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FUNCTIONS AND A PARAMETRIC QUADRATURE MODEL BASED ON A
GENERALIZATION OF OSTROWSKI-GR USS TYPE INEQUALITIES *

MOHAMMAD MASJED-JAMEIT

Abstract. A new generalization of Ostrowski-Gss type inequalities, depending on a paramgterintroduced
in order to construct a specific linear approximation for gméble functions. Some important subclasses of this
inequality such a3 = 1/2, 1, andv/2/2 are studied separately. The generalized inequality is eraglto establish
a parametric quadrature model and obtain its error bounds.
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1. Introduction. Let LP[a,b] (1 < p < oo) denote the space gFpower integrable
functions on the intervdk, b] with the standard norm

b 1/p
||f|,,=(/ If(t>|pdt) ,

andL*[a, b] the space of all essentially bounded functionsam] with the norm

[flloc = esssup f(z)].

z€(a,b]

For two absolutely continuous functiorfsg : [a,b] — R and a positive weight function
w : [a,b] — RY such thatw f, wg, wfg € L'[a,b], the weighted Chebyshev functiona] [s
defined by

b b b
(11) T (w, f.g) = / w(m)f(x)g(x)dx—( / w(:c)f(x)dx> ( / w(x)g(m)dx>.

If w(z) is uniformly distributed orfa, b] then (L.1) is reduced to the usual Chebyshev

functional
b b
(bla)2</ f(a:)dx) (/ g(az)dm)
b
:bia/a ( )(()—bia/ag(x)dx>d:r.

To date, extensive research has been done on the bounds fasubl Chebyshev func-
tional. The first work dates back to 1882 when Chebystpproved thatiff’, ¢’ € L>°[a, ],
then

T(f,

IT(0) | < 50— a1 7 Il
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Later on, in 1934, drss p] showed that
(12) T (7,0)| < (M1 —ma) (My — m),
wheremy, msy, M1 and M, are real numbers satisfying the conditions
my < f(z) < M; and my < g(z) < My forall x € [a,b].

The constam},; is the best possible il (2) in the sense that it cannot be replaced by a smaller
quantity.

An inequality related to the usual Chebyshev functionalis th Ostrowski16] in 1938.
If f:[a,b] — Ris adifferentiable function with bounded derivative, then

< (3+ ) -0 17

for all z € [a, b]. Today this inequality plays an important role in numerpadrature rules;
see, e.9.,4, 9]. In 1997, Dragomir and Wangd3] introduced a mixture of the inequalities
(1.2) and (L.3), called the Ostrowski-Giss inequality, and showed the following theorem.

THEOREM 1.1. If f : [a,b] — R is a differentiable function with bounded derivative
andag < f'(t) < By, forall ¢ € [a,b] , then

b
(1.3) ‘f(x)—b_la / £(t)dt

(1.4)

< (b= a)(do — ).

Due to the importance of the inequality.{), many refinements and generalizations have
been presented in the literature. For instance, Chgjrgalve a sharp version of the Ostrowski-
Griss inequality and proved that instead;llod)n the right-hand side ofL(4), the constan%
should be used; see alstd]. In 2007, Liu [7] applied this inequality fo(l, L)-Lipschitzian
functions as follows.

THEOREM1.2.Letf : [a,b] — R be a(l, L)-Lipschitzian function on [a,b], i.e.,

l(zg —x1) < flaa) — f(x1) < Lz —x1) for a<z <axy<b,

wherel, L € Rwith! < L. Then for allz € [a, b] we have

‘f(x)—bla/:f(t)dt—w («- 5

The following theorem, due to Niezgodad], is probably the most recent work about the
Ostrowski-Gilss inequality in.?[a, b] spaces.

THEOREM 1.3. Let f : I — R, wherel is an interval, be a function differentiable in
the interior I° of I, and let[a,b] C I°. Suppose that’,«,3 € LPla,b] (1 < p < o0)
are functions such thak(t) + 4(t) is a constant function and(t) < f/(t) < g(t) for all
t € [a,b]. Then for any: € [a, b] we have the following inequality

b - 13— (-a)t
gk f v Bt o) [ 1

1 1 _
whereg +4= 1.

b—a
<
- 8

(L—1).
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As we observe, the general shape of the left-hand side ohedet inequalities is the
same and variations are in fact employed on the right-hateddadithem. In this paper, we first
generalize the left-hand side of inequality4) (by adding a free parameter, s&yand obtain
an upper bound for its absolute valuelih|a, b] and L>[a, b] Spaces to arrive at a specific
linear approximation for integrable functions. Then wedstthree special examples of the
introduced inequality fon = %, 1 and @ Finally, we establish a parametric quadrature
model based on the presented inequality and obtain itsleotords. A section with numerical
examples is also given in this sense.

2. Alinear constructive approximation for integrable functions. Let us define the
following specific kernel on the interval [a,b]:
t—p— 35 ((g—pet+ap—bg+350° —a?) tela,a],
t—q— 55 ((g=p)z+ap—bg+ 3> —a?)) te (2,0,

wherep, ¢, are two free parameters.
THEOREM2.1.Let f : T — R, wherel is an interval, be a differentiable function in the
interior I° of I, and let[a, b] C I°. If ay, 3y are two real constants such thag < f/(t) < 3o

for all ¢ € [a, b], then for anyr € [“FE =10 EEAZDa) C [y 5 where) € [1,1] we have

b a a a —
F(@) = sy S0 S0 dt = LG gy GIopasd pg) b BBl p(g) |

(2.1) K(zt,p,q) = {

(2.2)
< P 220 (@ -0 + (- 2)%)
In other words, the linear approximation
~ f(b) — f(a)
flx) = ﬁ x
(2>\ 1)b 22X —1)a+d
(e (/ ey de + f(a>—2f<b>>,

has an absolute error less than

Bo— o A+ (1—N)?
4(b—a) A

((z—a)*+ (b—x)?).

Proof. Take\ € [1 1]. Then there exist two real parameterandq satisfyingg > p
and(b—a)/2 < ¢ —p < b— aso that one has = {=L. By referring to the kernel2.1), it
can now be verified that

b
/ K (x;t,p,q) dt
xT

and, moreover,

b
[ kg r0a =1 5 [ e 101,

q—p b—a
(2)\71a+b +(@2A—1)b
oA (b—a) HORE Ao—a) W
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Hence, we have

PR YR CEV N
2X—1)a+b a+ (2 =1)b
-0 Ve a W
_ 1 ’ / @ +ﬂ0
ey K (x;t,p,q) <f(t)—2> dt.
On the other side, the assumptiopn < f/(t) < (5, results in
‘f’(t) B 040;"50 < ﬁo;ao.
Therefore,
b b) —
‘f(fv) e ) foa-

2X—1)a+b 2X—1)b

Y A Y A

[ K@t (10 -0

(2.3) =P

s / K (2:t,p,q) | dt
:25;(;—%)(/@ t—p—b_la((q—p)x+ap—bq+;(bz—a2)>’dt
+/:

Now, it remains to compute the two integrals of the rightdhaite of £.3). For this purpose,
it is sufficient to use a suitable change of variables to get
b
1
t—q—y—(la=p)ztap—bg+

/:
+/; 2 2(b ))’dt

(1—-X\) z+bA—1 (b+a) —Az+ar+3(b—a)
:/ \z|dz—|—/ |w]| dw
—Az+bA—3(b—a) (1-X\) z+ar—1 (b+a)

1@—a)+(A—3) (b—a) —(A=3) (z—a)+3(b—x)
:/ |z|dz+/ |w]| dw.
~3(a—a)+(A-1) (b— ) (A=3) (s—a)— L (b—2)

R bt 1?2
t—q b—a((q p)x +ap bq+2(b a))‘dt).

1 1
t—p—_a((q—p)x+ap—bq+2(b2—a2)> ‘dt

(2.4)

But since in Theoren.1we assumed

a+ 2 A—=1)b b+ (2\—1)a

(2.5) x €| ) , )

|Clab] forany Ae[51]
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the following results can directly be deduced

1 1
@)t (A - )b 2 <0,
“(r—a)+(A=5)(b—2) >0,

e AL
~0 = (E—a) = 3b-2) <0,
) (e —a)tb-2) 20

Thus, @.4) is computed as

L(o—a)+(A—1) (b— o) ~(A—1) (z—a)+ b (b—2)
/ | 2| dz+/ |w| dw
~3@-a) (A=) (b- ) ~(- 1) (e-a)- 3 (b-2)

0 a—a)+(A—1) (- 2)
:/ (=2) dz—l—/ zdz
—3(@—a)+(A=3) (b—=2) 0

1

0 —(A=3) (z—a)+ 5 (b—2)
+/ (fw)dw+/ w dw
A= (z—a)-L(b—2x) 0

A+ (1))

5 ((m—a)2—|—(b—x)2) ,

which completes the proof. 0O

Note that the general conditio.f) is in fact a solution of the first and fourth inequality
in (2.6), because

1 1 a+(2X—1)b
—(r— Y- 2)< R S
2(3: a) + (A 2)(b ) <0 = o <z,
1 1 b+ (2 \—1)a
—(\N— = _ (b — ) > <2\ 7
(A 2)(90 a)—|—2(b 2)>0 = z < ) ,
and
a+ (2A—1)b b+ (2A—1)a 1
. <—mm— <z ——<bh & —, 1.
(2.7) a < ) <z< ) <b )\6[2,1]

This means that, by accepting the conditi@n/) as the region of solutions, the second and
third inequalities in 2.6) are automatically satisfied.

Although there are various instances fore [3, 1], three special cases= 1, 1 and
A= § may be of more interest as the following examples show.

EXAMPLE 2.2. If A = £, the eligible region inZ.5) is the same as < [a,b]. So,
according to2.2) we have

b — X Tr—a
‘f(m)—bfa/a Fe)dt+ T2 FB) + T f(a)
fo — o 2 2
(2.8) < ﬁ (z —a)®+ (b—2)?)
Po — ao

< TS max (o= + (0= a)?) = 00— a)(0 — o0).
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which is valid for allx € [a, b] if and only |fa0 < f'(x) < Bo.
REMARK 2.3. If we set\ = {=2 = 5 in (2.1), then the following particular kernel is
derived
t—2%e tcia,x
K(z;t,a,b) = ’ 1]
t— 2 e (x,0).

Cheng in R, Eq. (3.3)] used this kernel but obtained the “incorrecsiar” of inequality
(2.8) as

Tr—a

b—a

2 b b—x
fa/ FlE) e+ 3 F(b) +

) < S8 (= + 0= 7).

For instance, substitutingi(z) = e and[a,b] = [1,2] in the corrected inequality2(8)
implies that the linear approximation

et (e—1)x—1,

has an absolute error less than
e—1

(=12 +2-2)),

forall z € [1,2].
And/or, substitutinga, b] = [0,1] andxz = 1/3, 1/5 into (2.8) respectively gives the
following error bounds for two three-point quadratures

1 5

30+ 3+ 30 - [ e < 2 o)
and

110f()+ f( /f S%(ﬁ(]—a())~

EXAMPLE 2.4 (The sharp version of Ostrowskii@&s inequality forA\ = 1; see P]).
For A = 1 we can directly obtain the sharp version of inequalityd) as follows. Since
= =2 = 1 and without loss of generality taking= b andp = a, the general kerneP(1)

is S|mpI|f|ed to

b
t—x— 5"

t—z+%52  telaal,
K(x;t,a,b)z{ E la,2]

Q
~+
m

&

Now, according to Theorerd.1and relation 2.3) we have

o [ ga- L1 (o))

Bo — o * b—a b
< 26w </a it s |
1

= g(b— a)(fBo — o),

b—a
t—(z+

)

)
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forall z € [a,b] anday < f'(x) < By, because

/: )dt+/:

b—a b+a b—a

2 2 T 2 b—a)?
:/ |z\dz+/ |z|dz:/ |Z\d,z:( a)”
b+a_m _b—a _b—a 4

2 2 2

EXAMPLE 2.5 ((An optimized value foh). Since the right-hand side of inequali®.®)
is in terms of the variabl@, by minimizing the function

b—a b—a

dt

t—(x—

t—(z+

A2 (1—))2

(2.9) g(\) = on [1/2,1],

one obtains the optimized value= § € [%, 1]. Hence, substituting this value int@.p)
gives

() — f(a)

| b—a/f b—a .
(2-v2)a+V2b (2-V2)b++2a
Y o e AU ey s

< (ﬂ_g(lb)(_ﬁ(;)_ = (x—a)+(b-2)?)

2-V2)b+v2a (2—V2)a++20b
2 ’ 2

Sxe] ]

REMARK 2.6. Althoughay < f’(xz) < [ is a general condition in Theorefl,
sometimes one might not be able to easily obtain both bouhdg and 3, for f’. In this
case, one can consider two further theorems. The first onédwami helpful whenf’ is
unbounded from above and the second one would be helpful h&nhunbounded from
below.

THEOREM2.7. Let f : T — R, wherel is an interval, be a differentiable function in
the interiorI° of I, and let[a, b] C I°. If ay is a real constant such that, < f/(t) for all
t € [a,b], then for any\ € [3, 1] and allz € [a, b] we have

‘f(x e / POy (LI O
(2.10) (2>\—1)a+b Ca+ @A -1)b
Y A Y A
b—a
< 2\ (S —ao),

whereS = (f(b) — f(a))/(b — a).
Proof. Again take\ € [%, 1]. By noting that there exist two parameterandq satisfying
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(b—a)/2 <q—p<b—asuchthat = =2, we have

1 ’ f() — f(a)
‘f(w)—w/a f(t)dt—ﬁx

22X —=1)a+b
2X (b —a)

a+(2Ax—-1)b
2A (b —a)

f(0) - f(a)

b
R / K (z:t,p.9) (f'(t) — av) dt

/|Kactp7 I(t) — ap) dt

<ﬂfr€n[g>§]|f(xtp, |/ ) — ap)
(f(b) — fla) — ag(b—a))
= Ab—a) x
Jmax {tren[i);] t—p—ﬁ ((q—p)x+ap—bq+;(b2—a2)> ,
max tql)_lcl((qp)x+apbq+;(62a2))‘}
_ () ~ fla) —agb —a))
A(b—a)
max {|-J@-a+ 0= 0= 2] [je-a+a-pe-a).

1 1
—(A—i)(m—a)—i-ﬁ(b—x)

1 1
RCSIEERE IS
_ ()~ fla) —apb—a)

|

)

A(b—a)
1 1 1
Ag";ﬁ]{‘()\—y(b—a) ; —§(b—a) ,’2(b—a) , —()\_2)(5_@)}
(U0 - f@) —aob—a) b-a
N 22 - DY (870‘0)' d

THEOREM 2.8. Let f : T — R, wherel is an interval, be a differentiable function in
the interiorI° of I, and let[a, b] C I°. If 3, is a real constant such thaf’(t) < 3, for all
t € [a,b], then for anyx € [£,1] and allz € [a,b] we have

f) ~ fla)
‘ z) b—a/f t)dt - b—a

(2.11) 2\ —1)a+b
2X (b —a)

b—a
S 2\ (/BO*S)’

whereS = (f(b) — f(a))/(b - a).

The proof is similar to that of Theorefh?7.
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3. A parametric quadrature model and its error bound. One of the advantages of
Theorem.1, 2.7, and2.8is to establish some new models of quadrature rules and &nobt
their error bounds using inequalitie®.?), (2.10 and @.11). For this purpose, we should
first state a short summary of numerical quadrature rulesisider a general(+ 1)-point
weighted quadrature formula of the form

b n
3.1 [ w@) s de =3 wn fo) + R (5

k=0

wherew(x) is a positive weight function on [a,bfx,}}_, and {w;}}_, are nodes and
weight coefficients, respectively, aiit}, 1 (f) is the corresponding erros[12].

Let IT; be the set of algebraic polynomials of degree at nibsThe quadrature formula
(3.1) has degree of exactnedsf for every p € II; we haveR, 1(p) = 0. In addition, if
R,+1(p) # 0 for somell,, formula @.1) has precise degree of exactnds§he conver-
gence order of quadrature formula 1) depends on the smoothness of the functicas well
as on its degree of exactness. It is well known that for given 1 mutually different nodes
{zr}}_, we can always achieve a degree of exactaessn by interpolating at these nodes
and integrating the interpolated polynomial insteag. oRamely, taking the node polynomial

Vi (z) = [] (@ —aw),
k=0

by integrating the Lagrange interpolation formula

fa) =" flar) L(z; ax) + raga (£ 2),
k=0

where

) — Uni1(2) B .
L(x; k)—%ﬂ(xk)(m_xk) (k=0,1,...,n),

we obtain 8.1), with

1 by
(3.2) wy = — / na(@)w() (k=0,1,...,n),
lIjn—‘—l(l'k) a T — Tk

and

b
Ry (f) = / rast (f12) w(z) de.

Note that for eaclf € IT,, we haver, 1 (f;«) = 0 and thereforeR,, 1 (f) = 0.

Quadrature formulae obtained in this way are known as iotatpry. It is well known
that any interpolatory quadratur@.{) with nonnegative coefficient8(2) is convergent for all
continuous functions ofa, b], [12]. Usually the simplest interpolatory quadrature formuia o
type 3.1 with predetermined nod€s:.. }_, € [a, b] is called a weighted Newton-Cotes for-
mula. Forw(z) = 1 and the equidistant nod¢s };!_, = {a+kh}}_, withh = (b—a)/n,
the classical Newton-Cotes formula is derived. On the otfaexd, the interpolatory formu-
lae of the maximal degree of exactness are known as Gaussénaqure formulae whose
construction is closely connected with orthogonal polyradsn For details on quadrature
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formulae see, for example5,[pp. 152-185] and12, pp. 319-361]. In addition, several
other types of standard and nonstandard quadratures haweréeently developed, e.g., in
[8, 10, 11, 14].

In this section, we introduce a parametric type of quadegfiormmulae having equidistant
nodes and parametric coefficients. In other words, the ciesfiis of this quadrature are all in
terms of a parameterthat respectively generates the midpoint ruleXet 1, the trapezoidal
rule for A = 0 and the Simpson rule fox = % Then we extend the established quadrature
to a generaim-point formula. For this purpose, we first write inequali®y4) as a three-point
quadrature model to arrive at

b
/f(t)dt%(—;a—i—)\m—()\—;)b) (@) + A(b—a) f(x)

(3.3) ) |
+ <(>\— 5)a—)\x+§b (),
with an error less than
(3.) 7 (o= o) (% + (L= ) (o = a)? + (b — %),

forall A € [1,1] andz € [¢HE =08 PEEAZD ATt and only ifag < f/(t) < fo-

The important point is that the functige — a)? + (b — ) in the error bound3.4) can
still be minimized on the aforesaid interval with the saati: = (a + b)/2. Hence, since
ath ¢ (oAb bHEAZDA] for any A € [4, 1], substituting this point ind.3) yields our

optimized quadrature rule

a+b

b —a
@5 [ foa="T0 (-2 4 - 050)

with an error less than

(b—a)* (N + (1 =X)?) (Bo — )

(3.6) <

forall A € [3,1] ifand only if g < f/(t) < Bo, Vt € [a,b].

Fortunately, the eligible region fox in the optimized quadratur&() is extendable to
A € [0, 1], because this region satisfi&sg). In other words, by defining the particular kernel

b t_m+/\u te a7a7+b7
K(iﬂfapaq) = K*(f,)\) = 2 2 [ P} ]
2 toogt oAt re (%

for A € [0, 1] we have
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and also ifag < f/(t) < 5y then

b
fydi— 2=

a

(- Ns@+ 22755+ 1= 050) ‘

b

K* () (f’(t) - ao;rﬁo) dt

a+b
Bo — agp /2 a+b b—a
= t— A
2 u 2 + 2

bz 252 (1-X)
— 2 2
_ o~ |z dz+/ |z| dz
2 b2e (A1) )

_ (B~ ao)(b— a)?(\ + (1 - 1))
' .

_ b
< B0 [ ) ae
2 a

b
b b—
dt+/ ‘t—‘” A 2“

+b 2
2

)

This means that the quadrature modeb)is valid for all A € [0, 1].
Based on the above-mentioned result and according 16)( the three-point quadraturg.f)
should also have an error less than
1 2

§(b —a)*(S — ap),
if S=(f(b)— f(a))/(b—a),ap < f'(t) andt € [a, b].

The precision degree of the quadrature mo@ei)(is in generakl = 1 for any A € [0, 1]
and only for\ = % itincreases ta = 2. However, as we pointed out, substitutig= 1 into
(3.5 and @3.6) yields the well-known midpoint rule together with its ertsound

a+b
2

1
< =
-8

b
/ Fydt— (b —a)f (0 | < Lo - )80 — a).

and\ = 0 gives the trapezoidal rule with its error bound

b —a
[ #wde =250 (@) + 10| < 50— (50 - o).

2

and finallyA = 2 generates the Simpson rule with its error bound

a+b

[ srae -5 (s a5 + )

kil

79 (b— a)2(ﬁo —ag) .

<

In this sense, there is still a fourth case that should beligigied in the parametric quadra-
ture 3.5). SinceA? + (1 — \)? is minimized at\ = 1 € [0, 1], the quadrature rule

b —a a
37) [ a2t (1@ 215 + 10).

has a minimum error bound, i.€h — a)? (8 — ag)/16, among all cases depending an

Note that in the casa = @ (Example2.5 we minimized the functiory()) in (2.9 to
obtain an optimized bound for the right-hand side of ineigué®.2), while in the case\ = %
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we minimized the functiom g(A) = A? + (1 — \)? to obtain an optimized bound for the

error absolute value of the quadrature ri8e5). This means that by replacing= § and
x = (a+b)/21in (3.3, the quadrature

/abf(t) dt =

has an error less thd2 — v/2) (b—a)? (B — ag)/8, which is, however, larger than the error
bound of 8.7), i.e.,(b — a)? (B — ap)/16.

By using inequality 2.2) and the well known triangle inequality, we can now genegali
the quadrature formul&(3) to a composite form as follows.

THEOREM3.1l.Letf : I — R, wherel is an interval, be a differentiable function in the
interior I° of I, and let[a, b] C I°. If ag, By are real constants such thaty < f/(t) < 3

® (- VOr@+ 2/ + 2 - VBID)

for t € [a,b], then for every partition/,, = {a = 2y < z; < ... < z,, = b} of the
interval [a, b] and for any intermediate point vectgr = (po,p1, ... ,pn—1) that satisfies
P € |:Ii+(2)\2;\1)l“i+17 mi+1+(22;71)x1l C [ws,2i41] for A € [%7 1Jandi = 0,1, ... ,n—1,

we have

b
'/ f(t)dt — Ax(f; I, P)

(38) A2 1 )2 n—1
< (Bo — ao)( 4"' (1= (Z (pi — ) + (Ti1 —Pi)2> )
i=0

where A, denotes the generalized quadrature rules defined by

A(f3 Ins P) Z /\pz— T (A—%)%H)f(l‘i)
i=0
(3.9) Z (=Api + 1)$z+;$z+1)f($i+1)
i=0

n—1

+A D (@iy1 — ) f(pi) -
1=0

T _ +(22
Proof. By substitutingz = p; € | =
[a,b] = [z;,2;+1] In inequality .2) we have

1)z i1 (2 A=1) x4
A)iﬁvdcﬂ ( )1} C [z, 7i11] and

1 1

3% = (A= 5)win) flai)

HAp O ot ga) S - [ @ dt\

2 2
< G0 0P+ (=)

A@igr — o) f(pi) + (Aps —

i

((pi — 2:)* + (wig1 — pi)?) -

Now, summing the above inequalities ovdrom 0 to n — 1 and then using the triangle
inequality proves the theorem straightforwardly. O
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3.1. Onthe convergence of quadrature rules given in Theore®.1 Let us reconsider
formula 3.1) and set for convenience

b n
I(f) :/ wt) f(t)dt  and L (f) = we flaw).
a k=0

As we know, the main problem in numerical integration is tal #nsystem of nodegey }7/_,
and weights{w; }}_,, such that the quadrature error

| B r (f) [ = [1(f) = Inga (F) |,

tends to zero a8 — oco. In such a case, we say that the quadrature Fule (f) converges

to I(f).

On the other hand, if we have

lim | Ri1(£)] = | 105) = Jim Lo (F)| <,

n—oo

(i.e., a constant number independent.gf then

Fet<e: |I(f) —nan;oI,,,+1(f) ' =c" & lim (Li1(f) £c) =I(f).

n—oo

This means that there exists a quadratijre, (f) = I,,+1(f) & ¢* that converges té( f).

By noting these initial comments, the right-hand side oétieh 3.8) shows that the con-
vergence or divergence of the quadratui8ed) directly depends on selecting the partition
I, ={a=x0 <z <...<ux,=>b}and also the intermediate poir{i;ei};‘;ol such that the
limit value

n—1
nlgrolo <Z (pi — x3)* + (w441 —Pi)2>

=0

oo
converges or diverges. In other words, if the se§ésp; — ;)% + (x;+1 — p;)? is conver-

=0
gent, then the quadraturk, (f; I,, p) in (3.9) does not diverge. For example, take

pi =

T+ XTip1 c x; + (2)\ — 1) Tit1 Tig1 + (2)\ — 1) X
2 2 ’ 2

and substitute into inequalitB () to get

b n—1 Tinl — T;
[ swar- T (0 s

(3.10) +2) f(%) + (1= ) f(mHl))‘
2 _ 2 n—1
< (Bo = aO)<>\8+ (L= N7 <; (i1 — 9&)2) )

which is in fact a generalization of the optimized ruBe5j and is valid forA € [0, 1]. Now,

o0
(3.10 is divergent if Y (x;,1 — x;)? is divergent and vice versa. For instance, if we choose
=0
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the valuesz; in the partitionl,, = {a = z9 < 21 < ...

case of 8.10 would be

< x, = b} to be of the form

7
Tiy1 — 1), which is equivalent ta; = zo + H(i) = a+ Y 1, then the limit
k=1

(L =A)fla+ H(i)))

(+1)

—|—2)\f(a+H(i)+2(i1+1)>+(1—)\)f(a+H(i)+

< (Bo— ag) N + (1 —A)%) «*
- 8 6

=)

YA € [0,1].

As another example, ¥ = % in (3.9), then the quadrature

n 1
INIE > (P + T ) + B )

having an error less than

Po — o S(.,,Z )2
] . Di xz) +(xz+1 pz)

(o]
€ [z, xig1] if the series} (p;
=0

would be convergent for ap; — ;)% + (xip1 —pi)? is

convergent.

4. Numerical experiments. In this section, we present some numerical evidence that
illustrates our theoretical results (i.e., the given ebounds). For this purpose we apply the
optimized quadrature rul&(7) having a minimum error boun#ly = (b — a)? (8y — a)/16
among all cases depending on the paramgtetlearly this bound shows that whenever the
values(b — a)? and 3, — aq are simultaneously small, the quadrature r@g)(is accurate,
as Table4 lillustrates it. In this table, we have considered the webtikn special function

VT erf(x =/ e~t"dt for different values ofy = 1, 2 3. 1. 5, 15 and 35. By noting the
vaIueEO, this table shows wheneveris smaller the boun(Eo is also smaller, and we have

therefore a better result for the quadratus&’, Note that iff(t) = e~ (¢ > 0), then we
havef’(t) < 0 andf”(t) = 2¢~** (2t — 1), respectively.

TABLE 4.1
Numerical results forf ) s by using the quadraturé3.7).

z exact value | quadratureg.7) lerrof] | boundE

1 0.7468241330 0.7313702519| 0.0154538811 0.05361024279
1/2 | 0.4612810064 0.4572033636| 0.0040776428 0.01216876223
1/4 | 0.2448878872 0.2442753710| 0.0006125162 0.00183479114
1/8 | 0.1243519988 0.1242718492| 0.0000801496 0.00024035557
1/16 | 0.0624187150 0.0624085812| 0.0000101338 0.00003039860
1/32 | 0.0312398305 0.0312385601| 0.0000012704 0.00000381097
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