—k+1 r

ap_1 k 'n—r—l—l_

That is,{ax }},_, is non-decreasing, so by the EnéstrKakeya Theorem §[, p. 462), the
zeros of this polynomial satisfy| < 1. Hence, the zeros d, ,,(z) satisfy|z| < . —"—.
For the second bounding circle, we refer to Wagriéh,[where it is shown, again using

the Enestim-Kakeya Theorem, that the zerosif ,,(¢), defined in {.1), lie in the annulus

1 - | | - r
n—r 2= n—1
Sincez = —1 is clearly not a zero oB,.,,(z) for r < n, we may make the substitution
z = 1L (or equivalentlyy = %= in (1.1), which shows immediately that
q +z

Hyn(q) = (1+2)""Bru(2),
from which one obtains

2.1) < T

—n-—1

1+2

Writing this last inequality in terms of the real and imagingarts ofz yields the claimed
result. Noting thatZ.1) implies that‘ Zz‘ < 1, yields the half-plan®e z > —1, as claimed.

1+
For the final bound, we mimic the analysis of Buckholt¥ ¢n the partial sums of?,
and write

ZT

2.2 1 B =1-—
(2.2) (142) 7" Brn() 5o )
where
n n 1
(2.3) Ryn(2) = Z <k) Py SN (Z) .
k=r+1

For clarity, we se3 = r/n. Inside and on the curv€s (1.3), we have|z| < % and
‘ﬁ < K}, whereKj is defined in {.2). This, with the upper bound of Lemnta3
yields

—-n z" n -n

@4) (142 "Bya(z)| 21— ‘(1+z)n NRen(2)] > 1= K- K57 =0,

which is the desired result. O
Note that the second bounding circle occurring in this tesalmely

012

S 1-a2

(%

N T

intersects the negative real axis:at — 1. This circle is contained in the first one, namely
|z| = 125, and both meet at the common point 2.

1—a’
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0.5

-0.5

FIGURE 2.1. The bounding curves and zeros for= 10, n = 30.

The limiting casdz| = =, corresponding to the first bounding circle, and the boundin
half-planeRe z > —% both appear in11], with proofs that require a significantly more
detailed derivation. The bounding curves and associateas Zer the casee = 10 and
n = 30 are illustrated in Figur@.L
We now use these results, and the bounds from the proof, tasissome convergence
results.
THEOREM2.2. Suppose that < r; < n; — 1 forall j, thatlim;_,,, n; = oo, and that
lim r—jza, 0<a<l.
j—oo M
Then
1. the zeros of B, », (z)} converge uniformly to points of the curgg,, i.e.,

sup d(z,Cy) — 0,

z)=0

z:B

rjmg
whered(z, Cy,) = infccc, |z — (| is the distance from to Cy,;
2. each point of”,, is a limit point of zeros of B,., .., (Z)}j:r

Proof. Set3; = r;/n;, so thatim; .., 3; = a. Using @.2), the zeros of3,., ., (z) then

satisfy
Z"

1+ 2
Using Theoren?.1, Lemma3.1, and LemméB.3, these zeros lie outside the cur¥g,, and
thus satisfy3; < Xp, < [z < ft_ , Where— X, is the intersection of the curvgs; with
the negative real axis, andis the unique positive solution tee' ** = 1.

Hence,

(2.5) Ry n;(2) = 1.

KRR
n;(rj+1) — Z;rj—l-l (Tg)ﬂjk(l — Bk

(2.6)
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for this region. Note that the sum in the denominator aboverexges tal /2 by the Central
Limit Theorem.

Consequentlylimjﬁoo|Rij/,’${j (z)| = K;*, uniformly on the set in question. Taking
moduli andn;-th roots in @.5), we observe that the zeros Bf, ,,, (z) must satisfy

2%

1/n;
g o] R =1

2.7)

Since3; — a, this establishes that every limit point of a sequence obsef B, ,,, ()
lies onC,. Since, by Theorem.1, the zeros lie in a compact set, it follows that the zeros
converge uniformly to points af',.

For the second claim, fix any € C,, with ¢ # z, = o/(1 — «). Then|{| < z,, SO we
may take a small neighborhodd of ¢ such thad < |z| < z, for z € D. Consequently, for
J sufficiently large,|z| < zg, forall z € D, and it follows from Lemmé.3 and the Central
Limit Theorem, that
(Z)|1/”j . K71

o

‘R"'j#”v
uniformly on D.
In particular, for largej, R, »,(z) # 0 on D, so we may fix an analytic branch of
R}o_]/fif]( )in D. Letting6; = arg(Rl/”J (2)) (with arguments in the rang@, 2r)), we then
have

e~ Wi Ry, (2) — K;l,

uniformly on compact subsets &f.

By shrinking D, we may assume that the latter limit holds uniformly/onFurthermore,
we may assume that< arg(z) < 2x for z € D, and thus the powers’ andz® are well-
defined inD. Hence,

(2 8) Zﬁj Rl/nj (Z) _ z% K- 16291 -0
* 1 +Z i, 1 +Z « b
uniformly on D.
Since the mappingy = Z:ZK;l mapsC,, onto an arc of the unit circle, it maps

D n C, onto a subarc. Thus, for sufficiently large, there exists an integer such that

1z+zKa Leili = ¢2mpi/mi for somez = ¢; € D N C,,. We may further assume that —

It now follows from Hurwitz’' Theorem andX(8) that, for; sufficiently large,

5.
27 pi/ng (z) — e2™Pi/mi
14z "M

has a zera;; € D. Each such zero; satisfies 2.5), and so by 2.2) is a zero ofB,, ,,, (2).
This proves that every point ati, is a limit point of zeros oi{B,.jynj (z)}.

We note that, thanks t@(3), the non-trivial zeros oft,., ,,, (z) converge uniformly to all
points which lie on the curvé€” , as defined inX.4).

This result also appears ii]], using more elaborate asymptotics. The analysis pre-
sented requires a deletion of a neighborhood of the singaliat 2, = *-. The results of
Lemma3.3show that this is not necessary with our methods.

The remaining results presented here do not appear in ¢natlite.
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The asymptotic expansions in the proof of Theor2immediately give the following
result on the rate of convergence. We note that, as show#j in {he case of the exponential
function, this rate is the best possible.

THEOREM 2.3. Fix 0 < § < 1. Then, there exists a constantdepending only og,
such that, ifr, n are large and) < 6 < = < 1 — ¢, for any zero:* of B, ,(z) we have

1
min [z* — (| < < Sl

€Cr/m |z* — | Cn
Additionally, the proximity to the singular point /,, = —* is of orderO ( 1n).
Proof. Sets = r/n. From @.6), we obtain the approximation

S

Inn
(2.9) R ()| K =14 Grn(2) - =,

whereG,. ,,(z) is uniformly bounded in a region containing the zeros.

Letz* be a zero oB, ,,(z), and let( be the point ors closest ta:*. Note that{ —z*| =
o(1), as a consequence of Theor2rg, applied to sequences for whigttonverges. Note that
the curveC's is asymptotically a pair of straight lines at anglét to the real axis, close to the
pointzz = 3/(1 — 3). Hence, ifz* is close tozs, by Theoren®.1, it must lie in the wedges
between these lines and the vertical [Rez = zg, from which|z* — z5| = O(|¢ — 23]).

Note thatz* satisfies 2.7), without the subscripf, and thus, byZ.9), we have

|z
|14 2*|

* _ Inn\ "
| ‘Kﬁl — (1 +GT','IL(Z) . n> .

ExpandingF'(z) = In(K;'|z[?/|1+2|) = Reln(K;'2”/(1+2)) as a Taylor series centered
at¢ (noting thatF'(¢) = 0), we find that
1 Inn
= O -/ .
)-o(ma )

¢(1+¢) Inn
2" = :O(’-Gm z) s —
Fod=o\ma—ae 0
This not only gives the desired result, but shows that, aseeg, the rate of convergence is
worst for those points closest to the singular paint= lfﬁ.

To discuss the convergence at the singular point, we takgproach similar to that
used for the exponential function if,[8] and for the Mittag-Leffler functions in3. For

convenience, we sgt=n3 = r, ando? = n3(1 — 3). Then,

w/o T
o) = (1= 8B (555 ) = 32 ()00 - gy,
k=0

which is a truncated moment generating function for a bimbatistribution with meamn. and
variances. Using the Central Limit Theorem,

1 ® 1(t—p tw
fralw) = [ 3 a

270 J_ o

Making the substitutios = t‘fgj“’ yields

7w/ﬁ
e*#w/J*wQ/QfT,n(w) ~ L/ e ds = %erfc <w> )
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the complementary error function. Thus, given the zewf erfc(z) which is closest to the
origin, there must exist a zerd of B, ,,(z) for which

B B 28 x
Co1-8 1= Y a-pp v

the desired result. 0O

Figures2.1and2.2 show the zeros, bounding curve, and bounding circles, foc#ses
r =10, n = 30 andr = 30, n = 90, respectively. Since the ratig/n is the same in both
cases, they serve to illustrate both the rate of convergehtiee zeros to the limit curve,
and the rate of convergence of the bounding circles. Figusshows the zeros for the case
r = 40, n = 80, as well as the curv€’; , and the approximating points on the curve.

0.5

-0.5

FIGURE 2.2. The bounding curves and zeros foe= 30, n = 90.

It should be noted at this point that, due to the structurehef doefficients of these
polynomials, direct computation of the zeros for signifibahigher degrees suffers due to
numerical instability.

We conclude by considering the limiting cases= 0 anda = 1. The trivial result for
a =0, given the radius,—7— of the bounding circle, is that all zeros converge uniforioly
0 in this case. However, a slight modification gives a much nteresting result.

THEOREM 2.4. Suppose thdim;_, ., 7; = co and thatlim;_, ;—J] =0.

Then, the limit points of the zeros @B, ,,, (%)};’;1 are precisely the points of the Speg
curve|zel7*| =1, 2| < 1.

Proof. With the given normalization, the results of Theor&rt yield that the zeros of

the normalized polynomial above satisfy

(2.10) 1=( & ) KW " oh(z) and |2 <1,
TLj—Tj J J<1+n”‘yz>
i Ty

where
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Noting that

i T4 . —Nny
" K = _
N — 1. ri/n; n.; ’
J J J

we may use standard expansions to con(tQ to the form

1= (ze'*H9E@)ip(z),

where[g(z)| < 22, uniformly in the unit disk. Considering points inside amithe curve
|ze!=#| = e375/™i, and noting thath(z)| < k(1) < 1 on the unit disk, we may repeat
the analysis of Z.4) to deduce that the zeros are uniformly bounded away frora bgr
|z| > n > 0. This implies that we may repeat the bounding process of Laffito deduce
thath'/7i (z) — 1 uniformly inn < |z| < 1, defining the roots by a cut along the positive
real axis. This establishes the desired result. O

Finally, we consider the other limiting case.

THEOREM 2.5. Suppose thalim; .., r; = oo andlim;_ ;—J? = 1. Then, the limit

points of the zeros of the polynomi:;1ﬂ$3,,_]7,L_].(z)};’o:1 are precisély the points of the line

_ 1
Rez = 5

Proof. As in the previous proofs, we write the equation for the ger®

2"
2y T ()

We again use the bounds of Lemr8& and obtain the desired result, using the fact that
lima_,l— Ka = 1. a

1=
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3. Technical Results.Here we give the properties and inequalities necessaryhéor t
main results, beginning with the properties of the boundimgyes.
LEMMA 3.1.Fix0 < a < 1, and let

Ko=a%(1—-a)'""

and

2| a
Co = : = K,, < .
{Z |1+ z| |Z‘_1—a

Then
1. 1 <K, <1,lim, o+ Ko =1, andlim, ;- Ko = 1;
2. C, is asimple, smooth closed curve, symmetric with respebeteeial axis, starlike
with respect to: = 0, which passes through, = =
3. the intersection of’,, with the negative real axis occurs at= — X, whereva <
Xo < % andv ~ 0.278 is the unique positive root afe' ¥* = 1;

4. X, < |z| and|z| < z, for anyz € C,, with the latter equality holding only at

2 = Zq-
Proof.
1. A simple calculation gives the limits. Taking derivaswgelds

dKq =K,In @ ,
do 11—«

which shows thaf<,, is decreasing off0, ) and increasing ofi, 1). Calculating
K/, directly gives the equality.

2. Clearly, the definition shows thét, is closed and symmetric, and direct calculation
shows that it passes through the paigt= /(1 — a). We writez = re'’, and set

|Z‘O( ,roz

co(r) = = .
o(r) 11+ z| 14 2rcosf + 12

Clearly,cy(0) = 0 andlim, . co(r) = 0. Ford = 0, we have

, Ta_l
o T
which shows that the given point is the only positive realieagatisfying the equa-
tion. For0 < 6 < 7, we have

[a— (1 —a)r],

p(r) = Y1+ 2rcos 0 4+ r2) 72 [(a — 1)r? + (2. — 1)1 cos 0 + a.

Sincea — 1 < 0, this derivative has exactly one positive root, which is aimaim
of the function. Further, a simple calculation shows that

Co <a) >Kou
11—«

from which each such ray yields exactly one point on the cunsde the bound-
ing circle |z| = 2. Considering the defining function, this valuesofs clearly

decreasing i) < 6 < 7. Hence, the curve is simple and starlike with respect to 0.
Finally, for = =, we have that
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for0 < r < 1, andlim,_,;- ¢ () = oo, which gives exactly one solution in this
range. That these points are the only solutions within thending circle can be

deduced from the fact thate C,, if and only if 1 € C{_,,.

Examining the functionv = K ;! 12;’ using arguments in the rang@ 27 ), shows
thatC,, maps onto the appropriate arc of the unit circle inidhplane. This mapping
is also one-to-one along the dic< argw < 2wa, sincew’ # 0 on the cut plane.

This fact is implicitly used in the calculation of the rateaminvergence.

. The solution on the negative real axis-is = — X, and satisfies

ta
1—-t

:Kcm

which we write as
f)=t*+a*(1—a)' ">t —-1)=0.

Now, f(t) is increasing, withf(0) < 0, f(X,) =0, and

1(2)= () - ba ko =0
from which X,, < £ follows immediately.
To show thatva < X, we consider
(3.1) flva) =a®(v® — (1 - va)(l—a)' ™),
and set
g(a) =In((1 - va)(1 - a)' =),
which satisfieg(0) = 0, ¢’(0) = —v — 1 and

vy (a4 (v—2)(va)+1—12
g'(a) = 1 —a)(1l—va)?

> 0.
The last inequality follows since the numerator has disitramt 3 (50 — 4) < 0,
from Lemma3.1, and so has no real zeros. Hence,

eg(oz) > e—(u+1)a _ e(xlnl/ — @

)

and thus, by3.1), f(va) < 0for0 < a < 1, as desired. 0O

We continue with a lemma required for one of the bounds.
LEMMA 3.2.Let f(z) = >, b2" satisfy

bo > by > 0, b >0, bibp_1 — bobr > 0, for k > 1.

Then,

bo — b1

1=

f(), for|z| <1

Proof. The conditions given imply thafib, } is strictly decreasing, unledg = 0 for

k> K. Letr = & < 1. Then, the conditions given show thiat < rb,_; for k > 1.

bo

Hence,f(z) is analytic for|z| < 1, and, in particular, in the closed unit disk. Applying the
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Enestbm-Kakaya Theorem to the partial sumgz) = Y_;_, bx2" shows that all have their
zeros in the regiofie| > 1, hence, by Hurwitz’ Theoreny;(z) cannot have any zeros inside
the unit disk. Thus, applying the Minimum Modulus Theorehg minimum value of f(z)|
for |z| < 1 must occur on the boundary.

For|z| = 1, we have

|(bo — b12)f(2)] = |0 + D _(bobk — brbr—1)2*| > b5 = > [babe_1 — bobx|
k=1 k=1

=05 — > bibg_1+ Y bobe = b — by f(1) + bo(f(1) — bo)
k=1 k=1

= (bo — b1) f(1).
Hence, we have

(bo — b1) f(1)

> (bo —b1) f(1)
by + by

£ (2)| = B0 — b7

> )
the desired result. O

Finally, we have the estimates of the remainder term.
LEMMA 3.3.Givenintegerd < r < n, we set3 = .-, and consider the remainder term

R, (2) = Zn: (Z)zkr.

k=r+1

Then, for|z| < {25, we have

n

RaGl< K S ()sta- K

k=r+1

and

n

k=r+1

Proof. Given that all coefficients are positive, we use the valug gffrom (1.2) and the
bound on/z| to deduce that

n

R < R (125) =157 3 (()sta-ar

k=r+1

The latter sum is clearly bounded by 1, using the binomialaegppn. In fact, using the
Central Limit Theorem, it is asymptotically/2 for bothr andn — r large.
For the lower bound, we consider

o= (557 e (755

=) (25)
P \k+r+)\1=58)

n—r—1

): Z bkzk,
k=0

where
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It is simple to show tha(z) satisfies the conditions of Lemn3a2, that

bo*bl 2n—r 1

= > ,
bo+b1  2r(n—r)+2n—3r) “r+1

and finally that

o= (150 w5 3 () o

k=r+1

Rewriting R, ,,(z) in terms ofg(z) yields the result. a
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