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Slip flow of a second-grade fluid past a lubricated rotating disc is studied. The disc is lubricated with a 
power-law fluid. The interfacial conditions between fluid and lubricant are imposed on the surface of 
disc by assuming a thin lubrication layer. The numerical solutions are obtained using Keller-Box 
method. The effects of slip parameter and Weissenberg number on the three components of fluid 
velocity and pressure are analyzed graphically while effects on both components of skin friction are 
demonstrated through tables. The computed results show that spin-up by a second grade bulk fluid 
near the rotating disc is reduced by increasing slip at the interface. The obtained solutions agree well in 
the special case with those of other researches. 
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INTRODUCTION 
 
Technical applications of the flow over a rotating surface 
occur in many engineering and industrial fields. Some 
direct applications of flow over a rotating disc are waste 
water treatment, turbo-machinery, viscometry, centrifugal 
pumps, computer discs, sports discs, and rotating blades. 
The stagnation point flow of Newtonian fluid over a 
rotating disc was initially discussed by Von Karman 
(1921), who transformed the set of partial differential 
equations into ordinary differential equations by 
introducing an elegant similarity transformation and 
solved the resulting equations by momentum integral 
method. Due to the importance of rotating flows in the 
fields of engineering and technology, much extensions 
and modifications with more accurate  solutions  of  Von 

Karman’s flow have been presented in the literature. 
Cochran (1934) obtained asymptotic solution of the Von 
Karman’s flow broblem. Benton (1966) improved the 
Cochran’s results and extended the problem by taking 
into account the unsteady case. Sparrow and Gregg 
(1960) studied the steady state heat transfer from a 
rotating disc by taking different values of Prandtl 
numbers. Kakutani (1962), Sparrow and Chess (1962), 
Pande (1971), Watson and Wang (1979), Kumar et al. 
(1988) and Watanabe and Oyama (1991) discussed 
different aspects of electrically conducting viscous fluid 
over a rotating disc with heat transfer. Turkyilmazoglu 
(2015) analyzed Bödewadt flow and heat transfer over a 
stretching disk. Asghar et al. (2014) carried out Lie  group

 

*Corresponding author. E-mail: khalidmeh2012@gmail.com. 

  

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 

License 4.0 International License 

http://www.scopus.com.scopeesprx.elsevier.com/record/display.uri?eid=2-s2.0-84918778210&origin=resultslist&sort=plf-f&src=s&st1=Turkyilmazoglu%2cM&nlo=&nlr=&nls=&sid=7202A2DB21E8B886A5CC793B43ACBCEE.y7ESLndDIsN8cE7qwvy6w%3a10&sot=b&sdt=b&sl=29&s=AUTHOR-NAME%28Turkyilmazoglu%2cM%29&relpos=9&citeCnt=4&searchTerm=AUTHOR-NAME%28Turkyilmazoglu%2CM%29
http://www.scopus.com.scopeesprx.elsevier.com/record/display.uri?eid=2-s2.0-84918778210&origin=resultslist&sort=plf-f&src=s&st1=Turkyilmazoglu%2cM&nlo=&nlr=&nls=&sid=7202A2DB21E8B886A5CC793B43ACBCEE.y7ESLndDIsN8cE7qwvy6w%3a10&sot=b&sdt=b&sl=29&s=AUTHOR-NAME%28Turkyilmazoglu%2cM%29&relpos=9&citeCnt=4&searchTerm=AUTHOR-NAME%28Turkyilmazoglu%2CM%29
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


 
 
 
 
analysis of flow and heat transfer of a viscous fluid on a 
rotating disk stretching in radial direction. In recent years, 
Turkyilmazoglu (2014); Turkyilmazoglu and Senel, 
(2013); Turkyilmazoglu, (2012a; b); Turkyilmazoglu, 
(2009) investigated different aspects of fluid flow and 
heat transfer due to rotating disc. Effects of slip at 
permeable disc are investigated by Miklavcic and Wang 
(2004). Hannah (1947) discussed the axisymmetric 
stagnation point flow of a viscous fluid towards a rotating 
disc for the first time. Tifford and Chu (1952) found the 
exact solution of the problem considered by Hannah 
(1947). Wang (2008) studied stagnation-point flow over 
an off-centered rotating disc and proved that non 
alignment complicates the flow problem. Asghar et al. 
(2007) investigated MHD flow due to non-coaxial rotation 
of an accelerated disc. Attia (2009) studied the flow due 
to a rotating disc under the influence of an external 
uniform magnetic field. In 2003, Wang (2003) 
investigated the stagnation point flow for a flat plate in the 
presence of slip boundary condition. The slip flow over a 
lubricated rotating disc was first considered by Andersson 
and Rousselet (2006). The axisymmetric stagnation point 
flow of a viscous fluid on a surface lubricated with a 
power-law fluid has been carried out by Santra et al. 
(2007). 

In all the aforementioned studies, constitutive 
relationship of a viscous fluid is considered. However, 
fluids used in industry and technology do not obey 
Newton’s law of viscosity and are called non-Newtonian 
fluids. For example, polymer solutions and melts, oil, 
paints, blood, etc., for which Navier-Stokes equations are 
inadequate. A number of non-Newtonian models have 
been proposed to predict the phenomena like normal 
stress effects, shear thinning, shear thickening, stress 
relaxation and retardation, etc. Amongst these non-
Newtonian fluids, the second grade fluid is one that has 
been studied extensively. The equation of motion for 
second grade fluid is highly non-linear and one order 
higher than the Navier-Stokes equations. Therefore, to 
obtain a well posed problem, one requires additional 
boundary conditions to study the flow problems. 
Rajagopal and Gupta (1984) showed that to obtain a 
unique solution for the flow of a second-grade fluid in 
bounded geometry, an additional boundary condition is 
required. To overcome the requirement of additional 
boundary conditions, Beard and Walters (1964) 
discussed the stagnation point flow of a viscoelastic fluid 
by using a regular perturbation technique in which the 
perturbation parameter is the coefficient of the highest 
derivative. Garg and Rajagopal (1990) and Ariel (2002) 
augmented the boundary conditions at infinity in order to 
overcome this difficulty. In another investigation, Ariel 
(1997) studied the steady laminar flow of a second grade 
fluid near a rotating disc. Labropulu and Li (2008) 
discussed stagnation point flow of a second grade fluid 
with slip. MHD mixed convection in a vertical annulus 
filled with Al2O3-water nano-fluid considering nanoparticles  
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migration was analyzed by Malvandi et al. (2015). 
Recently Afrand et al. (2015) discussed effects of 
magnetic field on free convection flow in inclined 
cylindrical annulus containing molten Potassium. Safaei et 
al. (2011) investigated numerical study of laminar mixed 
convection heat transfer of power-law non-Newtonian 
fluids in square enclosures by Finite Volume Method. A 
literature survey reveals that there is no attempt available 
for studying the slip flow of a second grade fluid over a 
lubricated rotating disc. The slip boundary condition at 
the interface between the second grade and power-law 
fluids is developed and numerical results are computed to 
discuss the behaviour of second grade fluid over a 
lubricated disk. The obtained results for a second grade 
fluid show a significant deviation from the available 
results for Newtonian fluid. The results for no-slip case 
are deduced as the special case from the obtained 
solutions. An implicit finite difference scheme known as 
Keller-Box method (Keller and Cebeci, 1972; Bradshaw 
et al., 1981; Keller, 1970) is employed to obtain the 
similarity solution. 
 
 
MATHEMATICAL FORMULATION 
 
Consider the steady, axisymmetric flow of a second grade fluid over 
a rotating disc lubricated with a thin layer of power law fluid. The 

flow rate  of the lubricant is given by 

 

                             (1) 

 

where  is the radial component of the velocity vector of 

power-law fluid and is the variable thickness of the 

lubrication layer. Moreover, disc is rotating with a uniform velocity 

 about -axis which is normal to the disc and the origin  is 

located at the center of the disc (Figure 1). 
In the presence of these assumptions, the flow of a second grade 

fluid is governed by the following equations: 
 

                 (2) 

 
         (3) 

 

where  is the fluid pressure,  is density,  is viscosity 

and  is the second grade fluid parameter. The boundary 

condition at the surface is 
 

    (4) 

 
with 
 

.                            (5) 

 

The continuity of the shear stress at the interface  for 

both the fluids suggests: 
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Figure 1. Diagram showing considered flow problem. 

 
 
 

   (6) 

 

     (7) 

 

In Equations 6 and 7,  is the viscosity of the power law fluid. 

Assuming 
 

and  ,  can be written as 

 

                             (8) 

 
where k is the consistency coefficient and n is the flow behavior 
index of the power-law fluid. Assuming the linear variations of the 
radial and circumferential velocity components of power-law fluid 
inside the lubrication layer, we get 

 

                              (9) 

 

.                           (10) 

 

Here  and  are interfacial velocity components of bulk 

second grade fluid and power law fluid. Thickness of the lubrication 
layer can be evaluated by substituting Equation 9 into Equation 1: 
 

                             (11) 

 
Since at the interface  
 

 ,                                            (12) 

 
Therefore, Equations 6 and 7 yield 

 
 
 
 

,  (13) 

 

.  (14) 

 
Furthermore, the continuity of the axial velocity components at the 
interface gives 
 

,                          (15) 

 
Assuming that the lubrication layer is very thin, boundary conditions 

(13), (14) and (15) can be imposed at the surface when  as 

proposed by Andersson and Rousselet (2006). 
The free stream boundary conditions are given by  

 

.                                           (16) 

 
To solve the system of partial differential equations obtained from 
Equation 3, the following dimensionless variables were introduced: 
 

   (17) 

 
The reduced system of coupled non-linear ordinary differential 
equations along with boundary conditions is 
 

                                           (18) 

 

    (19) 

 

    (20) 

 

.          (21) 

 
                                         (22)  

 

    (23) 

 

                                              (24) 

 

                           (25) 

 

where  is the Weissenberg number and 

 

                            (26) 

 

It is worth mentioning that we have used  in Equations 

23 and 24 in order to obtain similarity solution. From Equation 26, 

the constant  can be written as  



 
 
 
 

.                            (27) 

 

It is clear from Equation 27 that the parameter  is the ratio of 

viscous length and lubrication length scales, respectively. When the 

lubricant is highly viscous and the lubrication length is small,  

becomes large. In the limiting case when , the conventional 

no-slip conditions  and are obtained from 

Equations 23 and 24. In the reverse case, when , one 

obtains the full-slip boundary conditions  and 

 Hence,  is known as slip parameter. 

 
 
NUMERICAL RESULTS AND DISCUSSION 
 

To analyze the behaviour of parameters  and  on 

velocity and pressure profiles, the Equations 18 to 21 
together with boundary conditions 22 to 25 are solved 
numerically by the Keller-Box method (Keller and Cebeci, 
1972; Bradshaw et al., 1981; Keller, 1970).  

Figures 2 to 6 are plotted to see the effects of slip 

parameter  on velocity profiles ,
 

 and pressure  

for some fixed values of Weissenberg number, while the 

effects of  in the presence of slip are shown in 

Figures 6 to 10. Dashed lines shown in Figures 2 to 6 are 
the reproduced results already calculated by Andersson 
and Rousselet (2006) through Keller-Box method for the 

case of Newtonian fluid (that is, ). Numerical 

computations for both the components of skin friction 
coefficients under the influence of pertinent parameters 
are presented in Tables 1 to 2.  

Figure 2 is displayed to show the effects of slip 

parameter  on axial velocity when . It is 

important to mention here that as the numerical values of 

 is increased, an increase in the value of  is 

observed. Also, the thickness of boundary layer region is 

increased by increasing the numerical value of . Figure 

3 shows the variation in the radial velocity  caused by 

the centrifugal force under the influence of slip 
parameter. It is clear from Figure 3 that by increasing slip 

on the surface,  decreases. The variation in radial 

velocity has the same behaviour as observed for the 
viscous fluid (dashed lines) except the peak value which 

was near 0.18 at  for the viscous fluid when 

there is no-slip (2006) and is now near 0.225 when  is 

about 1.1 (near unity) for the second grade fluid. The 
gradual increase in the radial velocity in Figure 3 with 

increasing value of  is directly related with the 

distributions of the -profile shown in Figure 2. This is 

due to the direct relation between  and  shown in 

Equation 18.  
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Figure 2. Variation of  for different values of  when 

. Dashed lines are calculated by Andersson and 

Rousselet (2006). 

 
 
 

 
 

Figure 3. Variation of  for different values of  when 

. Dashed lines are calculated by Andersson and 

Rousselet (2006). 

 
 
 

Effect of slip parameter on the azimuthal velocity 

component  in the circumferential direction is depicted 

in Figure 4. It is obvious from Figure 4 that by increasing 

, the numerical value of  is increased. The torque 

required to maintain steady rotation of the disc is 
controlled by this component of the velocity. The imposed 
torque decreases monotonically by increasing slip on the 
surface. It is evident from Figures 2 to 4 that the variation 
in the three velocity components is more significant for 

smaller values of  showing that power-law lubricant 

increases the fluid velocity at the surface. 
The variation in the pressure under the influence of slip 

parameter when , is observed in Figures 5 and 6.  
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Figure 4. Variation of  for different values of  when 

. Dashed lines are calculated by Andersson and 

Rousselet (2006). 

 
 
 

 
 

Figure 5. Effect of slip on pressure when . 

 
 
 
It is clear from Figure 6 that pressure increases by 
decreasing slip. However, the behaviour of pressure 
distribution near the full slip is different as shown in the 

Figure 5. For  the disc pressure is less than the 

ambient pressure , which means that the flow is 

driven towards the disc by the axial pressure gradient in 

this particular range of .  

Effect of  on -profile when  is shown in 

Figure 7. It is obvious from this figure that by increasing 

, the axial velocity component is increased. The 

velocity profile shown by dashed line is for viscous fluid, 

that is, when . Figure 8 shows the variation in 

radial velocity component  when  ranges from 0 to 5 

and  .  It   is   evident   from   this   figure   that     

 
 
 
 

 
 

Figure 6. Effect of slip on pressure when . 

 
 
 

 
 

Figure 7. Variation of  for different values of  when 

. 

 
 
 

 
 

Figure 8. Variation of  for different values of  when 

 



 
 
 
 

 
 

Figure 9. Variation of  for different values of  when 

. 

 
 
 

 
 

Figure 10. Variation of  for different values of  

when . 

 
 
 
increases with an increase in Weissenberg number. 
Some reverse effects was observed on the peak for 

higher values of . The azimuthal velocity 

component  is presented in Figure 9. It is evident from 

this figure that increases by increasing the value of  

when  is fixed. An opposite behaviour in the shear 

component of velocity is observed near the surface. 
Figures 10 and 11 are plotted for the pressure distribution 

using various values of  when . It is clear 

from these figures that  increases when 

. After this pressure profile shows an 

increase near the surface and then decreases 
dramatically.  
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Figure 11. Variation of  for different values of  

when . 

 
 
 

Table 1 elucidates the change in numerical values of 

 and  for various values of when 

 and . It is clear from the Table 1 

that as  increases from 0 to the numerical values of 

 increase. However, the numerical values of  

initially increase and then start decreasing. The numerical 

values of  and  for different values of  

when  and  are presented in Table 2. 

According to this table as the numerical value of  

increases, the numerical values of  increase while 

those of  decrease.  

 
 
Conclusion 
 
In this paper, the slip flow of a second grade fluid over a 
rotating disc lubricated with a thin layer of power-law fluid 
was examined. The governing equations along with 
boundary conditions are transformed to ordinary 
differential equations by a suitable choice of 
transformation. To obtain true similarity solutions, we 

selected . The numerical solutions were 

computed using Keller-Box method. The motivation is to 

determine the effects of the slip parameter  and  on 

the flow characteristics. The cases of full slip for  

and no slip for  can be deduced from the present 

results. The main findings are investigated as under.  
As the slip increases the numerical values of all the 

three components of velocity are decreased.  
Numerical value of all velocity components is decreased 

as  is decreased. 

An unexpected reversal in the pressure gradient has 

been observed for the lower values of  and .  
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Table 1. Numerical values of  and  for various values of  

 

 
 

 

   
 

   

0.01 -0.000119 0.000056  0.01 -0.000119 0.000055 

0.05 -0.002743 0.002407  0.05 -0.002556 0.002074 

0.1 -0.008848 0.007804  0.1 -0.007839 0.006160 

0.5 -0.119575 0.077270  0.5 -0.086636 0.043736 

1.0 -0.311114 0.141201  1.0 -0.220373 0.068210 

2.0 -0.614639 0.152593  2.0 -0.518510 0.029763 

5.0 -0.908031 0.056128  5.0 -1.053342 -0.261694 

10 -0.990542 0.004268  10 -1.232311 -0.406746 

50 -1.032491 -0.028260  50 -1.320843 -0.484123 

100 -1.035151 -0.030489  100 -1.326394 -0.489068 

500 -1.036475 -0.031607  500 -1.329053 -0.491426 

 -1.036605 -0.031717  
 -1.329155 -0.491531 

 
 
 

Table 2. Numerical values of  and  for various values of  

 

 
 

 

   
 

   

0 
  

 0 
  

0.001 
  

 0.001 
  

0.01 
  

 0.005 
  

0.05 
  

 0.01 
  

0.1 
  

 0.05 
  

0.6 
  

 0.1 
  

1.0 
  

 0.5 
  

1.5 
  

 1 
  

2 
  

 1.5 
  

3 
  

 2 
  

5 
  

 3 
  

10 
  

 5 
  

 
 
 

The computed results show that spin-up by second 
grade bulk fluid near the rotating disc is reduced by 
increasing slip. The radially directed centrifugal force is 
also reduced. The radial slip is turned out to be 
insufficient to outweigh the reduced centrifugal force.  

The numerical values of  increase as  increases 

from 0 to However, the numerical values of  

initially increase and then start decreasing.  

As Weissenberg number  increase, the numerical 

values of  increase while those of  

decrease.  
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Nomenclature 

 

: Flow rate 

: Fluid pressure 

: Thickness of lubrication layer 

: Cylindrical coordinates 

: Velocity components of second grade fluid in radial, 

azimuthal and axial direction 

: Density 

: Viscosity of second grade fluid 

: Material parameter 

: Velocity of disc 

: Slip parameter 

: Viscosity of power- law fluid 

: Velocity components of Power-law fluid in radial, 

azimuthal and axial direction 

: Flow behavior index of Power-law fluid 

: Weissenberg number 

: Consistency coefficient of power-law fluid. 
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