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Abstract. This study is concerned with k-step methods for the iterative solution of nonsymmet-

ric systems of real linear equations. These are generalizations of the Chebyshev (2-step) iteration,
with the potential for faster convergence in cases where the spectrum of the underlying coefficient
matrix is not approximated well by an ellipse. We investigate the problem of optimizing the asso-
ciated (asymptotic) convergence factor with respect to a finite number of points (e.g., eigenvalue
estimates obtained from using the Arnoldi process). We formulate this minimization problem as
an optimization problem with constraints and propose an algorithm to compute near-best k-step
parameters. The computational advantages of the Chebyshev method, such as avoidance of inner
products, the implementation as an adaptive method, and the simplicity of the overall scheme, carry
over to the case k > 2.
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1. Introduction. Many problems in scientific computing frequently lead to large nonsymmet-
ric systems of real linear equations

Ax = b ,(1.1)

where it is desirable, in the numerical solution of this equation, that A, a nonsingular matrix in
IRN×N , enters the computation only in the form of matrix-vector-multiplications. The usual reason
for this is that A is sparse, structured, or has some other special form that can be exploited when
multiplying A with a vector. This leads to the class of polynomial iterative methods, i.e., starting
from an initial vector guess x0, the vector iterates can be expressed as

xn := x0 + ϕn−1(A)r0,(1.2)

where ϕn−1 is a polynomial of degree n − 1 (written ϕn−1 ∈ Πn−1), and where r0 := b − Ax0

denotes the initial residual vector. From (1.2), the corresponding relation for the residual vectors,

rn := b−Axn = (I −Aϕn−1(A))r0 = ψn(A)r0,(1.3)

is obtained, and ψn, in Πn with ψn(0) = 1, is called the residual polynomial associated with the
iterative method.

Besides the large class of algorithms that construct appropriate residual polynomials in the
course of the iteration based on certain orthogonality relations, there are the so-called Chebyshev-
like methods. Since inner products constitute a bottleneck on vector and parallel computers, and
since one either has to deal with recurrences that become longer during the iteration (such as in the
GMRES method of Saad and Schultz [19]) or lose optimality, the development of so-called hybrid
algorithms has become of interest in recent years. These hybrid algorithms perform a number of
steps of some inner-product-based iteration, and then repeatedly apply a residual polynomial ψn,
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constructed from the information collected during this first phase. That is, once an appropriate
residual polynomial ψn is found, the iteration proceeds as

rnl = (ψn(A))l−1rn (l = 1, 2, . . .).(1.4)

A popular example of this is the hybrid GMRES algorithm by Nachtigal, Reichel and Trefethen [15].
For a survey of the recent development on hybrid iterative methods, see also [14].

In contrast to this, for k a positive integer, the iterates of a k-step method are computed by a
relation of the form

xj = µ
(j)
0 rj−1 + µ

(j)
1 xj−1 + · · ·+ µ

(j)
k xj−k .(1.5)

A well-known example of a 2-step method is the Chebyshev iteration of Golub and Varga [7], and its

extension to nonsymmetric matrices [11]. The iteration parameters µ
(j)
0 , µ

(j)
1 , . . . , µ

(j)
k in (1.5) are

to be determined from information obtained during the inner-product-based starting phase of the
method. Our main purpose in this paper is to develop a practical algorithm which simultaneously
determines a near-best value of the parameter k in the k-step method of (1.5), along with its associ-

ated parameters {µ(j)
i }ki=0 of (1.5). (The near-best determination of the parameter k will be based

on certain “cost factors”, associated with the iteration of (1.5), and will be discussed in Section 5.)

An important advantage of k-step methods over hybrid polynomial methods is that the corre-
sponding residual polynomials are not restricted to products of polynomials of a given degree. To
give an idea of the effect this subtle difference can have on the convergence factor of the associated
iterative methods, consider for the moment the well-studied classical case of Chebyshev polynomials
on a real interval [α, β] with 0 < α < β (cf. [23, Section 5.1]). If we apply the (properly scaled and
shifted) Chebyshev polynomial

ψm(x) :=
Tm(β+α−2x

β−α )

Tm(β+α
β−α )

of degree m in a cyclic fashion, then, after s such cycles, one gets an error reduction of

max
x∈[α,β]

|ψm(x)|s =
2s[(√

β−
√
α√

β+
√
α

)m
+

(√
β+
√
α√

β−√α

)m]s .

In contrast, on using the familiar 3-term recurrence relations for the Chebyshev polynomials, and
on implementing it as a 2-step method ([23, p. 138]), we obtain the Chebyshev polynomial of degree
ms, whose associated error reduction is given by

max
x∈[α,β]

|ψms(x)| = 2(√
β−
√
α√

β+
√
α

)ms
+

(√
β+
√
α√

β−√α

)ms .

The last error bound is always better (from the min-max nature of best approximation), for any
s > 1, than that of the previous error bound, and is clearly much smaller for large values of s.

Another point that led us to this study of k-step methods is the fact, from (1.5), that we only
have to treat k + 1 parameters throughout the iterative process that implicitly constructs residual
polynomials of arbitrarily high degree. We present here an approach for constructing such inner-
product-free iterative methods.

In Section 2, we will review the theory of (non-stationary) k-step methods which was developed
by Niethammer and Varga [16], Eiermann, Niethammer and Varga [4] and Eiermann [3]. The gen-
eralization to (k, l)-step methods, where not only the recent k iterates but also l + 1 residuals are
used to define the new iterate, was introduced by Parsons [17]. A detailed analysis of these methods
was given by Gutknecht in [8], and a (k, l)-step adaptive algorithm, based on SCPACK [22], was
proposed and tested by Li [10]. We will restrict ourselves here to k-step methods, i.e., to l = 0, and
we note that the extension of our results and algorithms to the case l > 0 is mostly straightforward.

Section 3 presents an algorithm for the computation of nearly optimal k-step parameters associ-
ated with a given finite set of points, these points being presumably eigenvalue estimates obtained
from Arnoldi’s method. We will discuss in Section 4 the issue of implementing the iteration as an
adaptive scheme. This means that, from time to time, it may be necessary to change the parame-
ters, according to newly obtained information during the iteration process. Section 5 contains our
computational experiments and, finally, in Section 6 we draw some conclusions from our experience
with k-step methods.
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2. Theory of k-step Methods. We start this section with a review of the theory for (non-
stationary) k-step methods developed in Niethammer and Varga [16], Eiermann, Niethammer and
Varga [4] and Eiermann [3]. Our k-step methods will be based on the recurrence relations for Faber
polynomials associated with the function

Ψk(w) = cw + c0 +
c1

w
+ · · ·+ ck−1

wk−1
.(2.1)

Here, we assume that c, c0, · · · ck−1 are given real parameters, and to avoid degeneracies here, we
further assume that

c 6= 0 and ck−1 6= 0.

For k ≥ 2, set ρ0 := max{|w| : Ψ′k(w) = 0}, so that 0 < ρ0 <∞, and set ∂Ωk(ρ0) := {z = Ψk(w) :
|w| = ρ0}. If Ωk(ρ0) denotes the compact set in the z-plane, consisting of the union of ∂Ωk(ρ0)
and its interior, then Ωk(ρ0) consists of more than one point and possesses a simply connected
complement. It follows that Ψk maps {w ∈ C : |w| > ρ0} conformally onto the exterior of Ωk(ρ0),
with Ψk(∞) = ∞ and Ψ′k(∞) = c 6= 0. (For k = 1 where ρ0 := 0, similar remarks can be made.)
For any ρ > ρ0 the image of the circle {w ∈ C : |w| = ρ} will be a Jordan curve, which we denote by
∂Ωk(ρ). We will denote ∂Ωk(ρ) together with its interior by Ωk(ρ). The curves ∂Ωk(ρ) for ρ > ρ0

cover the exterior of Ωk(ρ0), and if ρ1 6= ρ2 where ρ1 > ρ0 and ρ2 > ρ0, then ∂Ωk(ρ1) and ∂Ωk(ρ2)
are nonintersecting.

The conformal mapping Ψk(w) generates a corresponding sequence of Faber polynomials,
{Fm(z)}m≥0 with Fm(z) ∈ Πm for each m ≥ 0, from the generating formula (cf. Smirnov and
Lebedev [20, p. 130])

Ψ′
k
(w)

Ψk(w)− z
=

∞∑
m=0

Fm(z)w−m−1 (|w| > ρ0, z ∈ C) ,

which in turn, because of the special form of Ψk(w) in (2.1), gives the following (k+1)-term recurrence
relation for these Faber polynomials:

F0(z) = 1 , F1(z) = (z − c0)/c ,
Fm(z) = [(z − c0)Fm−1(z)− (c1Fm−2(z) + . . . + cm−1F0(z))− (m− 1)cm−1]/c ,

m = 2, . . . , k ,
Fm(z) = [(z − c0)Fm−1(z)− (c1Fm−2(z) + . . . + ck−1Fm−k(z))]/c ;

m = k + 1, . . .

(2.2)

(see Henrici [9, p. 512]).
It is known (cf. Curtiss [2, p. 584]) that

lim
m→∞

|Fm(Ψk(w))|1/m = |w|(2.3)

holds uniformly on every compact subset of {w ∈ C : |w| > ρ0}. If we assume, in addition, that

0 6∈ Ωk(ρ0),

the conformal map Ψk, of {w ∈ C : |w| > ρ0} onto the exterior of Ωk(ρ0), determines a unique point
ω0, satisfying |ω0| > ρ0, for which Ψk(ω0) = 0, and from (2.3), it is evident that Fm(0) 6= 0 for all
sufficiently large m. Thus, the normalized Faber polynomials, defined by

F̃m(z) :=
Fm(z)

Fm(0)
so that F̃m(0) = 1 ,(2.4)

are well defined for all m sufficiently large. It turns out that these normalized Faber polynomials
play a special role in applications because

max
z∈Ωk(ρ)

|F̃m(z)| ≤ C min
ψm∈Πm,ψm(0)=1

{
max

z∈Ωk(ρ)
|ψm(z)|

}
,(2.5)

for every ρ ≥ ρ0, where the constant C above depends on ∂Ωk(ρ0) but is independent of ρ and m (see
Eiermann [3, Theorem 2], and [21, Theorems 3.1 and 3.4] for proofs of this inequality under different
assumptions on ∂Ωk(ρ0), such as Ωk(ρ0) being convex or ∂Ωk(ρ0) being of bounded rotation). The
(k+1)-term recurrence relation of (2.2) carries over to the vector iterates, associated with normalized
Faber polynomials, as residual polynomials (cf. Eiermann [3, Lemma 1] and [21, Sect. 5]):

x1 = µ
(1)
0 r0 + x0 ,

xj = µ
(j)
0 rj−1 + µ

(j)
1 xj−1 + · · ·+ µ

(j)
j x0 (j = 2, . . . , k − 1),

xj = µ
(j)
0 rj−1 + µ

(j)
1 xj−1 + · · ·+ µ

(j)
k xj−k (j = k, k + 1, . . .),

(2.6)
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where

µ
(1)
0 =

1

c0
,

µ
(j)
0 = −1

c

Fj−1(0)

Fj(0)
, µ

(j)
i = − ci−1

c

Fj−i(0)

Fj(0)
, i = 1, . . . , j − 1 , µ

(j)
j = −j

cj−1

c

1

Fj(0)

for j = 2, . . . , k, and

µ
(j)
0 = −1

c

Fj−1(0)

Fj(0)
, µ

(j)
i = − ci−1

c

Fj−i(0)

Fj(0)
(i = 1, . . . , k),(2.7)

for j = k + 1, . . .. Note that the parameters µ
(j+1)
i can easily be computed from the µ

(j)
i ’s, using

the recurrence relation (2.2) for the Fj(0)’s.
The iteration (2.6) can also be written in correction-step form. First, notice that the recursion

relation (2.2) yields with (2.7) that

µ
(j)
1 + µ

(j)
2 + · · ·+ µ

(j)
j = 1 (j = 2, . . . , k − 1),

µ
(j)
1 + µ

(j)
2 + · · ·+ µ

(j)
k = 1 (j = k, k + 1, . . .).

(2.8)

Thus, we may write

x1 = x0 + �0 ,

�0 := µ
(1)
0 r0 ,

xj = xj−1 + �j−1 ,

�j−1 := µ
(j)
0 rj−1 + β

(j)
1 �j−2 + · · ·+ β

(j)
j−1�0 (j = 2, . . . , k − 1),

xj = xj−1 + �j−1 ,

�j−1 := µ
(j)
0 rj−1 + β

(j)
1 �j−2 + · · ·+ β

(j)
k−1

�j−k (j = k, k + 1, . . .),

(2.9)

where

β
(j)
i :=

∑i

l=1
µ

(j)
l − 1 (i = 1, . . . , j − 1), (j = 2, . . . , k − 1),

β
(j)
i :=

∑i

l=1
µ

(j)
l − 1 (i = 1, . . . , k − 1), (j = k, k + 1, . . .).

(2.10)

It turns out that the k-step parameters {µ(j)
i }ki=0 have limits as j →∞, i.e.,

µi := lim
j→∞

µ
(j)
i (i = 0, 1, . . . , k).

To show this, it is known (cf. Curtiss [2, p. 584]) that

lim
m→∞

Fm−1

Fm

(z)

(z)
=

1

Φk(z)
(for any z ∈ C\Ωk(ρ0)).

Here, w = Φk(z) denotes the inverse mapping of Ψk, i.e., Φk conformally maps C̄\Ωk(ρ0)) onto
C̄\{|w| ≤ 1}. Since 0 6∈ Ωk(ρ0) by hypothesis and Ψk(w0) = 0, then w0 = Φk(0). Hence, it follows
from (2.7) and the above display (with z = 0) that

µ0 := − 1

cw0
, µi := − ci−1

c(w0)i
(i = 1, . . . , k);(2.11)

This means that the k-step iteration, generated by Faber polynomials, asymptotically becomes a
stationary method, and it is the convergence of this stationary limit that we will actually optimize in
what is to follow. Alternatively, one could also perform, from the first vector iteration, a stationary
k-step method based on the converged coefficients {µi}ki=0 of (2.11) and the associated recurrence
relations of (2.6). More will be said about the relationship between the iteration (2.6) and stationary
k-step methods below.

Let us briefly consider the special case k = 2. The conformal mapping function is then given by

Ψ2(w) = cw + c0 +
c1

w
(c 6= 0 and c1 6= 0) .(2.12)

Consider the equation

Ψ′2(w) = c− c1

w2
= 0 ,(2.13)
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which yields ρ0 =
√
|c1|/|c|. In this case, ∂Ω2(ρ0) is a line segment with end points c0 ± 2

√
cc1,

which are either both real or a complex conjugate pair. Thus, Ψ(w) maps the exterior of the disk
{w ∈ C : |w| ≤ ρ0} conformally onto the exterior of a line segment.

Using (2.6), we obtain the formulas for the associated two-step iteration,

x1 = µ
(1)
0 r0 + x0 ,

xj = µ
(j)
0 rj−1 + µ

(j)
1 xj−1 + µ

(j)
2 xj−2 (j = 2, 3, . . .),

(2.14)

where

µ
(1)
0 =

1

c0
, µ

(j)
0 = −1

c

Fj−1(0)

Fj(0)
(j = 2, 3, . . .),

µ
(j)
1 = − c0

c

Fj−1(0)

Fj(0)
(j = 2, 3, . . .),

µ
(2)
2 = −2

c1

c

1

F2(0)
, µ

(j)
2 = − c1

c

Fj−2(0)

Fj(0)
(j = 3, 4, . . .).

The iteration parameters can be updated using (2.2), which leads to

µ
(2)
0 =

c0

c2
0 − 2c2

, µ
(2)
1 = c0µ

(2)
0 , µ

(2)
2 =

2cc1

c2
0 − 2c2

,

and, for j = 3, 4, . . .,

µ
(j)
0 =

1

c0 − cc1µ
(j−1)
0

, µ
(j)
1 = c0µ

(j)
0 , µ

(j)
2 =

[
1− c0

cc1µ
(j−1)
0

]−1

.

This is exactly the well-known recurrence relation for the parameters of the (two-step) Chebyshev
iteration (cf. [11, Sect. 2.5]).

Returning to the general k-step method, for each complex number ζ in the z-plane, define the
function R(ζ) by

R(ζ) :=

{
ρ0, if ζ ∈ Ωk(ρ0),
min{ρ : ρ ≥ ρ0 and ζ ∈ Ωk(ρ).

With the assumption that 0 /∈ Ωk(ρ0), the asymptotic convergence factor associated with a k-step
method generated by (2.1), for a given set of parameters, c, c0, . . . , ck−1, is given by

lim
j→∞

[
sup
e0 6=0

‖ej‖
‖e0‖

]1/j

≤ max
ζ∈σ(A)

{
R(ζ)

|w0|

}
=: γk(c, c0, . . . , ck−1;σ(A)) ,(2.15)

where ej := x − xj is the error at step j and σ(A) denotes the spectrum of the matrix A of (1.1)
(cf. Niethammer and Varga [16, Sect. 4] and Eiermann [3, Sect. 2]). This leads to the problem of
choosing c, c0, . . . , ck−1 to minimize γk(c, c0, . . . , ck−1; σ(A)). We denote the associated infimum by

Γk(σ(A)) := inf
c,c0,...,ck−1

γk(c, c0, . . . , ck−1; σ(A)).(2.16)

For all practical purposes, the spectrum σ(A) is certainly not known, but some information about
the spectrum is usually known, as will be described below. So, we now assume that {ζi}pi=1 are given
nonzero points in the complex plane, consisting of real points or conjugate complex pairs of points
(because A is a real square matrix), which gives information about the spectrum of A. Based only on
this limited information, the problem of (2.16) is then modified to determining (or approximating)
the parameters c, c0, . . . , ck−1 that yield the associated infimum,

Γk({ζi}pi=1) := inf
c,c0,...,ck−1

γk(c, c0, . . . , ck−1; {ζi}pi=1) .(2.17)

To determine the quantity in (2.17), we must, from (2.15), evaluate the number R(ζi). Consider the
equation

Ψk(w) = cw + c0 +
c1

w
+ . . . +

ck−1

wk−1
= ζi.(2.18)

This equation has k roots, which are the roots of the associated polynomial

cwk + (c0 − ζi)w
k−1 + . . . + ck−2w + ck−1 = 0.(2.19)
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We denote these roots by ω
(j)
i , for j = 1, . . . , k. If ζi 6∈ Ωk(ρ0), then one and only one of the roots,

say ω
(1)
i , will satisfy |ω(1)

i | > ρ0. This follows because Ψk(w) is a conformal mapping from the

exterior of {w ∈ C : |w| ≤ ρ0} onto the exterior of Ωk(ρ0). If ζi ∈ Ωk(ρ0), then |ω(j)
i | ≤ ρ0 for

j = 1, . . . , k. Thus, in either case, we may define

R(ζi) := max{ρ0, |ω(1)
i |, . . . , |ω(k)

i |}.(2.20)

We now offer a geometrical picture for the convergence factor γk(c, c0, . . . , ck−1; {ζi}pi=1) in (2.17).
Given the parameters c, c0, . . . , ck−1, assume that 0 6∈ Ωk(ρ0). Let ρ̂ ≥ ρ0 be the smallest value such
that {ζi}pi=1 ⊂ Ωk(ρ̂). Likewise, let ρ̂0 be the smallest value such that 0 ∈ Ωk(ρ̂0). Then, it follows
that

γk(c, c0, . . . , ck−1; {ζi}pi=1) =
ρ̂

ρ̂0
.(2.21)

It is important to mention, given any nonzero points {ζi}pi=1 which consist of either real or
complex conjugate pairs of points, that

i) Γk({ζi}pi=1) = 1 can occur for certain values of k, and
ii) Γk({ζi}pi=1) < 1 for all k sufficiently large if and only if the real points of {ζi}pi=1 are all

of the same sign.
The first statement, i), can occur, for example, if the nonzero numbers {ζi}4i=1 are chosen to be

the fourth roots of −1 and if k = 1. In this case, Ψ1(w) = cw+c0,Φ1(z) = (z−c0)/c, and Ω1(ρ) is a
disk with center c0 and radius |ρc|. It is geometrically clear in this case that {ζi}4i=1 ⊂ Ω1(ρ) if and
only if 0 ∈ Ω1(ρ), which implies that γ1(c, c0; {ζi}pi=1) > 1, with γ1(c, c0; {ζi}pi=1) → 1 as c0 → ∞.
This first statement, i), is also shown to be the case in Table 5.1 for Example 5.1 when k = 1 or
k = 2. The second statement, ii), is a theoretical result which is a consequence of the construction in
[21] where the Schwarz-Christoffel mapping of polygonal domains is used. (The details for this will
be given elsewhere.)

Now, the relation between a stationary k-step iteration and the minimization problem (2.17) can
also be established without any assumption on the conformality of Ψk. In order to do this, we may
assume, with the stationary values of (2.11), that µk 6= 0 (since from (2.6), we would otherwise have
a stationary (k − 1)-step method), and we write the k-step iterations as

rj−k+1

...
rj−1

rj

 =


O I
...

. . .
. . .

O . . . O I
µkI . . . µ2I µ1I − µ0A




rj−k
...

rj−2

rj−1

(2.22)

(cf. [13]). Calling Ck the block-companion matrix in (2.22) and assuming also that µ0 6= 0 (so that
Ck is actually dependent on A), it can be verified that τ ∈ σ(Ck) if and only if τ is a (nonzero)
solution of

τk − (µ1 − µ0ζi)τ
k−1 − µ2τk−2 − . . .− µk = 0,(2.23)

where ζi ∈ σ(A), and where we denote these zeros of (2.23) by τ
(j)
i for j = 1, . . . , k. In the context

of the conformal mapping Φk and on using (2.11), this yields

c(τ
(j)
i ω0) + c0 +

c1

τ
(j)
i ω0

+ · · ·+ ck−1

(τ
(j)
i ω0)k−1

= ζi .

¿From (2.18) and (2.20) we see that τ
(j)
i = ω

(j)
i /ω0, and thus, |τ (j)

i | ≤ R(ζi)/|ω0|. Equation
(2.11) implies a one-to-one correspondence between the parameters c, c0, . . . , ck−1 with c 6= 0 and

µ0, µ1, . . . , µk , with
∑k

i=1
µi = 1. Therefore, minimizing the spectral radius of the matrix Ck of

(2.22) leads to

inf
µ0, µ1, . . . , µk

µ1 + · · · + µk = 1

{ max
1 ≤ i ≤ p
1 ≤ j ≤ k

|τ (j)
i |} ≤ inf

c, c0, c1, . . . , ck
c 6= 0

{ max
1≤i≤p

R(ζi)

|ω0|
} = Γk({ζi}pi=1),

the last equality following from (2.17). The stationary k-step method involves essentially the same
min-max problem as the nonstationary method (2.6). It can be shown that for the optimal choice of
parameters, there will always be an active constraint and thus the two methods will have the same
asymptotic convergence factor.
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Sets of points {ζ1, . . . , ζp} that approximate σ(A) can be obtained from applying Arnoldi’s
method, which computes an orthogonal projection of the matrix A ∈ IRN×N onto the Krylov sub-
space

Kn(r0, A) := span{r0, Ar0, . . . , An−1r0} .

Arnoldi’s method specifically computes an orthonormal basis for Kn(r0, A), using a modified Gram-
Schmidt procedure. If the columns of Vn ∈ IRN×n contain these basis vectors, the upper Hessenberg
matrix Hn = V T

n AVn ∈ IRn×n comes out as a by-product from the Arnoldi procedure (see Saad [18,
Chapter VI] for details). The n eigenvalues of Hn, the so-called Rayleigh-Ritz values of A, often
approximate quite well the spectrum, σ(A) of A. These points are therefore commonly used as a
starting point upon which a polynomial iteration can be based.

3. Algorithms for the Computation of k-Step Iteration Parameters. Given the k + 1
real parameters c 6= 0, c0, . . . , ck−1, assume that 0 6∈ Ωk(ρ0). We will show below that this is easy to
accomplish. As before, we define ω0 to be the unique root of largest modulus of

cw + c0 +
c1

w
+ · · ·+ ck−1

wk−1
= 0 ,

or equivalently, ω0 is the unique zero of largest modulus of the associated polynomial

cwk + c0wk−1 + · · ·+ ck−1 = 0 .

Given the set {ζi}pi=1, let S be the smallest number S ≥ ρ0 such that {ζi}pi=1 ⊂ Ωk(S). Let ωj be
any zero of largest modulus of

cw + c0 +
c1

w
+ · · ·+ ck−1

wk−1
= ζj (j = 1, 2, · · · , p) ,(3.1)

so that the constraints {ζi}pi=1 ⊂ Ωk(S) imply that |ωj | ≤ S for j = 1, . . . , p. A straightforward way
to compute the solution of (2.17) is then to solve

min
c,c0,c1,...,ck−1∈§

S

|ω0|
,(3.2)

under the constraints |ωj | ≤ S for j = 1, . . . , p. This is equivalent to

min
c,c0,c1,...,ck−1∈§

− ln

( |ω0|
S

)
,(3.3)

under the constraints ln (|ωj |/S) ≤ 0 for j = 1, . . . , p. In the language of nonlinear programming,
this means that our aim is the minimization of the objective function

J(c, c0, . . . , ck−1) := − ln

( |ω0|
S

)
,

subject to the constraints νj(c, c0, . . . , ck−1) ≤ 0 with

νj(c, c0, . . . , ck−1) := ln

( |ωj |
S

)
, (j = 1, . . . , p) .

In the form of (3.3), we can directly apply the Kuhn-Tucker conditions (see Ciarlet [1, Theorem 9.2-
3]) which give necessary conditions for a minimum. These conditions state that there exist multipliers
ηj ≥ 0 such that

∂

∂c
J(c, c0, . . . , ck−1) +

p∑
j=1

ηj
∂

∂c
νj(c, c0, . . . , ck−1) = 0 ,

∂

∂ci
J(c, c0, . . . , ck−1) +

p∑
j=1

ηj
∂

∂ci
νj(c, c0, . . . , ck−1) = 0 (i = 0, 1, · · · , k − 1),

where ηj = 0 if the corresponding constraint is not active, i.e., when νj(c, c0, . . . , ck−1) < 0. Applied
to (3.3), this leads to

1

ωiΨ′k(ω0)
=

p∑
j=1

ηj

ωijΨ
′
k(ωj)
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for i = 0, 1, . . . , k − 1, k where ηj = 0 if |ωj | < S and ηj ≥ 0 if |ωj | = S. Efficient algorithms for
the solution of such constrained optimization problems make use of the gradients of the objective as
well as the constraint functions (cf. Gill et al. [6, Ch. 6]).

We have to make sure that our starting guess satisfies 0 /∈ Ωk(ρ0) and that this condition is main-
tained in the course of the optimization procedure. This can be implemented as an additional con-
straint in the optimization problem. As an initial guess for the k-step parameters c, c0, c1, . . . , ck−1

for starting the optimization procedure, one can choose, for example, c1 = · · · = ck−1 = 0 and
c, c0 6= 0. This is equivalent to a one-step method, and the condition 0 /∈ Ωk(ρ0) is trivially fulfilled
since Ωk(ρ0) = {c0} with ρ0 = 0. In practice, it is more appropriate to use the optimal (k − 1)-step
parameters, with ck−1 = 0, as a starting guess for the optimization routine for the k-step parameters.

Again, in practice, we are not necessarily interested in exactly solving the above min-max prob-
lem. Instead, we are satisfied with parameters which only nearly minimize (2.17) if these parameters
can be obtained with less expense. For some q ∈ IN, let us consider

min
c,c0,c1,...,ck−1

1

|ω0|

(
p∑
j=1

|ωj |2q
)1/2q

=:
1

|ω̃0|

(
p∑
j=1

|ω̃j |2q
)1/2q

.(3.4)

For the solution of this problem, we obtain

1

|ω̃0|
max

1≤j≤p
|ω̃j | ≤

1

|ω̃0|

(
p∑
j=1

|ω̃j |2q
)1/2q

≤ p1/2q min
c,c0,c1,...,ck−1

1

|ω0|
max

1≤j≤p
|ωj | ,(3.5)

i.e., for sufficiently large q, the solution of (3.4) will be close to optimal for the original minimization
problem (2.17). In actual computations, these two problems will be much more closely connected
than the above estimate predicts. We will see in Section 5 that the solution of (3.4) already leads to
useful k-step parameters for moderate values of q.

We close this section with some remarks on the numerical solution of (3.4). First, we are free to
choose ω̃0 = 1 which leads to Ψk(1) = c + c0 + · · · + ck−1 = 0, eliminating one of the parameters,
say, c. From this, we are led to the unconstrained minimization problem

min
c0,c1,...,ck−1

p∑
j=1

|ωj |2q(3.6)

which we can again solve using the gradients

∂

∂ci

p∑
j=1

|ωj |2q =

p∑
j=1

|ωj |2qRe

[(
1− 1

ωi+1
j

)
1

Ψ′
k
(ωj)

]
(i = 0, 1, · · · , k − 1).

The application of standard minimization routines to this formulation usually yields a solution after
a small number of iterative steps. In each step, the computation of ωj , 1 ≤ j ≤ p amounts to finding
a root of largest modulus of a polynomial of degree k. Clearly, the solution of such an unconstrained
optimization problem for a differentiable function is much less expensive than the constrained op-
timization problem associated with (3.3). In our computational experiments, to be presented in
Section 5, we used the MATLAB optimization toolbox. The procedures for unconstrained, as well as
for constrained, optimization make use of gradients by means of a quasi-Newton scheme as described
in [6, Ch. 6].

4. Strategies for the Adaptive Implementation. In this section, we generalize certain
techniques, developed in [12] for k = 2, to the case of general k-step methods. Let us suppose that
the iteration was initiated with some choice of parameters c, c0, . . . , ck−1, based on a priori knowledge
of σ(A), perhaps from a hybrid strategy involving a GMRES iteration. The adaptive strategy will be
based on new information which is collected while carrying out the k-step method. After a certain
number of iterations, say n0, we begin computing an orthogonal basis of the space spanned by
the consecutive residuals rn0 , . . . , rn0+n−1. Again, this can be accomplished by a modified Gram-
Schmidt process, i.e., on starting with w1 = rn0/β with β := ‖rn0‖2 for j = 1, 2, . . . , n, we compute{

ŵj+1 = rn0+j ,

ĥi,j = wT
i ŵj+1 , ŵj+1 = ŵj+1 − ĥi,jwi , i = 1, . . . , j ,

ĥj+1,j = ‖ŵj+1‖2 , wj+1 = ŵj+1/ĥj+1,j .

(4.1)

The matrix Wn = [w1, . . . , wn] contains an orthonormal basis for the subspace spanned by
rn0 , . . . , rn0+n−1. The residual rn0 can be expected to be a pre-filtered residual, i.e., a vector
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rich in just a few eigenvector components corresponding to dominant eigenvalues of the k-step iter-
ation operator. Thus, the vectors rn0 , . . . , rn0+n−1 may be nearly linearly dependent. Numerical
difficulties can be avoided by applying a rank-revealing variation of the modified Gram-Schmidt
process to the least-squares problem

min
π0,...,πn−1

‖rn0 +

n∑
k=1

πkrn0+k‖2 .(4.2)

If the scalar ĥj+1,j in (4.1) becomes small relative to
(∑j+1

k=1
ĥ2
k,j

)1/2
= ‖ŵj+1‖2, then problem

(4.2) is nearly consistent and should be restricted to n = j.
The roots of the polynomial equation

τn + πn−1τn−1 + · · ·+ π1τ + π0 = 0

then coincide with the eigenvalues of the Hessenberg matrix Ĥn due to the equivalence of the (modi-
fied) Arnoldi process and the polynomial minimization problem (4.2) (cf. Saad [18, Theorem 6.1 and
remarks thereafter]). It should also be mentioned that this least-squares algorithm is exactly what
was called the “modified power method” in [12].

As pointed out in Section 2, the k-step parameters tend to the stationary values

µ0 = − 1

cω0
, µi = − ci−1

c(ω0)i
(i = 1, . . . , k) .

If we again use the normalization c + c0 + c1 + · · ·+ ck−1 = 0, i.e., ω0 = 1, then

µ0 = −1

c
, µi = − ci−1

c
(i = 1, . . . , k) .

In order to set up a connection between the orthogonal section of the iteration operator and the
orthogonal section for A, it is convenient to recall from (2.22) that

rj−k+1

...
rj−1

rj

 =


O I
...

. . .
. . .

O · · · O I
µkI · · · µ2I µ1I − µ0A




rj−k
...

rj−2

rj−1

 ,

and that therefore the eigenvalues of the block companion matrix Ck determine the convergence
rate of the k-step method. The eigenvalues of Ĥn may be viewed as approximations to the extreme
eigenvalues of this companion matrix.

As stated above, for µ0 6= 0, if λ ∈ σ(A), then each solution of

τk − (µ1 − µ0λ)τk−1 − µ2τk−2 − · · · − µk = 0

is an eigenvalue of Ck in (2.22). Conversely, if τ ∈ σ(Ck), then

λ = − 1

µ0

[
τ − µ1 −

µ2

τ
− · · · − µk

τk−1

]
= cτ + c0 +

c1

τ
+ · · ·+ ck−1

τk−1

is an eigenvalue of A. This implies that an eigenvalue estimate τ̂ ∈ σ(Ĥn) for the k-step iteration
operator leads to an eigenvalue estimate

λ̂ = − 1

µ0

[
τ̂ − µ1 −

µ2

τ̂
− · · · − µk

τ̂k−1

]
= cτ̂ + c0 +

c1

τ̂
+ · · ·+ ck−1

τ̂k−1

for the matrix A.
Using this technique, new points ζ̂1, . . . , ζ̂p̂ are obtained which give new information on the

spectrum of A, and these new points can be used to modify our existing k-step method. In analogy
with the procedure described in [12, Section 6], we merge these newly obtained eigenvalue estimates
with those of the previous set of points ζ1, . . . , ζp that determined the initial near-optimal k-step
method. This merging avoids discarding useful previous information on the location of σ(A).

Finally, we would like to point out that we will not always recommend using the above adaptive
procedure. Instead, one compares the observed convergence behavior of the existing k-step method
with its predicted convergence factor. If the iteration is converging as predicted, or nearly so, then
there is no need to find new parameters. If the convergence is significantly slower than predicted,

then one of two adaptive procedures is recommended. If the iteration parameters µ
(j)
i have reached

their limit values µi as in (2.11), the method described above should be used. If the limit values
have not been reached, then a hybrid method that employs a fixed number of GMRES steps should
be implemented and the Arnoldi roots used as new eigenvalue estimates.
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5. Computational Experiments. We will now illustrate the convergence behavior of our
adaptive k-step algorithm in two examples.

Example 5.1. We start with a normal matrix A in IR256×256 with eigenvalues uniformly dis-
tributed in the half-annulus

{z ∈ C : 0.5 ≤ |z| ≤ 1 , Rez ≥ 0}

(cf. [14, Example 1]). At first, we compute the near-optimal k-step methods (1 ≤ k ≤ 8), for various
values of q, with respect to the exact spectrum of A. The corresponding convergence factors (i.e.,
estimates of γk(c, c0, . . . , ck−1;σ(A) of (2.15)) are shown in Table 5.1. Since some of the eigenvalues
of A are located on the imaginary axis, (cf. Fig. 5.1), the 1- and 2-step methods will not converge
here. This example shows that higher-degree k-step methods are convergent in cases where the
Chebyshev (2-step) method cannot converge, since there is no circle or ellipse that separates the
spectrum from the origin. Clearly, if we solve the minimization problem (2.16) exactly (q =∞), the
associated convergence factors are nonincreasing as k increases. Apparently, this is not always true
for finite q, as Table 5.1 shows.

Table 5.1

k-step convergence factors for Example 5.1 with respect to exact eigenvalues

k q = 1 q = 2 q = 3 q = 4 q =∞
1 — — — — —
2 — — — — —
3 — — 0.9996 0.9997 0.9995
4 — 0.9933 0.9834 0.9857 0.9736
5 — 0.9828 0.9784 0.9782 0.9645
6 0.9986 0.9893 0.9763 0.9762 0.9567
7 0.9889 0.9792 0.9828 0.9786 0.9481
8 0.9810 0.9735 0.9702 0.9673 0.9383

In order to choose the optimal k, we compute the “cost factors”

fk(q) := −(ε + k)d 1

log κk(q)
e .(5.1)

In (5.1) and in the sequel, κk(q) always denotes the first term in (3.5) , i.e.,

κk(q) :=
1

|ω̃0|
max

1≤j≤p
|ω̃j |,

which is the convergence factor, measured in the maximum norm, associated with the optimal pa-
rameters with respect to the l2q-norm. If ε denotes the average number of non-zero elements per
row in the matrix A, then κk(q) is the number of vector operations “expected” to be carried out in
order to reduce the error by a factor of 10. For example, we chose ε = 5, in (5.1), though it should
be noted that a more realistic cost factor should also depend on the particular machine used. The
results are given in Table 5.2.

Table 5.2

k-step cost factors for Example 5.1 with respect to exact eigenvalues

k q = 1 q = 2 q = 3 q = 4 q =∞
1 ∞ ∞ ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ ∞
3 ∞ ∞ 4168 61168 37552
4 ∞ 3078 1242 1449 783
5 ∞ 1330 1060 1050 640
6 17523 2354 1067 1056 572
7 2496 1320 1596 1284 528
8 1560 1118 1001 910 481

It is of interest to point out that, because the half-annulus of Example 5.1 is a compact set which
excludes the origin, there is a unique Φ(z) which conformally maps the exterior of the half-annulus
onto {w ∈ C : |w| > 1}, with Φ(∞) =∞,Φ′(∞) > 0, and |Φ(0)| = |ω0| > 1. (We note that because
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of the corners of the half-annulus, the inverse mapping of Φ(z), namely Ψ(w), cannot be of the form
(2.1) for any k ∈ IN.) By definition, we have

κk(∞) ≥ κk+1(∞) ≥ · · · ≥ 1

|ω0|
, with lim

k→∞
κk(∞) =

1

|ω0|
.

Hence, on writing

−1

log κk(∞)
=:

1

log |ω0|
+ εk, where εk ≥ εk+1 for all k and lim

k→∞
εk = 0,

it follows that the cost factors fk(∞) can be expressed as

fk(∞) = (ε + k)

{ −1

log κk(∞)

}
=

k

log |ω0|
+ kδk +

ε

log |ω0|
+ εδk .

But this shows that these cost factors grow at least linearly in k as k → ∞, and are consequently,
unbounded as k → ∞. Hence, there always exists a least k ∈ IN which minimizes these cost factors
(for q =∞). The final column of Table 5.4 indicates this, and this is the main reason why optimized
k-step methods are attractive in practical situations.

In practice, the construction of k-step parameters has to be based on estimates of the eigenvalues
of A, rather than on exact eigenvalues of A. We applied our k-step algorithm to the 16 Rayleigh-Ritz
values obtained from the Arnoldi process, and these Rayleigh-Ritz values are indicated by asterisks
in Figure 5.1. Also shown in Figure 5.1 are the level curves

∂Ωk(ρ) = {z = Ψ4(w) : |w| = ρ}

for ρ = κ (the associated convergence factor) and ρ = 1 for a 4-step method with q = 4, constructed
by the above procedure. The fact that the entire spectrum is contained inside the level curve
corresponding to ρ = 1 implies that this 4-step method will converge.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6
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0.8
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Fig. 5.1. 4-step level lines Example 5.1

Example 5.2. This example is very similar to that of [21, Example 6.2], and arises from the
discretization of the elliptic boundary value problem,

−∆u + µux = f , (x, y) ∈ U = (0, 1)× (0, 1) ,
u(x, y) = 0 , (x, y) ∈ ∂U ,

(5.2)

by central differences. We solve this boundary value problem on a grid with 32 interior points
in each direction, leading to a linear system of dimension 1024. Moreover, we chose µ in such a
way that µh/2, the associated grid Reynolds number, equals 2. In practice, one would, of course,
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not apply an iterative scheme directly to this linear system but to a suitably preconditioned one.
Since our goal is to investigate the underlying basic iterative process and since we want to keep our
results transparent, we use the non-preconditioned linear system as our example. We would expect,
however, the same qualitative results from investigating a preconditioned problem and, of course,
from problems of larger size.

Table 5.3

k-step convergence factors for Example 5.2 with respect to exact eigenvalues

k q = 1 q = 2 q = 3 q = 4 q =∞
1 0.8669 0.8674 0.8681 0.8682 0.8639
2 0.8327 0.8201 0.8099 0.8030 0.7812
3 0.8294 0.8052 0.7886 0.7786 0.7488
4 0.8134 0.7659 0.7335 0.7149 0.6976
5 0.7992 0.7265 0.7259 0.7223 0.6950
6 0.7928 0.7356 0.7340 0.7306 0.6876
7 0.7658 0.7424 0.7419 0.7408 0.6870
8 0.7398 0.7434 0.7464 0.7444 0.6863

Table 5.4

k-step cost factors for Example 5.2 with respect to exact eigenvalues

k q = 1 q = 2 q = 3 q = 4 q =∞
1 96 96 96 96 96
2 91 84 77 77 70
3 104 88 80 80 64
4 108 81 72 63 63
5 110 80 80 80 70
6 110 88 88 88 77
7 108 96 96 96 84
8 104 104 104 104 91

Interestingly, Table 5.4 shows that the optimal k with respect to the estimated cost factor for
the exact eigenvalues is reached here at a relatively low degree, namely k = 4. When we start with
a random right hand side b and zero initial guess x0, we see in Table 5.5 that, with respect to the
Rayleigh-Ritz values obtained after 16 Arnoldi steps, the lowest cost factor is again obtained for the
4-step method, with q = 4.

Table 5.5

k-step convergence and cost factors for Example 5.2, with respect to 16 Rayleigh-Ritz values,
and a random right hand side

k κ cost factor
1 0.8936 126
2 0.8680 119
3 0.8541 120
4 0.8138 108
5 0.8191 120
6 0.8185 132
7 0.8203 144
8 0.8107 143

In Figure 5.2 we can see that the spectrum of the associated matrix is well captured by the level
curve with ρ = κ, corresponding to the optimal 4-step method with q = 4. Indeed, Figure 5.3 shows
that the actual convergence of this 4-step method (solid line) is fast and smooth.

For comparison, we also include, in Figure 5.3, GMRES(16), the restarted version of GMRES [19]
(dashed line), the hybrid GMRES algorithm by Nachtigal, Reichel and Trefethen [15] (dash-dotted
line), and transpose-free QMR method of Freund [5] (dotted line). The hybrid GMRES algorithm uses
the residual polynomial obtained after 16 steps of GMRES and performs the corresponding iteration
repeatedly by means of Richardson iteration. For the transpose-free QMR method, both starting
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Fig. 5.2. 4-step level lines for Example 5.2, random right hand side
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Fig. 5.3. convergence behavior for Example 5.2, random right hand side

vectors are chosen to be the same in our implementation. These are all iterative methods which
involve matrix-vector multiplications only with A, and not with AT , and require different amounts
of saxpy operations and inner products per step. In Figure 5.3, the convergence of these iterative
methods is shown in terms of vector operations, i.e., the equivalent in floating point operations of
one saxpy. On vector and parallel computers, however, inner products may require much more time
than is reflected by just one vector operation. In Table 5.6, we therefore list separately the number
of matrix-vector multiplications, saxpys, and inner products required to reduce the initial residual
by a factor of 10−10.

An interesting phenomenon occurs when we start the Arnoldi process with f = 1 (cf. (5.2)) and
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Table 5.6

operation counts for Example 5.2, random right hand side

matrix-vector saxpys inner products
adaptive k-step 142 656 152
hybrid GMRES 192 328 152

restarted GMRES 160 1520 1520
TFQMR 106 424 212

with a zero initial guess. At first, the information obtained from 16 Arnoldi steps is not very reliable,
as can be seen in Figure 5.4. The algorithm initially chooses the 1-step (first-order Richardson)
method since this one has the smallest cost factor of all available k-step methods at this point (cf.
Table 5.7). Based on the new information obtained in the course of this iteration, the parameters
and also the degree k of the method are then adaptively changed. As shown in Figure 5.5, this finally
leads to a k-step iteration which converges reasonably well.

Table 5.7

k-step convergence and cost factors for Example 5.2 with respect to 16 Ritz values, f = 1, zero
initial guess

k κ cost factor
1 0.9592 336
2 0.9587 385
3 0.9595 448
4 0.9600 513
5 0.9610 580
6 0.9589 605
7 0.9591 672
8 0.9609 754

0 2 4 6 8
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 5.4. 1-step level lines for Example 5.2, f = 1, zero initial guess

It can be observed in the convergence graph of Figure 5.5 that the adaptive k-step method
outperforms GMRES(16) in terms of vector operations, for this example. We wish to stress once
more, at this point, that the comparison is even more favorable for the k-step method if inner products
are more expensive than saxpys, as is frequently observed on vector and parallel computers. This
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Fig. 5.5. convergence behavior for Example 5.2, f = 1, zero initial guess

is again reflected in Table 5.8, where the numbers of matrix-vector multiplications, saxpys, and
inner products, are listed separately. Transpose-free QMR, again with both starting vectors being
the same, did not show any sign of convergence after 1000 iterations for this example. Applying
the minimal residual polynomial (of degree 16) implicitly constructed by GMRES in the form of a
Richardson iteration, also did not lead to a convergent iteration here.

Table 5.8

operation counts for Example 5.2, f = 1, zero initial guess

matrix-vector saxpys inner products
adaptive k-step 248 959 456

restarted GMRES 192 1824 1824

6. Conclusions. We have studied and tested here adaptive implementations of k-step meth-
ods for the iterative solution of nonsymmetric systems of real linear equations. These methods are
generalizations of the well-known Chebyshev (2-step) iterative method. They are based on param-
eters which have to be computed by solving certain minimization problems with respect to points
(representing the shape of the spectrum) in the complex plane. We have proposed an algorithm to
compute near-best k-step parameters. Furthermore, we show that k-step methods can easily be im-
plemented in an adaptive fashion in order to update the information on the matrix during the course
of the iteration. The most important contribution of this paper is to illustrate that k-step methods
for k > 2 converge in situations where the Chebyshev method does not. This is shown in Exam-
ple 5.1 where the spectrum of the underlying matrix is not contained in the open right half-plane.
Our limited numerical experiments also suggest that k-step methods may be competitive with other
Krylov subspace methods, such as restarted GMRES, or the hybrid GMRES algorithm by Nachtigal,
Reichel and Trefethen, in terms of operations required to reduce the initial residual by a certain
factor. These comparisons, however, should be regarded as preliminary and more extensive testing
on more realistic problems (including preconditioning) has to be done. Since the k-step iteration
is inner-product-free (i.e., the computation of inner products is required only during those phases
of the algorithm that collect new information), it is also attractive for use on vector and parallel
computers.
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