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Cestamide, an engineering plastic, is used in many areas of industry today. Apart from its excellent 
mechanic features; it also has a negative feature, namely dehumidification. It is necessary to detect 
cutting conditions of dehumidified cestamide materials for metal cutting. After the process of humid 
and dry cestamides under same cutting conditions, the change of average surface roughness quality is 
studied by performing some experiments. For this, after keeping materials in humid and dry 
environment, cestamide materials are processed with same kind of cutting tool in (1, 1.5, 2, 2.5, 3 mm) 
chip thickness (ap), (90, 110, 130 m/min) cutting speed (Vc) (100, 120, 140,160 mm/min) feed rate (f) and 
then average difference of surface roughness values are detected. Moreover, an Artificial Neural 
Network (ANN) modelling is developed with the results obtained from the experiments. For the training 
of ANN model; material type, cutting speed, cutting rate and depth of cut parameters are used. In this 
way, average surface roughness values except for the mentioned experiment could be estimated. 
Experimental results and ANN model results show that, different average surface roughness values are 
obtained for applying same processing conditions humidity factor on cestamide materials. It is 
observed that a case which is based on different variables such as average surface roughness can be 
estimated in acceptable error rate with the help of ANN model. 
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INTRODUCTION  
 
Usage of engineering plastics has been constantly 
increasing together with technological innovations. 
Today, it has a wide range of usage from aerospace 
industries to construction industry. There are different 
types and characteristics of engineering plastics. Poly-
amides are one of these most widespread plastic types 
(Davim et al., 2009). The type which is obtained as 
casting and whose mechanical features are improved 
with additives is called cast polyamide or cestamide with 
its specific industrial name. Cestamide takes place of 
many metals being a cheap, easily processed, light, high-
resistant, abrasion resistant and quiet working 
engineering material. It is more preferred because is 
cheaper than metals such as aluminium, copper and 
brass.  

Many studies have been carried out for different 
characteristics of polyamides since 1960’s when they  got 

to be used as an engineering material to this day. Some 
of these studies are based on their friction condition 
(Adams, 1963). Friction force of dry cestamides which do 
not contain any lubricant are lower than other metals. In 
order to decrease this friction force even more; different 
lubricant are added in cestamide materials (Samyna et 
al., 2007; Palabiyik and Bahadur, 2000; Samyn and 
Tuzolana, 2007; Liu et al., 2006).  

With the feature of adding lubricant in the cestamide 
materials; operating life of machine elements such as 
frictional bearings, shafts, slides and cams are extended. 
Cestamide materials are processed with metal cutting. 
Workability of different polyamide types, cutting force and 
surface roughness observations are other area of 
experiment. A lot of parameters such as cutting types, 
cutting speed, cut of depth; material used etc. can be 
effective on cutting force and  surface  quality  (Davim   et  
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Table 1. Physical features of cestamide. 
  

Properties Unit 
Test Method 

Value 
DN ISO 

Specific gravity gr/cm3 53479 1183 1.15 
Service temperature 0 °C 53461 75 100 
Melting point 0 °C - - 190 
Thermal elongation 1/K*105 53752 - 8-9 
Pulling resistance  N/Mm2 53455 527 55 - 85 
Pulling elongation % 53455 527 - 
Breaking resistance N/mm2 53455 527 88 - 90 
Breaking elongation % 53455 527 10 - 40 
Stroke resistance Kj/m2 53453 179 - 
Elastic module N/mm2 53452 178 3900 - 4200 
Water absorption % 53495 62 6 - 7 
Resistance as per volume Ω X cm 53482 167 > 1015 
Resistance as per surface Ω 53482 167 > 1012 
Dielectric resistance KV/mm 53481 243 80 - 100 
Shore Skala D 53505  85 
Rockwell Skala - 2039-2 M88 
Ball Notch 358/30 N/Mm2 53456 2039-1 110-160 

 
 
 
al., 2009; Mata et al., 2006). Studies carried out upon 
surface roughness are studied on a wide range from 
micro cutting conditions to the effect of cutting 
parameters upon surface roughness (Wang et al., 2005). 
Generally; cutting conditions, cutting tool geometry, 
cutting tool type, usage of coolant, rigidity of machine 
tool, cutting method and the type of material used have 
effects on average surface roughness in metal cutting 
process. Cutting parameters feed rate, depth of cut, 
cutting speed, cutting edge number of cutting tool have 
effects on cutting process (Ertakin et al., 2003; Dabade et 
al., 2003). 

Apart from excellent mechanical features, cestamide 
materials have the characteristic of dehumidification up to 
7%. Although process conditions have not changed for 
dehumidified cestamide material, the expected average 
surface roughness value may change. Experiments were 
carried out to confirm this result as well.  

ANNs have been studied for many years in the hope of 
achieving human-like performances in solving problems 
that are generally ill defined and that require a great 
amount of processing. Human brain carries out this using 
millions of neurons working together. Similarly, an ANN 
consists of many computational elements, operating in 
parallel, connected by links with variable weights that are 
typically adapted during the learning process. Developed 
of detailed mathematical models began in the 1960s but 
only in recent years have the improvements in the 
science of ANNs allowed the development of 
manufacturing applications (Forcellese et al., 1998). 

During the last ten years, there has been a substantial 
increase in the interest on ANNs. Neuron is the 
fundamental processing element of a neural network.  An 

artificial neuron is model whose components have direct 
analogs to components of an actual neuron. ANNs have 
been used successfully in solving complex problems in 
various fields of Engineering, Economics, Neurology, 
Mathematics, Medicine, Meteorology, and many others. 
Some of the most important ones are in pattern, sound 
and speech recognition, in the identification of explosives 
in passenger suitcases and in the identification of military 
targets (Kalogirou, 1999; Chouai et al., 2002).  

Aim of this study is to apply ANN to estimate surface 
roughness of dry and humid cestamide materials in 
different cutting parameters. Experimental data and ANN 
test data are compared and they are illustrated in a 
graph. Conclusions are drawn by using these results.  
 
 
EXPERIMENTAL   
 
Cestamide material in 46 mm plates that is used in the experiments 
is supplied from Polimersan firm. It is named as POL�KES® - PA6 G 
(cestamide) in firm product catalogue. Cestamide obtained in plates 
are cut in dimensions of 112 × 82 × 46 mm. and they are kept in 
humid and dry place. Physical features of cestamide are given in 
Table 1. 

Humid and dry samples are processed in TMC500 CNC vertical 
machining centre. Cycle of bench can be adjusted between 60 and 
6000 cycle/min. Carbide cutting tools used in experiment have 14 
mm diameter. This cutter produced in the standards of DIN, has 
four cutting edge, the features of 30° helix angle, 87.7% WC rate, 
12.3% cobalt rate, TRS 4200 MPa, 92.5 HRA Rockwell rigidity, 0.5 
µm particle size, high abrasion and effect ability. Cutting tools are 
bound to spindle with the help of pincers. By using of cutting 
parameters; cutting speed, feed rate, depth of cut and humid/dry 
cestamide material in milling process; average surface roughness 
are detected. Schematic picture of experiment setting is depicted in 
Figure 1. 
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Figure 1. Schematic picture of experiment setting. 

 
 
 

Table 2. Cutting conditions. 
 
Cutting factor Symbol Levels 

Feed rate (mm/min) f 100 120 140 160 
Depth of cut (mm) ap 1 1.5 2 2.5 3 
Cutting speeds (m/min) Vc 90 110 130 
Material M Humid Dry 

 
 
 

Table 3. Some of the average roughness values that are measured. 
 

Depth of cut 
(mm) 

Cut. Speeds 
(m/min) 

Feed rate 
(mm/min) 

Material 
Dry Humid 

Ra µµµµm Ra µµµµm 
1 90 100 0.77 2.483 
1 110 120 0.857 1.247 
1 130 100 0.553 2.106 

1.5 90 120 2.34 3.261 
1.5 110 160 2.618 2.749 
1.5 130 160 2.461 2.984 
2 110 120 1.259 0.912 

2.5 130 120 1.614 0.996 
2.5 130 160 2.78 2.62 
3 90 100 1.821 1.374 
3 130 120 1.334 1.122 

 
 
 
Experiment samples that are kept as humid and dry are processed 
in cutting conditions specially designed for CNC environment. 
Coolant is not used while carrying out experiment. Cutting 
conditions are given in Table 2.  

Average surface roughness values are recorded on computer 
while performing the experiment. Portable surface roughness mea-
surement equipment (MarSurf PS1) is used for the measurement of 
roughness. Measurement needle has the measurement diameter of 
2 µm and pressure force is averagely 0.7 mN. Measurement 
scanning length is adjusted to 5.6 mm. Some average roughness 
values are tabulated in Table 3. There is an air conditioning in CNC 
laboratory where the measurements are carried out and average 
room temperature is 21 ±  1°C.  The  processes  are  carried  out  in 

CNC laboratory in 45% relative humidity condition. After 30 days of 
keeping materials in water to obtain humid 7% dehumidification is 
carried out on average.  
 
 
ARTIFICIAL NEURAL NETWORKS AND SELECTED MODEL 
 
Neural networks operate like a ‘black box’ model and do not require 
detailed information about the systems. On the other hand, they 
learn the relationship between the input parameters and the con-
trolled and uncontrolled variables by studying previously recorded 
data, similar to the way a non-linear regression might perform 
(Kalogirou et al., 1999). The output of a specific neuron is a function  
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Figure 2. ANN architecture used for 13 neurons in a single 
hidden-layer. 

 
 
 

Table 4. Error values of the ANN approach for average surface roughness used in 
training and testing. 
 

Hidden 
number 

TRAINING TEST 
RMSE R2 MAPE RMSE R2 MAPE 

12 0.0034 0.9999 1.2563 0.0035 0.9935 0.0848 
13 0.0021 0.9999 0.3326 0.0030 0.9949 0.0831 
14 0.0616 0.9983 5.0772 0.0545 0.9975 1.7953 
15 0.0035 0.9968 0.5400 0.0054 0.9983 0.1024 
16 0.0085 0.9972 0.9164 0.0134 0.9992 0.3400 

 
 
 
of the weighted input, the bias of the neuron and the transfer 
function. A neural network consists of a number of neurons and in a 
typical network there are input layer, hidden layer or layers and 
output layer. In its simple form, each single neuron is connected to 
other neurons of a previous layer through adaptable synaptic 
weights. Knowledge is usually stored as a set of connection 
weights. The error is described by the root-mean-squared error 
(RMSE) and defined as follows: 
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Where p is the predicted value, m is the measured value; n is the 
pattern number (Bechtler et al, 2001). 
   
The used ANN structure of a multi-layer is shown in Figure 2. It 
consists of four input layers, one hidden layer, and one output layer. 
The examples in this study are numerical values recorded during 
the experiment and 100 patterns were obtained from the 
experiments. Here, an ANN model was used to predict of surface 
roughness. Inputs for the network are material, feed rate, depth of 
cut, and cutting speeds; the output is average surface roughness.  

The experimental results were used to train and test. It was used 
100 experimental results, from the total of 120, as data sets to train 
the network, while 20 results were used as test data. The archi-
tecture of the ANN becomes 4 -13 - 1, 4 corresponding to the input 
values, 13 for the number of hidden layer neurons and 1 for the 
output. The back-propagation learning algorithm has been used in 
feed-forward, single hidden layer. A computer program has been 
performed under MATLAB 6.5. In the training, it used an increased 
number of neurons (from 12 - 16) in a single hidden-layer. When 
the network training successfully ended, the network was tested 
with test data. Some statistical methods, R2, RMSE and MAPE 
values have been used for comparison. Some selected sample 
data sets used for training and testing the network is shown in 
Table 4. 
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Figure 3. Measured and ANN predicted test data results of surface roughness. 

 
 
 
RESULTS AND CONCLUSIONS    
   
In this study, workability of humid and dry cestamide 
materials on CNC bench and the difference observed in 
surface quality after the process are studied. Average 
surface roughness values are measured and recorded. 
Some of the average surface roughness values detected 
are given in Table 3 comparatively. 

It is known that cutting speed, depth of cut and feed 
rate factors that are observed during the process of dry 
cestamide materials have effect on the formation of 
surface roughness value. What is attractive in here is the 
change of surface roughness value in the same process 
conditions in humid cestamide materials. Experimental 
results are used for training in different algorithms and 
neuron numbers after conveying them to artificial neural 
networks.  

Numerical results obtained from experimental and the 
related parameters have been used to train the network. 
The material, feed rate, depth of cut, cutting speeds and 
surface roughness has been used to train the network. 
Initially, thirteen hidden neurons in a single hidden-layer 
have been used for all the algorithms. Then, the number 
of neurons has been increased. The results revealed the 
optimum hidden number changes for different algorithms. 
In this study, the fastest learning is obtained with the LM 
algorithm. Statistical values such as RMSE, R2, and 
MAPE of surface roughness are given in Table 4 for 
hidden number neurons. The LM algorithm with 13 
neurons has produced the best results. 

It is observed that MAPE is 0.0831% in the testing and 
0.3326% in the training; R2 is 0.9999 in the testing, and 
0.9949 in the training; the  RMSE  value  is  0.003  in  the 

testing and 0.0021 in the training. The highest MAPE is 
found to be 8.0965% for network of 16 hidden numbers.  

Comparison of the measured and predicted surface 
roughness values are shown in Figure 3 for the test data, 
the values predicted by ANN are very close to measured 
values. The training epoch for each neural network is 
30000. As shown Figure 4 the developed ANN gives a 
very accurate representation of R2 values over the all 
range or working conditions. 
 
  
Conclusion 
 
Differences between average surface roughness values 
are detected after applying same process conditions on 
humid and dry cestamide samples. Generally it is 
observed that humidity rate is an important factor in the 
process of cestamide materials. These results are 
obtained from the experiment: 
 
1. When the same process conditions are applied on 
humid and dry cestamides; the depth of cut increases as 
the surface roughness value also increase for dry 
cestamides although the depth of cut increases as the 
surface roughness value decrease for humid cestamides. 
Increment of the depth of cut in humid cestamide 
samples has positive effect on surface roughness. The 
reason of this is the decrement of heat and abrasion 
effect by the humidity of the material after increasing of 
depth of cut.  
2. The best average for dry cestamide material is 0.533 
µm on condition that surface roughness values depth of 
cut is 1 mm, cutting speed is 130 m/min and feed  rate  is 
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Figure 4. Comparison of measured and predicted surface roughness results for 
testing data.  

 
 
 
100 mm/min. The worst result is 3.824 µm on condition  
that depth of cut is 3 mm, cutting speed is 90 m/min and 
feed rate is 160 mm/min. 
3. The best average for humid cestamide material is 
0.718 µm on condition that surface roughness values 
depth of cut is 3 mm, cutting speed is 130 m/min and 
feed rate is 100 mm/min. The worst result is 3.664 µm on 
condition that depth of cut is 1 mm, cutting speed is 90 
m/min and feed rate is 140 mm/min. 
4. According to experiment results; the best result is 
obtained when ANN with 4 input, 13 hidden layered and 1 
output is used. Treatment and test data are coherent in 
0.9949% rate. Experimental process of both humid and 
dry cestamides and treatment graphics drawn after ANN 
treatment are given in Figure 4. These results are in the 
acceptable error rate with the rate of 0.3326% and shows 
that ANN usage is suitable for the estimation of surface 
roughness value for the experiment results that have not 
been carried out yet.  
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NOMENCLATURE 
 
ANN, Artificial neural-network; MAPE, mean absolute 
percentage error; RMSE, root-mean-squared error; R2, 
absolute fraction of variance; m, measured value; n, 
pattern; f, feed rate; ap, depth of cut; Vc, cutting speeds; 
Ra, average surface roughness. 
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