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Lateral torsional buckling is the main failure mode that controls the design of “slender” beams; that is, 
the beams which have greater major axis bending stiffness than minor axis bending stiffness or the 
beams which have considerably large laterally unsupported lengths. Since the buckling equations for 
beams are usually much more complex than those for columns, most of the analytical studies in 
literature on beam buckling are concentrated on simple cases. This paper shows that complex beam 
buckling problems, such as lateral torsional buckling of narrow rectangular cantilever beams whose 
minor axis flexural and torsional rigidities vary exponentially along their lengths, can successfully be 
solved using variational iteration method (VIM). The paper also investigates the effectiveness of three 
VIM algorithms, two of which have been proposed very recently in solving lateral torsional buckling 
equations. Analysis results show that all iteration algorithms yield exactly the same results in all 
studied problems. As far as the computation times and spaces are concerned, however, one of these 
algorithms, called variational iteration algorithm II, is found to be superior than the others especially in 
lateral torsional buckling problems where the beam rigidities vary along the beam length. 
 
Key words: Lateral torsional buckling, narrow rectangular beam, tapered beam, variable rigidity, variational 
iteration algorithms, variational iteration method. 

 
 
INTRODUCTION 
 
Beams are main structural elements which primarily 
support transverse loads, that is, loads perpendicular to 
their axes. They are also called flexural members since 
they are typically designed to carry flexural loads, that is, 
transverse shear forces and bending moments. As the 
normal force in a beam is generally negligibly small, the 
design of a “laterally-braced” beam is usually straight-
forward: select the most economical “compact” cross 
section which has adequate major axis section modulus 
to safely carry maximum bending moment in the beam 
with adequate web area to carry maximum shear force. 
However, similar to a slender column which buckles 
under compressive loads, a “laterally-unbraced” slender 
beam can also buckle under flexural loads. This occurs 
due to the fact that when subjected to bending moments, 
compressive stresses develop at  one  part  of  the  beam  
 
 
 
Abbreviations: VIM, Variational iteration method; VIA, 
variational iteration algorithm. 

cross section which tends to buckle in lateral (out-of 
plane) direction. In such a buckling mode, the beam not 
only displaces laterally but also twists due to the fact that 
the remaining part of the beam cross section, which is 
subjected to tensile stresses, resists against buckling. For 
this reason, this buckling mode is commonly called 
“lateral torsional buckling”. Lateral torsional buckling, or 
simply lateral buckling, is the main limit state that has to 
be considered in the design of “slender” beams, that is, 
the beams which have greater stiffness in in-plane (major 
axis) bending than in out-of-plane (minor axis) bending or 
the beams which have considerably large laterally unsup-
ported lengths. Unless properly braced against lateral 
deflection and/or torsion, a slender beam will buckle prior 
to the attainment of its major axis bending capacity. 

Since determining the lateral torsional buckling load or 
moment of a slender beam is crucial in their design, 
many studies have been conducted on beam buckling. 
However, due to the fact that the beam buckling 
equations are much more complex than the column 
buckling  equations,  most  of  the   analytical   studies   in 
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literature are concentrated on simple cases. The solutions 
for simple buckling problems can be obtained from well-
known structural stability books, such as Timoshenko and 
Gere (1961), Chajes (1974), Wang et al. (2005) and 
Simitses and Hodges (2006). In recent years, the advent of 
computer-aided numerical techniques has enabled the 
researchers to obtain solutions for more complex lateral 
buckling problems.  

The variational iteration method (VIM) is a kind of 
nonlinear analytical technique which was proposed by He 
(1999) and developed fully in the following year. The 
technique was successfully applied to various kinds of 
nonlinear problems (He, 2000, 2007; He et al., 2007) 
since 1999. According to He et al. (2010), the number of 
publications on VIM has reached 130 in October, 2009, 
which clearly verifies the effectiveness of the technique in 
solving nonlinear problems. Very recently, VIM is also 
applied to the buckling problems. Coskun and Atay 
(2009), Atay and Coskun (2009), Coskun (2010) and 
Okay et al. (2010) analyzed the elastic stability of Euler 
columns with variable cross sections under different 
loading and boundary conditions and verified that VIM is 
a very efficient and powerful method in analysis of 
buckling problems of columns with variable cross 
sections.  

In this paper, this powerful analytical technique is 
applied to two fundamental beam buckling problems: 
lateral buckling of (a) simply supported narrow rectangu-
lar beams with variable rigidities under uniform moment 
and (b) narrow rectangular cantilever beams with variable 
rigidities carrying concentrated load at their free ends. 
Both linear and exponential variations are considered in 
minor axis flexural and torsional rigidities of the beams. 
Exact solutions to these problems, some of which are 
considerably complex, are available in literature only for 
beams of constant rigidities and some particular cases of 
linearly tapered beams. To verify the effectiveness of VIM 
in solving lateral buckling problems, buckling loads/ 
moments for uniform beams with constant rigidities are 
studied first. Then, the nonuniform cases are studied for 
each problem separately. In the paper, the effectiveness 
of the three VIM algorithms, two of which have recently 
been proposed by He et al. (2010), in solving lateral 
torsional buckling equations is also investigated. 
 
 
LATERAL TORSIONAL BUCKLING OF BEAMS 

 
In this section of the paper, first, the basic lateral buckling theory as 
given in Timoshenko and Gere (1961) will be summarized very 
shortly and the notation that will be used in the study will be 
introduced. Then, the differential equations for lateral torsional 
buckling of beams with two fundamental loading and restraint 
conditions will be derived. 

 
 
General beam buckling equations 

 
In order to derive general lateral torsional buckling equations for 
narrow rectangular beams,  we  first  consider  a  rectangular  beam  

 
 
 
 
subjected to arbitrary loading in y-z plane causing its strong-axis 
bending. The fixed x, y, z coordinate system defines the 
undeformed configuration of the beam, as shown in Figure 1a. 

Similarly, ξ, η, ζ, coordinate system located at the centroid of the 
cross section at an arbitrary section of the beam along its length 
defines the deformed configuration of the beam. As shown in Figure 
1b, the deformation of the beam can be defined by lateral (u) and 
vertical (v) displacements of the centroid of the beam, which are 
positive in the positive directions of x and y, respectively, and angle 

of twist (Φ) of the cross section, which is positive about positive z 
axis, obeying the right hand rule.  

Hence, the displacements illustrated in Figure 1b, are both 
negative. For small deformations, the curvatures in xz and yz 
planes can be taken, respectively, as d

2
u/dz

2
 and d

2
v/dz

2
 and the 

cosines of the angles between the axes can be taken as listed in 
Table 1. Since the “warping rigidity” of a narrow rectangular beam 
can realistically be taken as zero, using positive directions of 
internal moments defined in Figure 2, the equilibrium equations for 
the buckled beam can be written as follows: 

 
2

2

d v
EI M

dz
ξ ξ= ,   

2

2

d u
EI M

dz
η η=    and     t

d
GI M

dz
ζ

φ
=                 (1) 

 
representing the major axis bending, minor axis bending and 

twisting of the beam, respectively. In Equation 1, EIξ and EIη 
denote the strong axis and weak axis flexural rigidities of the beam, 
respectively. Similarly, GIt denote the torsional rigidity of the beam.  

 
 
Lateral buckling of simply supported rectangular beams in 
pure bending 

 
Consider a simply supported rectangular beam with variable 

rigidities ( )ξEI z , ( )ηEI z  and ( )tGI z  along its length L (Figure 3). 

If the beam is subjected to equal end moments Mo about x-axis, the 
bending and twisting moments at any cross section can be found by 

determining the components of Mo about  ξ, σ, ζ axes. Considering 
the sign convention defined in Figure 2, and using Table 1, these 
components can be written as: 

 

oM Mξ = ,    oM Mη φ=      and     o

du
M M

dz
ζ

 
= − 
 

                 (2) 

 
Then, the equilibrium equations for the buckled beam (Figure 1b) 
become 

 

( )
2

2 o

d v
EI z M

dz
ξ  =  , ( )

2

2 o

d u
EI z M

dz
η φ  =   and 

( )t o

d du
GI z M

dz dz

φ  
  = −  

 
                                                             (3) 

 

It is apparent from Equation 3 that v is independent from u and Φ, 
which are coupled. Thus, in this problem, it is sufficient to consider 
only the coupled equations. Differentiating the last equation in 
Equation 3 with respect to z and using the resulting equation to 
eliminate u in the second equation in Equation 3, the following 
differential equation for the angle of twist of the beam is obtained: 

 

( )
( ) ( ) ( )

22

2

1
0

t o

t t

d GI z Md d

dz dz dzGI z GI z EI zη

φ φ
φ

  + + =
         

            (4) 
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Figure 1. (a) Undeformed and (b) buckled shapes of a double symmetric beam loaded to bend about its major 
axis. 

 
 
 
Since the ends of the simply supported beam are restrained against 

rotation about z axis, the boundary conditions for the problem are ξ 
= 0 at both z = 0 and z = L. 
 
 
Lateral buckling of rectangular cantilever beams with vertical 
end load 

 
Consider a narrow rectangular cantilever beam of length L with 

variable rigidities ( )ξEI z , ( )ηEI z  and ( )tGI z . If the beam 

is subjected to a vertical load P passing through its centroid at its 
free end, as shown in Figure 4, the components of the moments of 
the   load   at   an   arbitrary   section  m-n  about  x,  y,  z  axes  are 

( )xM P L z= − − ,    0yM =   and   ( )1zM P u u= − +                    (5) 

 
where u1 is the lateral displacement of the loaded end of the beam 
as shown in Figure 4b.  

Considering the sign convention defined in Figure 2, the bending 
and twisting moments at this arbitrary section can be written as 
 

( )M P L zξ = − − ,  ( )M P L zη φ= − −   and  

( ) ( )1

du
M P L z P u u

dz
ζ

 
= − − − 
 

 ( ) ( )
2

2

d v
EI z P L z

dz
ξ  = − −         (6) 

 
Then,   the  equilibrium  equations  for  the  buckled  beam  become 
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Figure 2. Positive directions for internal moments. 
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Figure 3. Simply supported rectangular beam under pure bending. 

 
 
  
Table 1. Cosine of angles between axes (Timoshenko and Gere, 
1961). 
 

 x y z 

ξξξξ 1 Φ -du/dz 

Φ - Φ 1 -dv/dz 

ζ du/dz dv/dz 1 

  
 
 

( ) ( )
2

2

d u
EI z P L z

dz
η φ  = − −       and     

( ) ( ) ( )1t

d du
GI z P L z P u u

dz dz

φ  
  = − − −  

 
                                    (7) 

 

Similar to the pure bending case, v is independent from u and Φ. 
Differentiating the last equation in Equation 7 with respect to z and 
using the resulting equation to eliminate u in the second equation in 

Equation 7, the following differential equation is obtained for Φ: 
 

( )
( ) ( ) ( )

( )
2 2

2

2

1
0

t

t t

d GI zd d P
L z

dz dz dzGI z GI z EI zη

φ φ
φ

  + + − =
         

     (8) 

 
 
 
 
Since the fixed end of the beam is restrained against rotation and 
since the twisting moment at the free end is zero, the boundary 
conditions for this problem are  
 

Φ = 0 at z = 0 and d Φ /dz = 0 at z= L.  
 
 
VIM FORMULATIONS FOR THE BUCKLING PROBLEMS 

 
In a recent paper, He et al. (2010) proposed three variational 
iteration algorithms for solving various types of differential 
equations. The first algorithm is the classical VIM algorithm defined 
in He (1999). For a general homogeneous nonlinear differential 
equation, 
 

( ) ( )φ φ+ = 0L z N z                  (9) 

 
Where L is a linear operator and N is a nonlinear operator, and the 
“correction functional” is 
 

( ) ( ) ( ) ( ) ( ){ }φ φ λ ξ φ ξ φ ξ ξ+ = + +∫ %
1

0

z

n n n nz z L N d              (10) 

 

In Equation 10, ( )λ ξ  is a general Lagrange multiplier that can be 

identified optimally via variational theory, φn  is the n-th 

approximate solution and φ%n  denotes a restricted variation, that is, 

δφ =% 0n
. The iteration algorithm in original VIM, called variational 

iteration algorithm I (VIA I), is as follows: 
 

( ) ( ) ( ) ( ) ( ){ }φ φ λ ξ φ ξ φ ξ ξ+ = + +∫1

0

z

n n n nz z L N d              (11) 

 
In the second algorithm proposed in He et al. (2010), called 
variational iteration algorithm II (VIA II), the iteration formula is 
much simpler: 
 

( ) ( ) ( ) ( ){ }φ φ λ ξ φ ξ ξ+ = + ∫1 0

0

z

n nz z N d             (12) 

 
The main shortcoming of this algorithm is stated to be the 

requirement that φ0  be selected to satisfy the initial/boundary 

conditions. The third algorithm in He et al. (2010), called variational 
iteration algorithm III (VIA III), has the following iteration formula: 
 

( ) ( ) ( ) ( ) ( ){ }φ φ λ ξ φ ξ φ ξ ξ+ + += + −∫2 1 1

0

z

n n n n
z z N N d       (13) 

 
As summarized in He et al. (2010), for a second order differential 
equation such as the equations of the problems considered in this 

paper, that is, Equation 4 and Equation 8, ( )λ ξ  simply equals to 

 

( )λ ξ ξ= − z                 (14) 

 
Thus, the three VIM iteration algorithms for Equation 4 are: 
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Figure 4. (a) Undeformed and (b) buckled shapes of a narrow rectangular cantilever beam carrying concentrated 
load at its free end. 

  
 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }φ φ ξ φ ξ ξ φ ξ ξ φ ξ ξ+
′′ ′= + − + +∫1

0

z

n n n n nz z z F FM d  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }φ φ ξ ξ φ ξ ξ φ ξ ξ+
′= + − +∫1 0

0

z

n n nz z z F FM d  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }φ φ ξ ξ φ ξ φ ξ ξ φ ξ φ ξ ξ+ + + +
 ′ ′  = + − − + −  ∫2 1 1 1

0

z
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z z z F FM d  

                  
                                                                                                     (15) 
 
and those for Equation 8 are 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }φ φ ξ φ ξ ξ φ ξ ξ ξ φ ξ ξ+
′′ ′= + − + + −∫

2

1

0

z

n n n n n
z z z F FP L d  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ }φ φ ξ ξ φ ξ ξ ξ φ ξ ξ+
′= + − + −∫

2

1 0

0

z

n n nz z z F FP L d  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ){ }φ φ ξ ξ φ ξ φ ξ ξ ξ φ ξ φ ξ ξ+ + + +
 ′ ′  = + − − + − −  ∫

2

2 1 1 1

0

z

n n n n n nz z z F FP L d  

                                                                                                     (16) 
 
In Equation 15 and Equation 16, 
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Table 2. Normalized buckling moments (α) for the first three 
modes – constant rigidities. 
 

Mode # VIA I VIA II VIA III Exact 

1 9.8696 9.8696 9.8696 9.8696 

2 39.4787 39.4784 39.4784 39.4784 

3 88.8264 88.8264 88.8264 88.8264 

 
 
 

( )
( )
( )

′  =
  

t

t

GI z
F z

GI z

,   
( )

( ) ( )η

=
     

2

o

t

M
FM z

GI z EI z

  and  
( )

( ) ( )η

=
     

2

t

P
FP z

GI z EI z

 

       
                                                                                                     (17) 
 
and prime denotes the differentiation of functions with respect to 
their variables.  
 
 
ANALYSIS OF RESULTS 
 
Critical moment for pure bending case 
 
Beams with constant rigidities 
 
If the minor axis flexural and torsional rigidities of the 

beam are constant; that is, ( )η η=EI z EI  and ( ) =t tGI z GI , 

then Equation 4 reduces to the following simpler 
equation: 
 

φ
λ φ+ =

2
2

12
0

d

dz
             (18) 

 
Where 
 

η

λ =
2

2

1
o

t

M

GI EI
 

 
The solution of Equation 18 is in the form 
 

( ) ( )φ λ λ= +1 1 2 1sin cosC z C z            (19) 

 
where C1 and C2 are constants to be determined from 
boundary conditions. When the related boundary 
conditions are used, Equation 19 leads to the following 
characteristic equation 
 

( )λ =1sin 0L               (20) 

 
whose smallest root yields the first mode critical moment 
Mcr as 
 

η
π=

t

cr

GI EI
M

L
             (21) 

 
 
 
 
Exact values for the second and third modes can be 
obtained by determining larger roots of Equation 20, 
which leads to four and nine times the first mode critical 
moment, respectively. 

In order to compare the efficiency of the three varia-
tional iteration algorithms mentioned earlier, this case of 
the problem is solved using all three VIM algorithms. For 
easier computations, the nondimensional form of the 
differential equation and the related boundary conditions 
are written: 
 

φ
αφ+ =

2

2
0

d

dz
             (22) 

 

where, 

η

α =
2 2

o

t

M L

GI EI
          with      ( )φ =0 0      and      

( )φ =1 0  

 

where = /z z L , φ φ=  and α is the “nondimensional 

critical moment”. For all three algorithms, the initial 
approximation is chosen as a linear function with 
unknown coefficients as follows: 
 

φ = +Az B               (23) 

 
The coefficients A and B are determined by imposing the 
boundary conditions to the approximate solution obtained 
at the end of the iterations, which leads to a characteristic 
equation whose roots give the buckling moments in 
different modes. In order to see the convergence of the 
approximate solutions to the exact solutions, seventeen 
iterations are conducted for each algorithm and critical 
moments for the first three modes are computed. It is 
also worth noting that the function given in Equation 23 
cannot satisfy both of the boundary conditions 
simultaneously.  

It is surprising that for this special case of the beam 
buckling problem, all iteration algorithms yield exactly the 
same results for the normalized buckling moments, as 
listed in Table 2, where exact results are also tabulated. 
Variation of percent errors with iterations plotted in Figure 
5 shows how VIM solutions converge to the exact 
solution. Since all three VIM algorithms give identical 
results in all iterations, only one plot is presented in 
Figure 5. As shown in Table 2, VIM solutions are in 
excellent agreement with the exact results. It is sufficient 
to perform only five iterations to obtain the exact value of 
the smallest critical moment. For higher mode values, the 
number of iterations has to be increased (Figure 5). The 
excellent match of VIM solutions with the exact results 
verifies that VIM is a powerful technique in predicting 
buckling moments of simply supported rectangular 
beams with constant rigidities under uniform moment and 
also encourages its  use  in  much  more  complex  beam  
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Figure 5. Variation of percent errors in VIM iterations for buckling moments of the first three 
modes - constant rigidities. 

  
 
 

buckling problems, like lateral buckling of beams with 
variable rigidities. 
 
 
Beams with linearly varying rigidities 
 
If both the minor axis flexural and torsional rigidities of the 
beam changes in linear form, that is, if 
 

( )  
= + 

 
1t t

z
GI z GI b

L
      and      ( )η η

 
= + 

 
1

z
EI z EI b

L

                                                          (24) 
 
where b is a constant determining the “sharpness” of the 
changes in rigidities along the length of the beam, then, 
the buckling equation given in Equation 4 takes the 
following form: 
 

( )η

φ φ
φ+ + =

+ +

22 2

22
0

1 /

o

t

Md b d L

dz L bz dz GI EI bz L
          (25) 

 
whose exact solution (Wang et al., 2005) is in the 
following form:  
 

( ) ( )φ η η= +1 2sin ln cos lnC k C k            (26) 

 

where,  η = +1 /bz L        and        

η

=
2 2

2

2

o

t

M L
k

GI EI b
 

 
When the related boundary conditions are used, the 
characteristic equation is obtained as follows: 

( )( )+ =sin ln 1 0k b              (27) 

 
The smallest root of which yields the first mode critical 
moment Mcr as 
 

( )
ηπ

=
+ln 1

t

cr

GI EIb
M

b L
                        (28) 

 
Exact values for the second and third mode critical 
moments can be obtained by determining the larger roots 
of the characteristic equation, which leads to four and 
nine times the first mode value, respectively. The 
nondimensional form of Equation 25 can be written as: 
 

( )
φ φ

α φ+ + =
+ +

2

22

1
0

1 1

d b d

dz bz dz bz
           (29) 

 

where = /z z L , φ φ=  and α is the nondimensional 

critical moment, as defined in Equation 22.  
 
Since in the case of constant rigidities, all VIM algorithms 
lead to the same results, the effectiveness of each 
algorithm is investigated further in this problem. For this 
purpose, using all VIM algorithms, critical moments for 
the first three modes are computed for b=0.3. In order to 
see the convergence of the approximate solutions to the 
exact solutions, thirteen iterations are conducted for each 
algorithm. Similar to the case of constant rigidities, the 
iterations are started with the linear approximation given 
in Equation 23. To simplify the integration processes, 
variable    coefficients    in   the   iteration   integrals    are   
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Table 3. Normalized buckling moments (α) for the first three modes – linearly varying rigidities (b=0.3). 
 

Mode # VIA I VIA II VIA III Exact 

1 12.9043 12.9043 12.9043 12.9043 

2 51.6172 51.6172 51.6172 51.6172 

3 115.9820 115.9820 115.9820 116.1387 
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Figure 6. Variation of percent errors with iterations for the first three buckling loads – linearly 
varying rigidities (b=0.3). 

  
 
 

expanded in series using nine terms. 
Similar to the case of constant rigidities, the different 

VIM algorithms lead to the same results for buckling 
moments when b=0.3, as listed in Table 3. Variation of 
percent errors with iterations are also plotted in Figure 6 
to show how VIM solutions converge to the exact 
solution. Since all three VIM algorithms give identical 
results, only one plot is presented. As shown in Table 3, 
the agreement between the VIM results and the exact 
results is considerably good.  

Even though all VIM algorithms yield exactly the same 
results, some important differences are observed 
between the iteration algorithms in this case as far as the 
computation time and space are concerned. VIA II is 
observed to complete the same number of iterations in 
much smaller amount of time than VIA I and VIA III, for 
which the computation times are almost identical. VIA II is 
superior to VIA I and VIA III also in that, its output file 
takes up less space. The sizes of the output files created 
by VIA I and VIA III are almost four times larger than that 
by VIA II. Thus, it can be concluded that VIA II is more 
effective in solving this kind of differential equations than 
the other two iteration algorithms. Such differences in 
computation time and space may  occur  due  to  the  fact 

that VIA I necessitates, in each iteration, second order 
differentiation of the solution obtained in the previous 
iteration and VIA III uses, in each iteration, the preceding 
two iteration results. Furthermore, in VIA I and VIA III, the 
integral term has to be added to the solution obtained in 
the previous iteration whereas it is added to the initial 
approximation in VIA II.  

Using VIA II, the normalized buckling moments for 
other values of b are also computed and plotted in Figure 
7, where exact results are also shown. As it is seen from 
the figure, VIM solutions and exact results are in very 
good agreement. It is worth noting that the small 
differences between the results as b increases occurs 
due to the fact that it is necessary to expand the variable 
coefficients in the iteration integrals in series using more 
terms when b is close to one. As the number of terms in 
series is increased, VIM results are observed to converge 
to exact results.  
 
 
Beams with exponentially varying rigidities 
 
If the minor axis bending and torsional rigidities of the 
beam changes in the following exponential form:  
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Figure 7. Variation of nondimensional critical moment with “b” values. 
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Figure 8. Variation of nondimensional critical moment with “a” values. 

  
 
 

( ) ( )−
=

/a z L

t tGI z GI e     and   ( ) ( )
η η

−
=

/a z L
EI z EI e   (30) 

 

where a is a positive constant determining the sharpness 
of the changes in rigidities along the length of the beam, 
then, the nondimensionalized form of the buckling 
equation in Equation 4 become 
 

φ φ
α φ− + =

2
2

2
0azd d

a e
dz dz

            (31) 

where /z z L= , φ φ=  and α is the nondimensional 

critical moment as defined in Equation 22.  
 
Since in the linear case, VIA II is found to be more 
effective than VIA I and VIA III, Equation 31 is solved 
using VIA II for various a values, and the smallest 
nondimensional critical moments in the first buckling 
modes are obtained. The results are plotted in Figure 8, 
which shows how critical moment of a simply supported 
rectangular beam decreases as a increases. 
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Table 4. Normalized buckling loads (β) for the first three modes – 
constant rigidities. 
 

Mode # VIA I VIA II VIA III Exact 

1 16.1010 16.1010 16.1010 16.1010 

2 104.9830 104.9830 104.9830 104.9830 

3 272.7750 272.7750 272.7750 272.7750 
  
 
 

Even though it can be rather difficult to obtain exact 
analytical solutions for this particular case of the beam 
buckling problem, VIM can effectively be used to 
determine buckling moments in any kind of variations in 
rigidities, such as the exponential variation studied in this 
section. 
 
 

Critical load for cantilever case 
 
Beams with constant rigidities 
 
If the minor axis bending and torsional rigidities of the 
beam are constant, then Equation 8 reduces to the 
following simpler equation: 
 

( )
φ

λ φ+ − =
2

22

22
0

d
L z

dz
            (32) 

 

Where,     

η

λ =
2

2

2

t

P

GI EI
 

 

Introducing a new variable = −s L z , Timoshenko and 

Gere (1961) obtained the solution of Equation 32 as 
 

( ) ( )φ λ λ−
 = + 

2 2

1 1/ 4 2 2 1/ 4 2/ 2 / 2s A J s A J s        (33) 

 

Where 1/ 4J  and −1/ 4J  represent Bessel functions of the 

first kind of order 1/4 and −1/4, respectively. When the 
related boundary conditions are used to determine the 
constants A1 and A2, the following characteristic equation 
is obtained: 
 

( )λ− =2

1/ 4 2 / 2 0J L              (34) 

 

The smallest root of this equation is λ =2

2 / 2 2.0063L  

leading to the first mode critical load Pcr 
 

η
=

2
4.0126

t

cr

GI EI
P

L
             (35) 

 
observed   that  the   numerical   value   in   Equation   35 

 
 
 
 
changes to 10.2461 and 16.5159 in the second and third 
mode critical load expressions, respectively. This 
buckling problem is also solved using all three VIM 
algorithms. For easier computations, the nondimensional 
form of the differential equation and the related boundary 
conditions are written:  
 

( )
φ

β φ+ − =
2

2

2
1 0

d
z

dz
                 (36) 

 

where   

η

β =
2 4

t

P L

GI EI
  with  ( )φ =0 0  and  ( )

φ
=1 0

d

dz
 

 

where = /z z L , φ φ=  and β is the “nondimensional 

critical load”. For all three algorithms, the initial 
approximation is chosen as given in Equation 23. The 
coefficients A and B are obtained as defined in pure 
bending case. Again, in order to see the convergence of 
the approximate solutions to the exact solutions, 
seventeen iterations are conducted for each algorithm 
and critical moments for the first three modes are 
computed.  

Similar to the pure bending case, exactly the same 
solutions are obtained for critical loads from three 
different VIM algorithms, as listed in Table 4. Variation of 
percent errors with iterations are also plotted in Figure 9 
to show how VIM solutions converge to the exact 
solution.  

As shown in Table 4 and Figure 9, VIM solutions are in 
excellent agreement with the exact results. It is to be 
noted that while it is rather difficult to obtain the critical 
load from the characteristic equation given in Equation 
34, which needs finding the roots of a Bessel function, it 
is much easier to solve the characteristic equation 
derived using VIM iterations which are in the form of 
polynomials. This is one of the advantages of using VIM 
in this problem, even in the case of constant rigidities. 
 
 

Beams with linearly varying rigidities 
 

If both the minor axis flexural and torsional rigidities of the 
beam changes in linear form, that is, if 
 

( )  
= − 

 
1t t

z
GI z GI b

L
    and   ( )η η

 
= − 

 
1

z
EI z EI b

L
 (37) 

 

where b is a positive constant that can take values 
between zero and one, then, the buckling equation given 
in Equation 8 takes the following form: 
 

( )

( )η

φ φ
φ

−
− + =

− −

2
2 2 2

22

1 /
0

1 /t

z Ld b d P L

dz L bz dz GI EI bz L
          (38) 

 
When  larger  roots  of  Equation 34  are  obtained,   it   is 



 11

Pinarbasi          1455 
 
 
 

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iteration Number

E
rr

o
r 

(%
) 

Mode 1

Mode 2

Mode 3

 
 
Figure 9. Variation of percent errors with iterations for the first three buckling loads– constant 
rigidities. 

 
 
 

The nondimensional form of Equation 38 can be written 
as: 
 

( )

( )
φ φ

β φ
−

− + =
− −

22

22

1
0

1 1

zd b d

dz bz dz bz
        (39)  

 

where = /z z L , φ φ=  and β is the nondimensional 

critical moment, as defined in Equation 36.  
 
Since in the case of constant rigidities, all VIM algorithms 
lead to the same results, the effectiveness of each 
algorithm on solving Equation 39 is also investigated. For 
b=0.5, the first mode critical moment is computed using 
each iteration algorithms separately. The iterations are 
started with the linear approximation given in Equation 
23. To simplify the integration processes, variable 
coefficients in the iteration integrals are expanded in 
series using twenty one terms. Similar to the earlier 
studied cases, all algorithms lead to the same result. 
However, as in the pure moment case, VIA II is more 
effective than VIA I and VIA III with regard to the 
computation time and space. 

As both the minor axis flexural rigidity and torsional 
rigidity of a rectangular beam is directly proportional to 
the height of the beam cross section, a special case of 
linear variation in beam rigidities occurs when the height 
of the beam is linearly tapered. Linearly tapered steel 
beams have wide applications in many engineering 
applications. They lead to economical designs in laterally-
braced cantilever beams with end loading, since under 
such a loading, the major axis bending moment 
decreases linearly from the fixed end of the beam to the 

free end. However, as shown in Figure 10, which is 
plotted using VIA II, the buckling load of a laterally-
unbraced cantilever beam decreases considerably as b, 
in other words, the slope of the tapering, increases.  
 
 
Beams with exponentially varying rigidities 
 

If the minor axis flexural and torsional rigidities of the 
beam changes in exponential form as given in Equation 
30, the nondimensionalized form of the buckling equation 
in Equation 8 becomes 
 

( )φ φ
β φ− + − =

2
2 2

2
1 0azd d

a e z
dz dz

           (40) 

 

where = /z z L , φ φ=  and β is the nondimensional 

critical moment, as defined in Equation 36. Since it has 
already been verified that VIA II is the most effective 
iteration algorithm for the buckling equations studied in 
this paper, Equation 40 is solved using VIA II for various 
values of a. The variation of normalized first mode 
buckling loads with a is shown in Figure 11. As shown in 
the figure, the buckling load of a nonuniform cantilever 
beam with end loading can drop as low as the quarter of 
its uniform value when a is equal to 2. 
 
 
Conclusion 
 
In this paper, two fundamental beam buckling problems; 
lateral torsional buckling of (a) simply supported narrow 
rectangular beams under uniform moment and (b) narrow  
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Figure 10. Variation of nondimensional critical load with “b” values. 
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Figure 11. Variation of nondimensional critical load with “a” values. 

  
 
 

rectangular cantilever beams carrying concentrated load 
at their free ends, are studied using variational iteration 
method (VIM). Exact solutions to these problems are 
available in literature only for beams of constant rigidities 
and some particular cases of linearly tapered beams. In 
order to verify the effectiveness of VIM on solving beam 
buckling equations and to show the application of the 
method; firstly, the problems with constant rigidities are 
studied. The excellent match of the VIM results with the 
exact results verifies the efficiency of the technique in the 
analysis of lateral torsional buckling problems. Then, the 
buckling problems in which the minor axis flexural and 
torsional rigidities of the beams vary along their lengths 
are studied. Both linear and exponential variations are 
considered in nonuniform beams. For the case of variable 

rigidities, the differential equations of the studied buckling 
problems have variable coefficients, which hinder the 
derivation of exact solutions for these types of problems. 
However, as shown in the paper, it is relatively easy to 
write the variational iteration algorithms for these 
differential equations, which lead to the buckling 
load/moment of the beam after a few iterations even 
when the rigidities of the beam change along its length, in 
exponential form. In the paper, the effectiveness of three 
VIM algorithms, two of which have been proposed very 
recently by He et al. (2010), in solving lateral buckling 
equations was also investigated. Analysis results show 
that all iteration algorithms yielded exactly the same 
results in all studied problems. As far as the computation 
times and spaces  are   concerned,  however,  Variational  
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Iteration Algorithm II (VIA II) is found to be superior than 
the others especially in problems where the beam 
rigidities vary along the beam length. 
 
 
REFERENCES 
 
Atay MT, Coskun SB (2009). Elastic stability of Euler columns with a 

continuous elastic restraint using variational iteration method. 
Comput. Math. Appl., 58: 2528-2534. 

Chajes A (1974). Principles of structural stability theory. Prentice Hall, 
Englewood Cliffs. pp. 211-236. 

Coskun SB, Atay MT (2009). Determination of critical buckling load for 
elastic columns of constant and variable cross-sections using 
variational iteration method, Comput. Math. Appl., 58: 2260-2266. 

Coskun SB (2010). Analysis of tilt-buckling of Euler columns with 
varying flexural stiffness using homotopy perturbation method. Math. 
Model. Anal., 15(3): 275-286. 

He JH (1999). Variational iteration method - a kind of nonlinear 
analytical technique: some examples”, Int. J. Non Linear Mech., 
34(4): 699-708. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pinarbasi          1457 
 
 
 
He JH (2000). A review on some new recently developed nonlinear 

analytical techniques”, Int. J. Nonlinear Sci. Numer. Simul., 1(1): 51-
70. 

He JH (2007). Variational iteration method – some recent results and 
new interpretations., J. Comput. Appl. Math., 207 (1): 3-17. 

He JH, Wazwaz AM, Xu L (2007). The variational iteration method: 
reliable, efficient and promising”, Comput. Math. Appl., 54(7-8): 879-
880. 

He JH, Wu GC, Austin F (2010). The variational iteration method which 
should be followed, Nonlinear Sci. Lett. A, 1(1): 1-30. 

Okay F, Atay MT, Coskun SB (2010). Determination of buckling loads 
and mode shapes of a heavy vertical column under its own weight 
using the variational iteration method, Int. J. Nonlinear Sci. Numer. 
Simul., 11(10): 851-857. 

Simitses GJ, Hodges DH (2006). Fundamentals of structural stability. 
Elsevier. pp. 251-277. 

Timoshenko SP, Gere JM (1961). Theory of elastic stability. Second 
Edition, McGraw-Hill Book Company, New York.  

Wang CM, Wang CY, Reddy JN (2005). Exact solutions for buckling of 
structural members. CRC Press, Florida. pp. 77-85. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


