
International Journal of the Physical Sciences Vol. 5 (6), pp. 865-875, June, 2010
Available online at http://www.academicjournals.org/IJPS
ISSN 1992 - 1950 © 2010 Academic Journals

Full Length Research Paper

Information flow analysis of UCON

Mohammad Nauman1, Tamleek Ali2, Muhammad Khurram Khan3*, Khaled Alghathbar3,4

1 Department of Computer Science, University of Peshawar, Pakistan
2 Institute of Management Sciences, Peshawar, Pakistan

3 Center of Excellence in Information Assurance (CoEIA), King Saud University, Kingdom of Saudi Arabia
4 Information Systems Department, College of Computer and Information Sciences, King Saud University, Kingdom of

Saudi Arabia

Accepted 18 May, 2010

The UCON model extends traditional access control models through continuity of access decision and
mutability of subject and object attributes. Due to these two features, the flow of information in UCON
becomes considerably different from traditional access control models. A thorough analysis of this
information flow is beneficial in any scenario where UCON is used. In this paper, we analyze
information flow in UCON. In particular, we identify the rules for information flow, and determine how
these rules can be applied to particular policy types of UCON. We specify information flow in core
UCON models using temporal logic of actions and provide an algorithm for the automation of dynamic
information flow analysis in UCON.

Key words: UCON, traditional access control models, temporal logic of actions.

INTRODUCTION

UCON (Park and Sandhu, 2002) is a highly expressive
model covering continuous usage control of resources by
subjects. It introduces two novel features in the form of
continuity of access decisions -- which allows coupling of
access decisions with usage of a resource -- and muta-
bility of attributes -- which allows the system to change
attributes of subjects or objects before, during and after
usage. These two novelties of UCON make it different
from the traditional access control models (Sandhu,
1993; Sandhu, 1996). They also lead to considerable
differences in the way information can flow between
objects in UCON.

Role-based access control is a popular model of
access control. It has been seen that information flow in
an RBAC policy can become complicated and can make
it difficult to understand how information may flow due to
a particular RBAC design (Osborn, 2002). In UCON, this
issue becomes considerably amplified due to the
extensions added by the two novelties of UCON.

In this paper, we analyze the information flow in a
UCON system. We identify how the two novel features of
UCON affect information flow. We define the rules for
analysis of information flow in UCON and identify how

*Corresponding author. E-mail: mkhurram@ksu.edu.sa.

these rules can be applied for the analysis of information
flow in different UCON core models. The rest of the paper
is organized as follows:

In Section 2, we briefly describe the UCON model.
Information flow analysis in a traditional RBAC model is
described in Section 2.3. Information flow in UCON is
thoroughly analyzed in Section 3. We specify the rules of
information flow in Section 3.1 and specify the
information flow in different core models of UCON in
Section 3.2. In Section 3.3, we provide two algorithms for
the analysis of information flow in a UCON system.
Implementation is outlined in Section 4. Finally, we
conclude our contribution in Section 5.

BACKGROUND

Access control

Discretionary Access Control (DAC) (Lampson, 1974)
and Mandatory Access Control (MAC) (Bell and
LaPadula, 1973) mechanisms are some of the most
widely known access control models but are severely
limited in either their usability or expressive power. Role-
based Access Control (RBAC) proposed by Sandhu
(1996) is the precursor of many fine-grained and expres-

866 Int. J. Phys. Sci.

sive access control models. The simplicity, standardiza-
tion and support of many organizational needs make
RBAC a suitable candidate for many real-world
organizations. In the basic RBAC model, users are
assigned to roles and each role is assigned permissions
based on its job requirement. Users receive permissions
of all the roles to which they belong. Despite this
simplicity, one drawback of RBAC is that it requires a
central organization-wide authority to define the user-to-
role and permission-to-role assignments.

Another similar access control model is the Attribute-
based Access Control} (ABAC) (Johnston et al., 1998;
Wang et al., 2004) model that defines policies based on
subject and object attributes. ABAC is more robust than
RBAC since attributes can be spread across distributed
authorities and do not require a central management
authority. Several extensions (Joshi et al., 2005) of both
RBAC and ABAC have been proposed in the literature
but a detailed discussion of these remains outside the
scope of this paper. Building on the strengths of RBAC
and ABAC and the requirements of today's distributed
environments, a new paradigm of usage control
emerged. Below, we provide details of this new paradigm
of distributed control over access of information.

UCON

In traditional access control models, decision to allow or
deny access to an object or resource is made only once -
- when access is requested. Once a resource is released
to a requestor, there is no way of controlling the usage of
the object. Usage CONtrol (UCON) is an extremely
flexible model proposed by Park and Sandhu (2002) for
controlling access to a resource after it is released to a
client. Usage control differs from access control in that it
is concerned with continuous usage of an object,
mutability in subject or object attributes as a result of this
usage and the changes in access decisions resulting
from this mutability of attributes. Thus, mutability of
attributes and continuity of access decision are the two
features distinguishing it from traditional access control
models. Note that while changes to subject and object
attributes are possible in traditional access control
scenarios, they are not part of any access control model.

Usage control is a superset of a multitude of models
covering access control, digital rights management and
privacy. Usage control has also been shown to be able to
represent the Chinese Wall Policy (Brewer and Nash,
1989) and Mandatory Access Control (Sandhu, 2002)
mechanisms (Brewer and Nash, 1989).

Zhang et al. (2005) have presented a formal
specification of UCON in which a UCON policy consists
primarily of:

(1) a set of system states corresponding to a subject (s),
object (o) and right (r),

(2) predicates involving system attributes only (called
conditions), those involving object and subject attributes
(authorizations) and directives to a subject for performing
some action during or before access (obligations),
(3) updates to subject or object attributes before access
(preupdate), during access (onupdate) or after
completing access (postupdate).

Policy statements in UCON are categorized as
authorizations, obligations and conditions. Authorizations
refer to predicates which are based on subject or object
attributes only. Obligations are directives to a subject to
perform additional actions before or during an access.
Predicates exclusively based on environment attributes
such as system time, device type etc., are categorized as
conditions.

In UCON, a usage session is identified by a 3-tuple,
(subject, object, right). Associated with each usage
session (s, o, r) is a set of system states. Depending on
the policy type, these can include initial (starting state),
requesting (s has tried access to o), accessing (s is
exercising right r on o), denied (s was denied access to
o), revoked (the system revoked access from s) and end
(access was ended by s).
The transitions between these states can be seen in
Figure 1 (Park and Sandhu, 2002).

Associated with each state is a state transition action
and possibly attribute update actions. State accessing is
reached when the transition action permitaccess is
performed by the system. Moreover, because accessing
is the state in which some right is being exercised by the
subject, changes to attributes are coupled with usage
thus attribute updates of type onupdate are associated
with it. Similarly, when access is ended by the subject,
endaccess transition takes place; the usage session
moves from state accessing to end and any attributes
which need to be updated after access finishes are
postupdate. Note that only subject or object attributes
mutability is allowed in UCON.

A UCON policy type is defined in terms of its predicate
types and decision and update timings. Decision timings
are an important aspect of the UCON model. The two
decision timings are pre-decision to allow access to a
resource is made before granting access and on
continued decision to allow access to a resource is
coupled with the usage of the resource.

Predicates types are authorizations (A), obligations, (B)
and conditions (C). Attribute update timings can be 0 (no
updates in the policy statement), 1 (preupdates only), 2
(onupdates only), 3 (postupdates only) or a combination
of 1, 2 and 3. For example, a policy in which decision is
coupled with usage of the resource, predicates involve
authorizations only and attributes are updated before and
after access will be of type onA13. The dynamics of state
transition actions are specified formally by Zhang et al.
(2005) using an extended Temporal Logic of Actions
(Lamport, 1994). Temporal operators are used for the

Nauman et al. 867

Figure 1. UCON model states.

purpose of defining actions of a UCON system. The
temporal operators most relevant to our discussion are
the following:

(1) Once (): Returns true if the operand has been true in
at least one past state.
(2) Has-always-been (): Returns true if the operand has
been true in all past states.
(3) Eventually (): Returns true if the operand is true in at
least one future state.
(4) Always (): Returns true if the operand is true in all
future states.

All UCON actions are defined in terms of UCON core
models and temporal operators. For example, the
permitAccess action in preA1 model is described as:

Consider for example, the following policy (Zhang et al.,
2006) associated with a protected file that dictates that a
user can only read the file if she is in the reading group of
that file. Moreover, after she finishes reading the book,
her expense is updated to reflect the rent of the reading
session:

In this paper, we use this formalization of UCON core
models to specify the possible information flows in a

UCON system. Moreover, we build on a previously
specified formalization of information flows in RBAC
models (Osborn, 2002). Below, we briefly discuss this
formalization of information flow in RBAC models.

Information flow analysis of RBAC

Possible information flow in an RBAC system has been
analyzed by Osborn (2002). This analysis provides a
mapping from a role-graph to an information flow graph.
The result is that, given an RBAC policy, user
assignments and sessions, the mapping can generate a
graph of possible information flows between objects. This
analysis is especially relevant to our work because it has
defined the underlying rules for information flow in role
based access control. These rules of information flow
are:

(1) If a role r has privileges (o1, read) and (o2, write) and
there is at least one user assigned to this role, then
information can possibly flow from o1 to o2.
(2) If there are two roles r1 and r2 with privileges (o1, read)
and (o2, write) respectively and there exists a user u,
such that u is assigned both roles r1 and r2, then
information can flow between o1 and o2.
(3) It should be noted that while this approach of
information flow analysis of RBAC can create a “can-flow”
graph, it still relies on run-time information regarding
user-role assignments and sessions to completely
capture all information flows.

Building on this background work, we now identify the
differences between RBAC and UCON information flows,
define the rules of the flows and specify the information
flows in different UCON core models.

Information flow in UCON

Access decision continuity and attribute mutability lead to

868 Int. J. Phys. Sci.

differences in information flow analysis from RBAC.
Below, we identify the differences between RBAC and
UCON system which affect information flow in the UCON
model. These are:

(1) In RBAC, decision to grant access is made one time
only and after that, the object is considered to be usable
by the subject in all future states. In UCON, the continuity
of access decision leads to a more detailed level of
usage specification and thus can lead to different
information flows. Revocation and end of access is part
of the model and can be used to analyze information flow
at a more fine-grained level.
(2) RBAC relies on roles and information flow thus relies
on roles and indirectly on subjects. In UCON, there are
no explicit roles and analysis of information flow due to
subjects can be analyzed directly. This too leads to a
fine-grained information flow analysis.
(3) In RBAC, attribute updates are possible but they are
not part of the model itself and thus cannot be addressed
in the information flow analysis. In UCON, these are a
part of the model and thus need to be considered during
information flow analysis. Also note that updates are
performed by the UCON system and thus can always be
performed as specified by the policy. These lead to
conditions in which, while a subject may not be able to
write information to an object, information may
nonetheless flow from the subject's attributes to the
object's attributes.
(4) Information flow in traditional access control models
can be analyzed statically. Rights are pre-assigned to
roles and information flow implications of these per-
missions do not require run-time attributes of the subjects
or objects. In UCON, however, rights are assigned
dynamically at the time of request. Information flow
analysis in UCON, therefore is more complex due to this
dynamic nature of UCON rights assignment.

In a UCON system, there are two sources of informa-

tion flow -- subjects and the system itself. Corresponding
to these two sources, we have identified two rules of
information flow in UCON.

Rules

In defining the rules of information flow, we make the
following four assumptions:

(1) The only two rights which can cause information to
flow are read and write. All other rights can be mapped to
either read or write (Osborn, 2002).
Information flow is transitive.
(2) The set of subjects are a subset of the set of objects.
(3) For simplicity, we assume that only two usage
sessions are active. If there are more usage sessions,
their information flow can be analyzed using the transiti-
vity property of information flow.

We identify the following rules of information flow in
UCON. The first rule corresponds to the information flow
caused by the subjects of the system. The second rule
captures the information flow which results due to the
updation of attributes by the system itself.

Rule 1

If there exists a state such that (s, o1, read) and (s, o2,
write) are both permitted in that state, then information s
can cause information to flow between objects o1 and o2.
We write o1 o2 to denote that information can flow
between o1 and o2. Specifically:

This information flow is due to subjects of UCON. This is
similar to the information flow in the traditional RBAC
model. The difference is that both rights have to be
allowed and exercised in a single state. Due to the
stateless nature of RBAC models, this feature is missing
from the traditional models.
Note that, due to the “revoked” and “end” states of
UCON, information flow due to subjects requires this
concurrent access of two objects by a single subject for
information to flow between them.
We formulate this in a theorem as follows:

Theorem 1

In UCON, for information flow to be caused by a subject s
from an object o1 directly to another object o2, the subject
s must be able to exercise right `read' on o1 and
simultaneously must be able to exercise right `write' on
o2.

Proof sketch: When s reads some information from o1,
the destination of the information can either be another
object or the system memory. If the destination is o2, s
must be able to write to o2 while reading from o1 -- hence
s must be accessing o1 and o2 simultaneously. On the
other hand, if the destination of information being read
from o1 is the system memory then s can no longer
access that data in the memory after revoke or end state
is reached. Hence, this information cannot flow from the
memory to o2 after access to o1 has either ended or has
been revoked. Finally, if the destination of the data being
read from o1 is another object ox in the system, then the
problem is reduced to that of . The
same conditions apply for information to flow between o1
and ox and from ox to o2. This completes our proof of the
statement that for information to flow between two
objects, they have to be accessible in the same system
state to a subject.

Rule 2

If there exist two update operations such that the first
updates an attribute of s using an attribute of o1 and the
second updates an attribute of o2 using the same
attribute of s, then we say that information flows from o1
to o2. Formally:

Where updatex can be either preupdate, onupdate or
postupdate. It is necessary in this statement that the
update expression update1 contain some attribute of o1
and that of update2 contain attr1 of s. This statement
would ensure that o1 s and s o2. Due to transitive
nature of information flow, o1 o2. Note that for the sake
of simplicity, we only mention attributes of a subject or
object and assume that attributes of other subjects/
objects are involved in the update statements. These will
be explicitly mentioned only when they are not intuitively
clear.

This information flow is due to the UCON system and
not an individual subject. This is an important difference
from the RBAC model. There is no equivalent of
information flow caused solely by the system in RBAC
because attribute update (or mutability) is not a part of
the RBAC model.

Information flow specification

Using the rules of information flow specified in the
previous section, we now specify information flow in core
UCON models. We base our specification on the formal
specification of UCON given in Zhang et al. (2005). We
deviate from this formal specification of UCON in a few
respects: In formal specification of UCON in (Zhang et
al., 2005), it is assumed that the time line of temporal
operators starts from tryaccess of the usage session. In
our formalization of information flow analysis, we have
assumed that there are two usage sessions running
simultaneously. We widen the time line of temporal
operators and assume that it starts from the tryaccess of
the first usage process and ends at the endaccess or
revokeaccess of the last usage session. This is important
for the specification of information flow involving multiple
usage processes.

We have identified four cases for information flow
analysis which completely cover all UCON core models.
These are:
Pre models without an update (preA0, preB0 etc)
Pre models with updates (preA1, preC3 etc)
On models without an update (onA0, preB0 etc)

Nauman et al. 869

On models with updates (onA1, onC2 etc)

Note that from the point of view of information flow
analysis, authorization, obligation and condition models
are the same. Therefore, we only analyze the authori-
zation models in this contribution. Also note that in our
viewpoint, the update timings have no effect on
information flow because the system is not bound by any
predicates or systems while making changes to
attributes.

Here, we specify information flow in each of the four
cases in detail.

Case 1: Pre models without updates

The simplest case of information flow in UCON is that
one which involves pre models without updates. These
involve only the information flow caused by subjects.
Below, we formally specify this case using temporal logic
of actions:

This rule depicts that in order for information to flow
between o1 and o2, they both have to be readable and
writable (respectively) in at least one state. Object o1 will
be readable (in state accessing) for s only if there was a
tryaccess in a state and the predicates were all true. If
eventually, there comes a state such that o2 becomes
writable for s that is, tryaccess was performed and all
predicates were true, then both permissions would have
been granted to s.

Hence, information can flow from o1 to o2 according to
Rule 1. However, another necessary condition is that
access to o1 must not end before o2 becomes writable. If
o1 is made readable for s but access ends before o2
becomes writable, then information cannot flow between
the two objects. This end access is one of the primary
differences between information flow in RBAC and
UCON. In RBAC, there is no end access or revoke
access. Note that since this is information flow in pre
models and state revoked is not part of these models, we
do not consider revoked in this case.

870 Int. J. Phys. Sci.

Figure 2. Timeline for pre models without updates.

This sequence of actions is depicted in Figure 2. In the
figure, time progresses from left to right. The fork depicts
a disjunction. Either choice of the path may lead to
situations in which information may flow. The vertical
dashed line in the sequence depicts the point on the
timeline when information flow may possibly occur. In all
subsequent Figures 3-5, we use the same notation.

Case 2: Pre models with updates

These models differ from the first case because updates
are involved in them. This leads to the involvement of
Rule 2 described in Section 3.1. Hence, the information
flow can be specified formally as:

where updatex ∈ {preupdate onupdate, postupdate}.
The first part of the disjunction is the same as Case I.
The second disjunct (last line) specifies that if there's an
update to a subject attribute and later, another update to
an attribute of o2, information can possibly flow from o1 to
o2.

Note that it is assumed here that the update statement
of s.attr involves some attribute of o1 and the update
statement of o2.attr involves s.attr. The updation in the
specified manner is a sufficient condition for information
flow from o1 to o2.

Case III: On models without updates

In considering the information flow of on models, we have
discovered a surprising result. This result is summarized
in the following specification:

In pure on models, permitaccess is made conditional only
with tryaccess and no predicates are checked during the
transition from states requesting to accessing. Due to this
reason, if there is a state in which a subject s tries access
for two objects, o1 and o2 for rights read and write
respectively, it is permitted access on both accounts.
Access might be revoked in the state immediately
following this one but according to Rule 1, information
might have flown from o1 to o2 in the current state. We
note however, that pure on models are not likely to be
used alone but in conjunction with some pre policies and
this is a problem which is unlikely to surface in the real-
world implementations of UCON. This finding of ours is,
however, beneficial in emphasizing the fact that pure on
models should not be used alone lest they be
compromised due to unwanted access.

Another important difference between this case and
Case I is that revokeaccess is also part of this specifi-
cation. Since on models couple decision access with
usage, it is possible that access might be revoked by the
system. In such a case, unless information has flown
before ending or revocation of access, it cannot flow
later.

Case IV: On models with updates

The last type of models for information flow specification

Nauman et al. 871

Figure 3. Timeline for pre models with updates.

Figure 4. Timeline for on models without updates.

 Figure 5. Timeline for on models with updates.

is concerned with continuous usage of objects and muta- bility of attributes during usage. We specify this type of

872 Int. J. Phys. Sci.

models in a similar manner as Case III:

Similar to Case II, updatex might be preupdate, onupdate
or postupdate. Again, it is assumed that update
statement for s.attr is a function of some attribute of o1
and update statement of o2 is a function of s.attr.
However, note that since the information flow due to
subjects (similar to Case III) is conditional only with
tryaccess, the second disjunct (flow of information due to
the system) becomes insignificant. According to the
specification, if the subject tries access for both objects,
information might flow between them regardless of
whether the system updates some attributes of these two
objects.

Algorithms

We provide two algorithms (cf. Algorithm 1 and 2 in
Appendix) to automate the process of analyzing informa-
tion flow in UCON. The first algorithm calculates informa-
tion flow in pre models with updates. The algorithm takes
two UCON policies: one corresponding to permitaccess
(s, o1, read) and the other to permitaccess (s, o2, write).
The output of the algorithm is a boolean value which
describes whether, given these two usage policies,
information can flow from object o1 to object o2 (o1 o2).
The algorithm is coupled with the continuous usage of
objects in the UCON system and the calculations are
done in each state of the timeline. The algorithm has two
parts. The first (lines 8 - 28) captures information flow
caused by the subjects. The values of variables allowed-
read and allowedwrite in any state describe whether
subject s is currently allowed to read from o1 and/or write
to o2. The first if (line 12) checks whether s is trying
access to object o1 and whether the authorization
predicates are true. If both conditions hold, s is allowed
read access to o1. Also, if in any condition, read is
allowed from o1 and previously, write was allowed to o2,
then in this state, information can flow from o1 to o2 (line
14). Note that if write was allowed for o2 at some point in
the past states but access ended before reading was
allowed for o1 (line 21), then information cannot flow from
o1 to o2. The second if captures the condition when
reading is allowed and later, writing is allowed while read
access has not ended (lines 16 - 19).

The second part of the algorithm (lines 22 - 35) cap-

tures the information flow due to the system updating
attributes of the objects. (Note that this part of the
algorithm can be omitted if the model of the policy is
`without updates'.) If there is an update to an attribute
s.attri of subject s such that the attribute update state-
ment is a function of some attribute of o1 (line 26) then
s.attri is added to the set attrs of attributes which have
received information from o1. If later, there is an attribute
update in some attribute of o2 such that the attribute
update statement contains some attribute of s contained
in attrs then information can flow from s to o2 (line 31).
Thus, due to the transitivity property of information flow,
o1 o2.

For the information flow analysis of on models with
updates, we provide Algorithm 2. The algorithm is similar
to the first one but differs in the way information may flow
between subjects. The information flow from o1 to o2
requires only that the same subject try access for the two
objects in the same state (line 10). In such a case,
information may potentially flow regardless of the predi-
cates involved in the policies. The rest of the algorithm is
the same as the first one. Note that for on models without
updates, the second part of the algorithm may be omitted
as with the algorithm for pre models.

Implementation

One of the major reasons due to which adoption and
study of the UCON model has been severely limited is
the lack of a production-level implementation of the
model. Due to the relatively young age of the model, no
publicly available implementation exists to date. There-
fore, to demonstrate the feasibility of our approach, we
created a prototype implementation of the UCON model
using the Java language. The reason for this choice was
the modular and object-oriented nature of the Java
language coupled with an extremely strong tool support.
The prototype was designed in modules including:

(1) Attribute Resolver: for retrieval and updation of the
subject and object attributes from attribute repositories
(currently only local),
(2) Context Manager: for maintaining the state of the
usage sessions,
Resource Manager: for secure storage and protected
retrieval of resources from physical data stores and
(3) Policy Evaluator: for policy execution and enforce-
ment (including updates).

After the creation of the core UCON engine, we created
a frontend application that allowed the rendering of and
commenting on PDF documents encapsulating financial
records of an organization. To capture information flows,
we incorporated the two algorithms presented in Section
3.3 in the Policy Evaluator module of the UCON engine.
The end result of the execution of the algorithms is a
graph representing the information flows between diffe-

rent objects. The graph can then be verified against the
organizational policies.

CONCLUSION

UCON is concerned with the usage of an object after it is
released to a client. It adds two novel features --
mutability of attributes and continuity of access decisions
-- to traditional access control models. These two
features make it much more expressive than access
control models. They also lead to considerable diffe-
rences in the way information may flow between objects.
Continuity of access decisions puts certain constraints
on, and mutability of attributes opens new conduits for
information flow. We have analyzed both these aspects
and have specified the rules for information flow in core
UCON models.

Information flow analysis of UCON described in this
paper is useful for solving several different problems. Our
own interest in this analysis is for remote attestation – an
important aspect of trusted computing which allows a
challenger to verify that a remote platform is in a trusted
state. We aim to utilize these information flow rules as a
benchmark for remote attestation in order to verify that a
remote platform claiming to implement UCON does not
allow any illegal information flows. This information flow
analysis can be used in the high-level framework (Alam
et al., 2008) proposed in an earlier work. This will lead to
a more dynamic attestation mechanism as opposed to
the static hash based methods (Sailer et al., 2004;
Jaeger et al., 2006) currently in use. Previous attempts at
dynamic attestation have limited themselves to kernel
integrity measurement (Loscocco et al., 2007) and
recording system calls made by applications (Gu et al.,
2008). We have previously defined a technique (Nauman
et al., 2009) for attestation of information flows based on
static analysis. The technique presented in this paper
supports dynamic analysis of information flow in a UCON
system and can thus lead to more accurate remote
attestation results.

REFERENCES

Alam M, Zhang X, Nauman M, Ali T, Seifert J (2008). “Model-based

behavioral attestation”. In Proceedings of the 13th ACM Symposium
on Access Control Models and Technologies (Estes Park, CO, USA,
June 11 - 13, 2008). SACMAT '08. ACM, New York, NY, 175-184.

Bell D, LaPadula L (1973). “Secure Computer Systems: Mathematical
Foundations,” Technical Report MTR-2547.

Brewer D, Nash M (1989). “The Chinese Wall Security Policy,” in
1989 IEEE Symposium on Security and Privacy, 1989.
Proceedings, pp. 206–214.

Gu L, Ding X, Deng RH, Xie B, Mei H (2008). “Remote attestation on
program execution”. In Proceedings of the 3rd ACM Workshop on
Scalable Trusted Computing (Alexandria, Virginia, USA, October 31 -
31, 2008). STC '08. ACM, New York, NY, 11-20.

Nauman et al. 873

Jaeger T, Sailer R, Shankar U (2006). “PRIMA: policy-reduced integrity

measurement architecture”. In Proceedings of the Eleventh ACM
Symposium on Access Control Models and Technologies (Lake
Tahoe, California, USA, June 07 - 09, 2006). SACMAT '06. ACM,
New York, NY, 19-28.

Johnston W, Mudumbai S, Thomp- son M (1998). “Authorization and
attribute certificates for widely distributedaccess control,” Seventh
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collabora- tive Enterprises, 1998.(WET ICE’98)
Pro- ceedings., pp. 340–345.

Joshi J, Bertino E, Latif U, Ghafoor A (2005). “A Generalized
Temporal Role-Based Access Control Model,” IEEE Transactions
on Knowledge and Data Engineering, 17(1): 4–23.

Lamport L (1994). “The temporal logic of actions”. ACM Trans.
Program. Lang. Syst. 16(3): 872-923.

Lampson B (1974). “Protection,” ACM SIGOPS Operating Systems
Review, 8(1): 18–24.

Loscocco PA, Wilson PW, Pendergrass JA, McDonell CD (2007). “Linux
kernel integrity measurement using contextual inspection”. In
Proceedings of the 2007 ACM Workshop on Scalable Trusted
Computing (Alexandria, Virginia, USA, November 02 - 02, 2007).
STC '07. ACM, New York, NY, 21-29.

Nauman M, Alam M, Zhang X, Ali T (2009). “Remote Attestation of
Attribute Updates and Information Flows in a UCON System”. In
Proceedings of the 2nd international Conference on Trusted
Computing (Oxford, UK, April 06 - 08, 2009). L. Chen, C. J. Mitchell,
and A. Martin, Eds. Lecture Notes In Computer Science, vol. 5471.
Springer-Verlag, Berlin, Heidelberg, 63-80.

Osborn SL (2002). “Information Flow Analysis of an RBAC System,” in
SACMAT 2: 163 –168.

Park J, Sandhu R (2002). “Towards Usage Con- trol Models: Beyond
Traditional Access Con- trol,” in SACMAT ’02: Proceedings of the
seventh ACM Symposium on Access Control Models and
Technologies. New York, NY, USA: ACM Press, pp. 57–64.

Sailer R, Zhang X, Jaeger T, van Doorn L (2004). “Design and
implementation of a TCG-based integrity measurement architecture”.
In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13 (San Diego, CA, August 09 - 13, 2004).
USENIX Security Symposium. USENIX Association, Berkeley, CA,
16-16.

Sandhu R (1996). “Rationale for the RBAC96 Family of Access Control
Models,” in RBAC ’95: Proceedings of the first ACM Workshop on
Role-based access control. New York, NY, USA: ACM Press, p. 9.

Sandhu RS (1993). “Lattice-Based Access Control Models,” Computer,
26(11): 9–19.

Wang L, Wijesekera D, Jajodia S (2004). “A logic-based framework for
attribute based ac- cess control,” in Proceedings of the 2004 ACM
workshop on Formal methods in security engineering. ACM New
York, NY, USA, pp. 45–55.

Zhang X (2006). “Formal Model and Analysis of Usage Control,”
PhD Dissertation. George Mason University, VA, USA, 2006,
available at: http://www.list.gmu.edu/dissert/xinwen diss.pdf .

Zhang X, Parisi-Presicce F, Sandhu R, Park J (2005). “Formal model
and policy specification of usage control”. ACM Trans. Inf. Syst.
Secur. 8(4): 351-387.

874 Int. J. Phys. Sci.

Appendix: Algorithms

Algorithm 1

1 Algorithm 1: Flow In Pre Models
2 Input: Two UCON Policies r and w
3 // r corresponds to a policy (s, o1 , read) and
4 // w corresponds to a policy (s, o2 , write)
5 Output: Boolean value representing information flow between o1 and o2
6 Method:
7 F12 := false; // no possible information flow from o1 to o2 yet
8 //Checking for Information Flow due to Subjects:
9 allowedwrite := false; // is s currently allowed to read from o1
10 allowedread := false; // is s currently allowed to write to o2
11 for each state in timeline
12 if (tryaccess(s1 , o1 , read) � predicates = true) then
13 allowedread := true;
14 if (allowedwrite = true) then F12 := true; end if

15 end if

16 if (tryaccess(s1 , o2 , write) � predicates = true) then
17 allowedwrite := true;
18 if (allowedread = true) then F12 := true; end if

19 end if
20 if (endaccess(s1 , o1 , read)) then allowedread := false;
2l if (endaccess(s1 , o2 , write)) then allowedwrite := false;
28 end for each
22 //Checking for Information Flow due to System:
23 attrs := � // no information flow from any attributes yet
24 for each state in timeline
25 for each updatestatement u in r
26 if (u is a function of o1 .attrx updating s.attri) then
27 attrs := attrs � { s.attri }
28 end if
29 end for each
30 for each updatestatement u in w
31 if (u is a function of s.attrx updating o2.attri � s.attrx � attrs) then
32 F12 := true;
33 end if
34 end for each
35 end for each
36 return F12

Nauman et al. 875

Algorithm 2

1 Algorithm 2: Flow In On M odels
2 Input: Two UCON Policies r and w
3 // r corresponds to a policy (s, o1 , read) and
4 // w corresponds to a policy (s, o2 , write)
5 Output: Boolean value representing information flow between o1 and o2
6 Method:
7 //Checking for Information Flow due to Subjects:
8 F12 := false; // no possible information flow from o1 to o2 yet
9 for each state in timeline
10 if (tryaccess(s1 , o1 , read) � tryaccess(s1 , o2 , write))then
11 F12 := true;
12 end if
13 end for each
14 //Checking for Information Flow due to System:
15 attrs := � // no information flow from any attributes yet

16 for each state in timeline
17 for each updatestatement u in r
18 if (u is a function of o1.attrx updating s.attri)then

19 attrs := attrs � { s.attri }
20 end if
2l end for each
22 for each updatestatement u in w
23 if (u is a function of s.attrx updating o2.attri � s.attrx � attrs) then
24 F12 := true;
25 end if
26 end for each
27 end for each
28 return F12

