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Abstract

Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60%
mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1
virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A
change in receptor binding affinity of the viral hemagglutinin (HA) from a2,3- to a2,6-linked sialic acid (SA) is thought to be
necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated
between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally
into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics,
we found that these H5 sublineages have acquired an enhanced binding affinity for a2,6 SA in combination with residual
affinity for a2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1
viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased
attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with
enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to a2,6 SA, emerged
during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence
of new H5 sublineages with a2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in
Egypt, and provided data for understanding the virus’s pandemic potential.
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Introduction

Since the emergence of highly pathogenic avian influenza virus

subtype H5N1 (HPAI H5N1) in 1996, outbreaks have continued

in a variety of domestic and wild birds as well as sporadic

transmission to humans [1]. Over time, H5N1 viruses have

diversified and are currently grouped into clades 0 to 9 according

to the unified nomenclature system [2]. Since 2006, clade 2.2,

which originated from a large outbreak in wild bird populations at

Qinghai Lake in western China [3,4], has spread rapidly over

central Asia, Europe, the Middle East, and Africa [5,6]. Clade 2.2

has further diversified forming the third-order clade 2.2.1 and

three phylogenetically distinct sublineages (I, II and III) within

clade 2.2 [7,8].

Although the current H1N1 pandemic [9] may have diverted

attention from the continuing worldwide circulation of H5N1

virus, the pandemic threat of H5N1 is still alarming. The

cumulative number of confirmed human cases of H5N1 infection

reported to the World Health Organization (WHO) to date is 504

with a 60% mortality [10]. According to the World Organization

for Animal Health, HPAI H5N1 has become endemic in some

areas where human cases constitute more than 80% of the total

[10], indicating bird-human H5N1 virus transmission; e.g., China,

Indonesia, Viet Nam and Egypt [11].

Since 2006, H5N1 viruses have spread across countries in

western, eastern, and northern Africa, where viruses belonging to

clade 2.2.1 and three sublineages (I, II and III) of clade 2.2 have

been detected [7,8]. As of October 2010, WHO has reported 114

laboratory-confirmed human cases on the African continent [10].

Egypt has experienced a relatively large number of human

infections with 112 confirmed cases reported since 2006, when

H5N1 was first identified in Egypt. In particular, the cumulative
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number since 2009 is notable: 61 confirmed cases in Egypt. The

worldwide number since is also 112 cases. This indicates that the

recent human H5N1 cases in Egypt are more than 50% of the

total worldwide. The other 2 human cases of H5N1 virus infection

in Africa were reported from Nigeria and Djibouti. The reason(s)

for such a high number of human H5N1 cases in Egypt has not

been elucidated.

Influenza viruses target glycosylated oligosaccharides that

terminate in a sialic acid (SA) residue [12–14]. These residues

are bound to glycans through an a2,3, a2,6, a2,8 or a2,9 linkage

by sialyltransferases that are expressed in a tissue- and species-

specific manner [15–17]. For example, human upper airway

epithelia express mostly a2,6-linked SA (a2,6 SA) [18], whereas

duck intestinal epithelia express mainly a2,3-linked SA (a2,3 SA)

[19]. Efficient human-human transmission is necessary for

influenza A virus to become pandemic. Although the determinants

of efficient human-human transmission are not fully understood, it

is believed that a change of receptor specificity from a2,3 SA, to

which avian influenza A viruses preferentially bind, to a2,6 SA, to

which human influenza viruses preferentially bind, is essential

[12,20,21]. Although H5N1 viruses still lack the ability for efficient

human-human transmission, the current prevalence of H5N1

might allow the virus to acquire mutations enabling a2,6 SA

recognition. Thus, it is important to monitor the receptor binding

affinity of H5N1 viruses in endemic areas and evaluate molecular

mechanisms that might promote their pandemic potential.

In this study, we carried out a phylogenetic analysis of avian and

human H5N1 viruses circulating in Egypt. The resulting virus

phylogenetic tree indicated emergence of new H5 sublineages with

each sublineage containing only or mostly human isolates, leading

us to hypothesize that the HAs of these viruses might have acquired

amino acid change(s) enabling a2,6 SA binding and resulting in the

large number of human H5N1 cases in Egypt. Therefore, in this

study we examined the receptor binding affinity of H5N1 viruses

isolated in Egypt using sialylglycopolymers and human respiratory

tract tissues, and assessed the effect of the amino acid changes in the

HAs on viral replication in human airway epithelia in vitro and

virulence in mice in vivo. We show here that these H5N1 viruses,

during their spread in local bird populations, acquired mutations in

their HAs that produced a2,6 SA binding affinity, providing a

model for influenza virus phylogeny.

Results

Phylogeny of H5N1 viruses circulating in Egypt
We studied the evolution of H5N1 influenza viruses in Egypt by

analyzing the sequences of 106 viruses isolated there from birds

and humans between 2006 and 2009: 85 sequences were obtained

from the National Center for Biotechnology Information (NCBI)

database, and 21 sequences were newly obtained in this study. At

the time of this investigation, these 106 sequences represented

40% of the complete and partial H5N1 virus sequences from

Egypt in public databases. HPAI H5N1 emerged in Egypt first in

poultry in 2006, swiftly spread to many species of birds in different

geographic regions [11,22], and was declared endemic in 2008

[11]. Human infections started shortly thereafter and reached 112

cases by October 2010 [1,10].

Phylogenetic analysis of the 106 H5N1 virus HA genes showed

that all of these HA genes clustered in clade 2.2.1, with some of

these viruses forming several new H5 sublineages (Figure 1). H5N1

isolates from 2006–2007 were interspersed throughout the

phylogenetic tree, indicating rapid spread of the ancestral HA

gene. In contrast, most human and avian isolates from 2008–2009

were clustered separately in distinct sublineages, denoted here as

sublineages A, B (I, II), C and D. These phylogenetic relationships

indicated that during 2007–2008 the genetic diversity of H5 HA in

Egypt increased dramatically and resulted in the establishment of

distinct human and avian sublineages. Conversely, phylogenetic

analysis of viral neuraminidase (NA) genes revealed that these

genes were less divergent (Figure S1), with branches and tree

topology different than the HA tree. The NA sequences formed a

single monophyletic cluster which included the virus with the

ancestral HA gene. These findings suggested that H5N1 viruses

circulating in Egypt have diversified without significant genetic

linkage, at least between the HA and NA genes.

SA binding specificity of H5N1 viruses isolated in Egypt
The phylogenetic distribution of human and avian isolates in

Egypt prompted us to investigate whether recent Egyptian isolates

had an altered receptor binding specificity. To determine the a2,3

SA- and a2,6 SA-binding affinity of these isolates, we performed

direct binding assays with SAa2,3Gal and SAa2,6Gal sialylglyco-

polymers [23,24]. Six H5N1 isolates from outbreaks in Egypt

during 2007–2009 were tested: A/duck/Egypt/D1Br12/2007

(EG/D1), A/chicken/Egypt/C1Tr13/2007 (EG/C1), A/chicken/

Egypt/RIMD11-1/2008 (EG/11), A/chicken/Egypt/RIMD12-3/

2008 (EG/12), A/chicken/Egypt/RIMD28-1/2009 (EG/28), and

A/chicken/Egypt/RIMD29-3/2008 (EG/29). EG/D1 and EG/

C1 were isolated from 2007 outbreaks, shared .99% homology

with H5N1 viruses isolated in 2006, and in our phylogenetic tree did

not form a sublineage or group with other H5N1 viruses isolated in

Egypt, implying that they emerged before the establishment of new

sublineages in Egypt and indicating that they were phylogentically

close to the original H5N1 genotype in Egypt. The other four

isolates belonged to the new H5 phylogenetic sublineages (Figure 1),

indicating that they emerged during more recent H5N1 outbreaks.

Preliminary experiments to determine optimal binding assay

conditions showed the importance of using appropriate virus

titers (i.e., hemagglutination titers), because high virus titers

produced exaggerated signals for the weakly binding glycopoly-

mer (a2,6 SA) and low titers only detected binding to the high-

affinity glycopolymer (a2,3 SA) (Figure S2). For example, EG/

Author Summary

Even though highly pathogenic avian H5N1 influenza
viruses lack an efficient mechanism for human-human
transmission, these viruses are endemic in birds in China,
Indonesia, Viet Nam and Egypt. Hotspots for bird-human
transmission are indicated in areas where human cases are
more than 80% of total H5N1 influenza cases. Circulation
among hosts may allow H5N1 virus to acquire amino acid
changes enabling efficient bird-human transmission and
eventually human-human transmission. The receptor
specificity of viral hemagglutinin (HA) is considered a
main factor affecting efficient transmissibility. Several
amino acid substitutions in H5 virus HAs that increase
their human-type receptor specificity have been described
in virus isolates from patients, but their prevalence has
been limited. In contrast, we show here that new H5
sublineages in Egypt have acquired a change in receptor
specificity during their diversification in birds. We found
that viruses in those sublineages exhibited increased
attachment and infectivity in the human lower respiratory
tract, but not in the larynx. Our findings may not allow a
conclusion on the high pandemic potential of H5N1 virus
in Egypt, but helps explain why Egypt has recently had the
highest number of human H5 cases worldwide.
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D1, which was expected to have a classical avian influenza virus

a2,3 SA specificity, showed strong binding to a2,3 SA as

expected, but also measurable binding to a2,6 SA when the virus

titer was increased to 512 HAU. Conversely, EG/12, which was

assumed to have increased a2,6 SA specificity because it

clustered with human sublineage A strains, showed a complete

loss of a2,6 SA binding with increasing dilution of the HA titer to

8 HAU. From these results, HA titers from 32 to 128 HAU

appeared to be optimal for comparison of receptor binding

specificity with our experimental conditions. Therefore, HA

titers of all virus samples were adjusted to an HA titer of 64

HAU, relative to a reference EG/D1 sample, and used for the

following binding assays.

EG/D1, EG/C1, EG/11, EG/28 and EG/29 viruses had

binding specificity for a2,3 SA (Figure 2C–2G). The association

constants are shown in Table S1. The binding patterns closely

resembled the strong a2,3 SA binding specificity observed with an

avian influenza H5N3 virus, A/Duck/Hong Kong/820/80

(Figure 2B). In contrast, EG/12 virus had appreciably increased

binding to a2,6 SA, with binding to both a2,3 SA and a2,6 SA

(Figure 2H). However, the EG/12 binding affinity for a2,6 SA was

less than that of the seasonal human influenza virus A/Japan/

434/2003 (Figure 2A). This was confirmed by direct binding

assays using recombinant viruses generated by reverse-genetics:

each recombinant virus contained one of the HA genes in a

background of all of the other EG/D1 virus genes (denoted here as

rEG/D1) (Figure 2I–2M). To investigate other sublineage A and B

viruses, we synthesized the HAs of three H5N1 viruses isolated in

Egypt: a bird isolate; A/goose/Egpt/0929-NLQP/2009 (EG/

0929); and two human isolates; A/Egypt/N04822/2009 (EG/

4822) and A/Egypt/N02039/2009 (EG/2039). The receptor

specificities of these viruses were determined and showed that

the H5 HAs of these recent isolates also had increased a2,6 SA

binding (Figure 2N–2P). These results indicated differences in HA

affinity to a2,6 SA among recent H5 isolates, together with an

affinity to a2,3 SA.

Identification of amino acid mutations in viral HAs
enabling a2,6 SA binding

To identify mutations enabling a2,6 SA binding, we focused on

viruses in sublineages A and B, to which most human isolates

belonged. Comparison of 6 HA sequences of sublineage A viruses

with 100 HA sequences of other H5 viruses isolated in Egypt

identified two amino acid changes in the sublineage A virus HAs

(Table 1): Q192H and S235P (H5 HA numbering). Introduction

of the Q192H mutation into EG/D1 HA (denoted rEG/D1Q192H)

markedly increased viral binding to a2,6 SA (Figure 3A).

However, introduction of the S235P mutation into EG/D1 HA

(denoted rEG/D1S235P) only slightly increased a2,6 SA binding.

There was no synergistic effect with both mutations: the double

Figure 1. Phylogenetic tree of HA genes of H5N1 viruses
isolated in Egypt. This tree includes published HA sequences of 85
H5N1 influenza A viruses isolated in Egypt, from the National Center for
Biotechnology Information database (minimum sequence length
1,644 nt), and 21 HA sequences determined in this study (sequence
length 1,707 nt). The newly analyzed sequences in this study are
marked with a black circle. The strains whose HA sequences were
determined in this study and were analyzed further for receptor binding
specificity are marked with a red circle. The strains whose HA sequences
were previously reported and were analyzed for receptor binding
specificity in this study are marked with a blue circle. Colors are used to
highlight virus strains with different hosts, isolation year and
sublineage.
doi:10.1371/journal.ppat.1002068.g001
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mutant had similar a2,6 SA binding to that of the single Q192H

mutant. In contrast, the H192Q mutation, but not the P235S

mutation, in HAs of EG/12 (denoted rEG/D1-EG/12 HAH192Q)

and EG/4822 decreased a2,6 SA binding (Figures 3B and S3A).

These findings suggested that the Q192H mutation in H5N1 avian

viruses increased the binding affinity of HA for the human

receptor.

The HA sequences of the 19 H5N1 viruses in sublineage BI

(denoted sublineage A1 in a previous report [25]) differed from the

87 HA sequences of other H5N1 viruses isolated in Egypt at three

Figure 2. Receptor-binding specificity of H5N1 viruses isolated in Egypt. Direct binding of viruses to sialylglycopolymers containing either
a2,3-linked (blue) or a2,6-linked (red) sialic acids was measured. (A) Seasonal human influenza H3N2 virus. (B) Avian influenza H5N3 virus. (C)–(H)
Isolates from 2007–2009 outbreaks in Egypt. (I)–(P) Recombinant EG/D1 viruses with different HAs as indicated. Each data point is the mean 6 SD of
triplicate experiments.
doi:10.1371/journal.ppat.1002068.g002
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HA amino acid residues: S120N, 129 deletion (D) and I151T

(Table 1). When introduced as a single mutation into EG/D1

HA, none of these amino acid changes increased binding

to a2,6 SA (Figure 4A). However, the 129D/I151T double

mutation increased a2,6 SA binding. In contrast, both the 129S

insertion and the T151I mutation in the HAs of EG/0929 and

EG/2039 decreased a2,6 SA binding (Figures 4B and S3B). These

results suggested that the 129D and I151T mutations acted

synergistically to enable a2,6 SA binding by sublineage BI viruses.

Sublineage BII viruses have four mutations: the three mutations

found in sublineage BI viruses plus an additional V210I mutation

(Table 1). When introduced as a single mutation in the HA of EG/

D1, V210I partially increased a2,6 SA binding, but there was not

an appreciable increase in binding in the V210I/129D/I151T

triple mutant (Figure 5). These results suggested that the V210I

mutation did not increase a2,6 SA binding in sublineage BII

viruses above that of the 129D/I151T double mutation.

Genetic properties of H5N1 viruses in sublineages A, BI
and BII

The phylogenetic trees of sublineages A, BI and BII suggested

human viruses in these sublineages emerged from avian viruses in

these sublineages or closely related avian viruses (Figure 1). The

amino acid changes in HA enabling a2,6 SA binding in sublineage A

(Q192H) and sublineage BI viruses (129D/I151T) were not found in

human H5N1 influenza viruses phylogenetically unrelated to

sublineage A and B strains (data not shown), indicating that these

mutations were associated with the phylogeny of avian H5N1

sublineage A and B viruses in Egypt. A database search of virus gene

sequences posted since 2006 also revealed that the prevalence of

these amino acid changes increased in human influenza virus HAs in

Egypt concurrently with an increase in avian influenza viruses in

Egypt (Table 2), although most of the recent avian influenza virus

isolates were in sublineages C and D (Figure 1). In contrast, an

increased prevalence has not been detected in either birds or humans

in Asia. These findings suggested that H5N1 avian viruses in Egypt

acquired binding affinity for a2,6 SA during viral diversification in

local bird populations, which may have contributed to subsequent

virus transmission to humans with higher efficiency.

Attachment of rEG/D1 viruses in the human respiratory
tract

To investigate whether mutations in avian virus HAs enabling

a2,6 SA binding function with similar specificity in the human

respiratory tract, the attachment pattern of selected viruses to fixed

tissues of the human upper and lower respiratory tract (i.e., larynx,

trachea and alveoli) was determined by histochemistry. Histo-

chemical analysis can provide clinically relevant data on virus

attachment in human airway epithelia [26,27] and on the glycan

topologies that influenza viruses target for cell-specific infections in

airway epithelia [28,29]. Human H3N2 virus, which was used as a

control, attached extensively to ciliated epithelial cells in the larynx

and trachea and, to lesser degree, to alveolar cells (type I
pneumocytes; Figure 6). In contrast, rEG/D1, rEG/D1-EG/11

HA and rEG/D1-EG/29 HA attached predominantly to alveolar

cells (type II pneumocytes), with little attachment in larynx and

trachea, as found for avian H5N3 virus. The attachment pattern of

rEG/D1-EG/12 HA was different from the classical avian pattern

found for H5N3: little attachment to larynx, moderate attachment

to trachea, and significant attachment to alveoli (both type I and II
pneumocytes). The attachment patterns of the rEG/D1Q192H,

rEG/D1129D,I151T and rEGD1129D,I151T,V210I mutants were sim-

ilar to that of rEG/D1-EG/12 HA. However, all three mutant

viruses attached less abundantly to trachea than the H3N2 virus.

Also, rEG/D1-EG/12 HAH192Q showed an attachment pattern

similar to that of rEG/D1, with rare attachment to trachea. We

also performed virus histochemistry on sialidase-treated sections,

which abrogated all staining confirming that the viruses in this

study did not bind to non-sialic acid residues (Figure S4). Although

not quantitative, these results indicated that mutations enabling

a2,6 SA binding are clinically significant in affecting the affinity of

HA for receptors in the human respiratory tract.

Replication of rEG/D1 viruses in a human airway
epithelial culture

To examine whether the HA mutations enabling a2,6 SA

binding also affected virus replication in human airway cells, we

studied virus growth in primary human small airway epithelial

cells (SAEC) by infecting these cells with selected recombinant

viruses and human H3N2 virus, which was used as a control, at a

multiplicity of infection (MOI) of 1 or 0.1 and monitoring viral

growth kinetics and cytopathicity for 72 h post-infection. For

comparison, we studied viral growth kinetics in chicken embryo

fibroblast (CEF) cells infected at an MOI of 0.1 or 0.01. All viruses

replicated well in CEF cells and produced .107 focus-forming

units (FFU)/ml at 24 and 48 h post-infection. The difference in

titers of these viruses was ,1 log FFU/ml at each time point,

indicating that all of the viruses replicated equally well in avian-

Table 1. Mutations in HA genes in H5 viruses in sublineages A, BI and BII.

Sublineage (no. of strains
in sublineage) Isolation year Mutation in HAa

% of strains with mutation (no. of strains with
mutation/total no. of strains)

A (6) 2008–2009 Q192H 100 (6/6)

S235P 100 (6/6)

BI (19) 2007–2009 S120N 94 (18/19)

129D 100 (19/19)

I151T 100 (19/19)

BII (5) 2009 S120N 100 (5/5)

129D 100 (5/5)

I151T 100 (5/5)

V210I 100 (5/5)

aH5 numbering, D denotes deletion.
doi:10.1371/journal.ppat.1002068.t001
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derived cells (Figure 7A). These results confirmed that there was

no incompatibility between EG/12 HA and EG/D1 NA or

between mutated EG/D1 HA and EG/D1 NA in the recombi-

nant viruses generated for this study (compare the kinetics of

parental EG/D1 and rEG/D1 viruses in Figure 7A). In contrast,

in SAEC cells (Figure 7B), rEG/D1Q192H, rEGD1129D,I151T and

rEG/D1-EG/12 HA replicated more efficiently than rEG/D1

and rEG/D1-EG/12 HAH192Q, with slight differences in their

growth, and a final virus titer of rEG/D1Q192H . rEG/

D1129D,I151T . rEG/D1-EG/12 HA. These viruses replicated in

SAEC cells and reached titers more similar to those of human

H3N2 virus than of parental EG/D1, especially at a higher

inoculum. The difference in virus growth kinetics correlated with

cytopathicity in SAEC cells: rEG/D1Q192H, rEG/D1129D,I151T

and rEG/D1-EG/12 HA produced more severe cytopathic effects

and resulted in more detachment of infected cells at 24, 48 and

Figure 3. Effect of HA mutations in sublineage A viruses on receptor specificity of EG/D1 virus HA. (A) The two mutations found in the
HAs of sublineage A viruses were introduced into the HA of EG/D1 virus as single and double mutations. (B) The reverse mutations were introduced
into the HA of EG/12 virus. Direct binding to sialylglycopolymers containing either a2,3-linked (blue) or a2,6-linked (red) sialic acid was assayed.
Mutations are indicated by subscripts. Each data point is the mean 6 SD of triplicate experiments.
doi:10.1371/journal.ppat.1002068.g003
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72 h post-infection than rEG/D1 and rEG/D1-EG/12 HAH192Q

(Figure 7C). These results indicated that the Q192H mutant and

the 129D/I151T double mutant produced a substantial viral

growth advantage in human airway epithelial cells.

Effect of HA mutations on virulence of rEG/D1 viruses in
mice in vivo

To assess the effect of enhanced a2,6 SA binding on

pathogenicity of H5N1 isolates from Egypt, BALB/c mice were

inoculated intranasally with different dilutions of selected recom-

binant viruses. Mice inoculated with 36104 FFU rEG/D1Q192H,

rEG/D1129D,I151T or rEG/D1-EG/12 HA showed considerable

weight loss (Figure 8A). In contrast, mice inoculated with 36104

FFU rEG/D1 or rEG/D1-EG/12 HAH192Q showed no clinical

effects during the 14 d observation period, and most mice infected

with 36105 FFU of these viruses survived. The lethality of rEG/

D1Q192H, rEG/D1129D,I151T and rEG/D1-EG/12 HA was

substantially higher: the MLD50 was 8.86102 FFU for rEG/

D1Q192H, 1.56103 FFU for rEG/D1129D,I151T and 1.36104 FFU

for rEG/D1-EG/12 HA (Figure 8B), .50 times less than the

MLD50 of 5.96105 FFU for both rEG/D1 and rEG/D1-EG/12

HAH192Q. Consistent with this result, the virus yield in lungs of

mice infected with 36104 FFU of the three viruses was .10-fold

higher 4 d post-infection and .110-fold higher 7 d post-infection,

and at a dose of 36105 FFU was .70-fold higher 4 d post-

infection than with parental rEG/D1 virus (Figure 8C).

Lungs of mice infected with 36104 FFU viruses were examined

by histopathology at 7 d post-infection. Mice infected with rEG/

D1Q192H, rEG/D1129D,I151T or rEG/D1-EG/12 HA had much

more dramatic pathological changes in their pulmonary airways

and parenchymal tissues. The lungs had moderate to severe

bronchiolar necrosis and alveolitis with associated hyperplasia,

pulmonary edema and inflammatory cell infiltrates (Figure 9C–

9E). In contrast, lung pathology of rEG/D1 and rEG/D1-EG/12

HAH192Q infected mice showed signs of limited lymphohistiocytic

cell extravasations (Figure 9B and 9F). Mock-infected mice did not

have lesions in their lungs (Figure 9A). H5 antigen was more

extensively detected by immunohistochemistry in the alveolar area

of lungs infected with rEG/D1Q192H, rEG/D1129D,I151T or rEG/

D1-EG/12 HA than in lungs infected with rEG/D1 and rEG/D1-

EG/12 HAH192Q (Figure 9G–9L). Weak antigen staining was only

rarely detected in the bronchiolar area in lungs of mice infected

with rEG/D1 and rEG/D1-EG/12 HAH192Q (see insert in

Figure 9H and 9L). Therefore, the difference in lethality in mice

Figure 4. Effect of HA mutations in sublineage BI viruses on receptor specificity of EG/D1 HA. (A) The mutations found in sublineage BI
viral HAs were introduced as single and multiple mutations into the HA of EG/D1 virus. (B) The reverse mutations were introduced into the HA of EG/
0929 virus. Direct binding to sialylglycopolymers containing either a2,3-linked (blue) or a2,6-linked (red) sialic acid was measured. Mutations are
indicated by subscripts. Each data point is the mean 6 SD of triplicate experiments.
doi:10.1371/journal.ppat.1002068.g004

Figure 5. Effect of HA mutations in sublineage BII viruses on receptor specificity of EG/D1 HA. The mutations found in sublineage BII
viral HAs were introduced as single and multiple mutations into the HA of EG/D1 virus. Direct binding to sialylglycopolymers containing either a2,3-
linked (blue) or a2,6-linked (red) sialic acid was measured. Mutations are indicated by subscripts. Each data point is the mean 6 SD of triplicate
experiments.
doi:10.1371/journal.ppat.1002068.g005
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infected with these viruses was grossly correlated with the growth

kinetics and cytopathicity of the viruses in human airway epithelial

cells. Collectively, these results indicated that enhanced receptor

specificity in vivo enabled rEG/D1Q192H, rEG/D1129D,I151T and

rEG/D1-EG/12 HA to infect mice at lower titers than rEG/D1

and rEG/D1-EG/12 HAH192Q.

Effect of mutations on structural changes in EG/D1 HA
To investigate the structural basis for the changes in human

receptor-binding specificity in viruses in the new sublineages, we

generated models of the HA structures of EG/D1, EG/D1Q192H

and EG/D1129D,I151T from the crystal structure of the HA of A/

Vietnam/1194/04 (H5N1) (Protein Data Bank ID (PDBID) code

2IBX) [24], and performed a docking study with these models and

two types of ligands, SAa2,3Gal (PDIBID code 1MQM) and

SAa2,6Gal (PDIBID code 1MQN). In our modeling, HA residues

120, 210 and 235 were distant from the receptor binding sites in

the EG/D1 HA structure, whereas residues 129, 151 and 192

were located around them (Figure 10A and 10B). A Gln192 to

histidine mutation (and a Gln192 to arginine mutation) generated

a positively-charged side chain in the HA carbon backbone at this

position, which has been reported [24] to stabilize contact of

SAa2,6 Gal-terminated polysaccharides with H5 HA by forming a

hydrogen bond with human receptor moieties (also see Discussion

below). In addition, deletion of Ser129 led to a hydrogen bond

between side chains of the HA carbon backbone at Glu127 and

Thr151, affecting orientation of the 130-Loop (Figure 10C).

Therefore, the double 129D/I151T mutation might affect the

contact angle between human-type receptor ligands and viral HA.

In our simulation, the Udock scores of the complexes between the

SAa2,6 human-type receptor ligand and EG/D1, EG/D1Q192H

and EG/D1129D,I151T HA were 213.51, 218.05 and 216.48 kcal/

mol, respectively (Figure 10C). Therefore, the Udock scores of the

complexes bound to EG/D1Q192H and EG/D1129D,I151T HA were

more negative than with parental EG/D1 HA, indicating more

energetically stable interactions of the mutant HAs with the human

receptor analog. In contrast, the Udock scores of the complexes

between the SAa2,3 avian-type receptor ligand and EG/D1, EG/

D1Q192H and EG/D1129D,I151T HA were relatively similar (214.19,

215.27 and 212.16 kcal/mol, respectively), with the Udock scores

of the complexes bound to EG/D1Q192H and EG/D1129D,I151T HA

not appreciably more negative than with EG/D1 HA. These results

indicated that HAs of the viruses in the new sublineages have

structurally and energetically more stable conformations for binding

human receptors.

Discussion

In this study of H5N1 avian and human influenza viruses

isolated in Egypt, we found that these viruses clustered in several

new H5 sublineages, with a higher than expected binding affinity

for a2,6 SA, and identified the amino acid mutations responsible

for this expanded receptor specificity. Our phylogenetic analyses

also indicated that these viruses emerged during 2007–2008

outbreaks in Egypt. This time overlaps with or slightly precedes an

increase in the number of human cases of H5N1 virus infection in

Egypt [1,10].

HA plays an important role in the attachment of influenza

viruses to host cells and, therefore, influences viral host range and

pathogenicity [12,30–32]. In this study of H5N1 virus (clade

2.2.1), we found that an HA Q192H single mutation or a 129D/

I151T double mutation increased viral binding to a2,6 SA and

increased infection in human airway epithelia. Previous assays [24]

of A/Vietnam/3028II/04 virus (clade 1) and A/chicken/Indone-

sia/N1/05 (clade 2.1) binding to sialylglycopolymers found that an

HA Q192R mutation enhanced binding to a2,6 SA. The Q192H

mutation identified in this study was at the same residue as the

Q192R mutation in the A/Vietnam/3028II/04 and A/chicken/

Indonesia/N1/05 viruses, suggesting that these two mutations

produced a similar conformational change in HA. These structural

changes agreed fairly well with simulation data that the mutation

at this position in an H5 HA model electrostatically enhanced HA

binding affinity to human-like glycan [33]. The Q192H mutation

was not present in H5 HAs in 375 avian influenza viruses and 120

human influenza viruses isolated in Asia, including clade 1, 2.1,

2.2 and 2.3 viruses (Table 2). We examined codon usage in HA of

495 H5 isolates from Asia and 254 isolates from Egypt with Q at

residue 192 and found that all of these viruses encode 192Q using

codon CAA. This result indicates that an amino acid change from

Table 2. Prevalence of HA mutations characteristic of H5 sublineages A, BI and BII viruses in virus isolates from Egypt and Asia.

% of strains showing mutation characteristic of sublineage isolated in (no. of virus strains analyzed)a,b

Asia (495) Egypt (260)

Birds (375) Humans (120) Birds (189) Humans (71)

Isolation year (no. strains) Isolation year (no. strains) Isolation year (no. strains) Isolation year (no. strains)

Sub-
lineage

Characteristic
mutation
in HA

2006
(181)

2007
(134)

2008
(47)

2009
(13)

2006
(95)

2007
(20)

2008
(5)

2009
(0)

2006
(37)

2007
(70)

2008
(73)

2009
(9)

2006
(16)

2007
(23)

2008
(7)

2009
(25)

A Q192H 0 0 0 0 0 0 0 - 0 0 1.3 11.1 0 0 0 16.0

S235P 93.9 98.5 97.8 100 100 100 100 - 0 1.4 5.4 11.1 0 4.3 42.8 24.0

BI S120N 0.5 3.7 0 0 0 0 16.6 - 0 11.4 5.4 11.1 0 21.7 28.5 84.0

129 D 0 0 0 0 0 0 0 - 0 8.5 5.4 22.2 0 21.7 28.5 84.0

I151T 0 0.7 10.6 0 2.1 0 0 - 0 8.5 5.4 22.2 0 21.7 28.5 84.0

BII V210I 1.6 2.2 21.2 0 0 0 0 - 0 0 0 0 0 0 0 20.0

aPercent of H5N1 viruses that have mutation characteristic of sublineages A, BI and BII for each geographic region, host and year.
bSequence information from the National Center for Biotechnology Information database in addition to sequences analyzed for this study.
- denotes no sequence information available.
doi:10.1371/journal.ppat.1002068.t002
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Figure 6. Attachment of rEG/D1 viruses to tissues of the human respiratory tract. The attachment patterns of A/Japan/434/2003 (H3N2), A/
Duck/Hong Kong/820/80 (H5N3), and eight rEG/D1 viruses (rEG/D1, rEG/D1-EG/11 HA, rEG/D1-EG/29 HA, rEG/D1-EG/12 HA, rEG/D1Q192H, rEG/
D1129D,I151T, rEG/D1129D,I151T,V210I and rEG/D1-EG/12 HAH192Q) to fixed human larynx, trachea and alveoli tissue sections were examined by
histochemistry. Attached viruses were stained red. Arrows and arrow-heads indicate type I and type II pneumocytes, respectively. The panels were
chosen to reflect the attachment pattern in each tissue section as much as possible.
doi:10.1371/journal.ppat.1002068.g006
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Q to H or R at residue 192 required a one nucleotide change

(CAA to CAT/CAC (H) or CGA(R)). The higher frequency of a

transversion to encode H may have enabled such a mutation to

occur more frequently in HAs of H5 viruses in Egypt.

Since the HA Q192R substitution might be selected during viral

growth in a human patient and enhance a2,6 SA binding in the

human respiratory tract [24], we constructed rEG/D1 with this

HA substitution and found its a2,6 SA binding affinity similar to or

slightly greater than rEG/D1Q192H and rEG/D1129D,I151T (data

not shown). In addition, deletion of HA residue 129 was not found

in any of the H5 HAs of the 495 Asian isolates examined, and the

I151T substitution was only detected in H5 HAs isolated from 6

birds and 2 human patients in Asia (1.6% and 1.7% prevalence,

respectively). H5 HA residues 129 and 151 make atomic contact

with sialoglycosides [34]. We showed here that the 129D mutation

generates a new hydrogen bond between Glu127 and Thr151,

resulting in conformational changes around the binding pocket

(Figure 10C). This effect around the glycosidic bond in H5 HAs

seems to be unique to the viruses isolated in Egypt. We also

searched for similar mutations (Q192H and the double 129D/

I151T mutation) in 4507 avian influenza viruses with HAs H1–13

and H16 and found that only 3 bird isolates had these mutations

(Table S2): Quail/Nanchang/12-340/2000 (H1N1), Turkey/

Minnesota/40550/1987 (H5N2), and Ruddy turnstone/Dela-

ware/2762/1987 (H11N2). Such mutations were not present in

any of the H1, H2 or H3 HAs of the human isolates in the early

years of the Spanish flu (1918), Asian flu (1957), Hong Kong flu

(1968) and Russian flu (1977) pandemics, in which these avian

subtypes crossed the species barrier to humans. However, it is

noteworthy that most of the viruses in this study that clustered in

sublineage B were reported to have evolved towards an H1N1-like

receptor usage, to efficiently replicate in the upper respiratory

Figure 7. Growth kinetics of rEG/D1 viruses in avian cells and human cells. (A) CEF cells were infected in triplicate with parental EG/D1 and
five rEG/D1 viruses (rEG/D1, rEG/D1Q192H, rEG/D1129D,I151T, rEG/D1-EG/12 HA and rEG/D1-EG/12 HAH192Q) at an MOI of 0.1 or 0.01. (B) Human SAEC
cells were infected in triplicate with the viruses at an MOI of 1 or 0.1. The culture supernatants were harvested at the indicated times and assayed for
focus-forming units on CEF cells to determine the progeny virus titer (log10 FFU/ml). Each data point in (A) and (B) is the mean 6 SD of triplicate
experiments. (C) Phase contrast microscopy of morphological changes in SAEC cells infected by the indicated viruses at an MOI of 0.1 and examined
at the indicated times post-infection.
doi:10.1371/journal.ppat.1002068.g007
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tract, and that structural properties of the receptor binding sites of

Spanish flu viruses and sublineage B viruses are much closer to

each other than to other H1N1 and H5N1 viruses [35]. In

contrast, a conformational change in HA due to S235P and

S120N mutations was not observed in our structural model: these

were also shown not to increase HA affinity for a2,6 SA by direct

binding assays (data not shown).

Our data suggested that H5N1 viruses from Egypt had acquired

amino acid mutations enabling a2,6 SA binding during their

transmission among birds, not during viral growth in human

patients. First, avian isolates were at the base and within branches

of the phylogenetic tree of new sublineages A and B, and clustered

closely with human isolates (Figure 1). Moreover, all of the avian

isolates already had identical mutations that contributed to

Figure 8. Mortality and weight loss of mice infected with rEG/D1 viruses. Six-week-old BALB/c mice (7–8 mice per group) were inoculated
intranasally with the indicated doses of rEG/D1, rEG/D1Q192H, rEG/D1129D,I151T, rEG/D1-EG/12 HA and rEG/D1-EG/12 HAH192Q. (A) Body weight of
infected mice was monitored up to 14 d post-infection. Mean percent body weight change (6SD) for each group of mice is shown. (B) Survival of
mice inoculated with rEG/D1 viruses. Mortality was calculated including mice that were sacrificed because they had lost more than 30% of their body
weight. (C) Virus titers in lungs of mice infected with 36104 or 36105 FFU rEG/D1 at the indicated times post-infection. Circles and diamonds indicate
values in individual mice.
doi:10.1371/journal.ppat.1002068.g008

Emergence of New H5N1 Influenza Virus Sublineages

PLoS Pathogens | www.plospathogens.org 12 May 2011 | Volume 7 | Issue 5 | e1002068



binding affinity for the human-type receptor (Tables S3, S4, S5).

Second, critical amino acid mutations involved in a2,6 SA

recognition (Q192H and the double 129D/I151T mutation) were

not found in any of the H5 HAs from human isolates

phylogenetically unrelated to sublineages A and B. Therefore, it

is unlikely that viruses with these mutations were newly selected

during viral growth in humans. Third, all viruses examined here

exhibited a classical avian a2,3 SA binding affinity and replicated

efficiently in CEF cells, suggesting that these viruses had retained

HAs for efficient transmission among birds (Figure 7A).

Several amino acid mutations that increase a2,6 SA binding

affinity of H5 virus HAs have recently been described in human

isolates [23,24,36]. It is possible that such mutations were selected

in humans and played an important role in viral recognition of

human-type receptors. However, there have been only limited

reports of those mutations in H5 HAs in infections in human

patients [23,24,36]. Considering that the mutations in H5 HAs in

birds identified here have been found in some population of birds

in the vicinity of humans, such viral mutations emerging in birds

may be as important risk factors for human H5N1 infections as

those mutations emerging in viruses infecting humans. Thus far,

there have been few reports of HPAIV in bird populations with

increased affinity for a2,6 SA [37].

At present, the determinants of efficient human-human

transmission by avian influenza viruses are not completely

understood [21,38]. It is generally thought that both a change in

receptor specificity from a2,3 SA to a2,6 SA and the resultant shift

in infection to the upper respiratory tract are essential [39].

However, most amino acid mutations in H5 HAs that have been

reported to increase a2,6 SA binding have not conferred a

complete change in receptor specificity in the original virus genetic

background [23,24,40,41]. But, Chutinimitkul et al. have recently

reported that some mutations can cause a complete change in the

A/Indonesia/5/05 background [42]. Increased a2,6 SA binding

affinity and reduced a2,3 SA binding affinity was also observed

among North American lineage H7 viruses isolated in 2002–2004

[37]. In contrast, we found that all of the H5N1 viruses in this

study retained the classical avian a2,3 SA binding affinity

(Figures 2–5). Histochemistry using human tissues also found that

viruses in this study with avian H5 HA mutations had little

attachment to the larynx, but moderate attachment to trachea and

abundant attachment in alveoli (Figure 6), whereas human H3N2

virus extensively bound to both the larynx and trachea. These

results suggested that H3 and H5 viruses recognized more

complex glycan topologies, which have not yet been fully

elucidated in human airway epithelia [28,29]. This conclusion is

in agreement with the suggestion that H5N1 viruses attach to

receptors in the human upper respiratory tract that are not

detected by lectin histochemistry and with data that H5N1 viruses

can productively replicate in ex vivo cultures of human

nasopharyngeal tissues [43].

These findings suggest that currently circulating H5N1 viruses

in Egypt lack gene products for efficient human-human

transmission, even though they have caused a relatively large

number of human cases in Egypt. Indeed, most human infections

resulted from direct exposure to H5N1 virus-infected poultry or

poultry products and no sustained human-human transmission

has been documented to date in Egypt [1,44]. It should be noted

that our findings do not allow determination of the potential for

an H5N1-derived pandemic virus in Egypt. However, the

emergence of sublineage A and B H5N1 viruses is a possible

contributing factor to Egypt recently having the highest number

of human H5N1 influenza virus cases in the world, with repeated

avian infections increasing the probability of avian-human

transmission. To our knowledge, this is the first report identifying

amino acid changes in H5 HA responsible for an increase in

human H5N1 infections in an endemic area.

Mice have been an animal model for studying influenza

[45–47]. In this study, we found that the HA mutations enabling

a2,6 SA binding enhanced viral virulence in BALB/c mice

(Figure 8). These results are consistent with a previous report on

different influenza viruses and different HA amino acid residues

Figure 9. Histopathology and immunohistochemistry in lung
tissues of mice infected with rEG/D1 viruses. Photomicrographs
of hematoxylin-and-eosin (H&E) stained and immunohistochemically
(IHC) stained lung sections from mice infected with 36104 FFU rEG/D1
viruses 7 d post-infection are shown as follows. (A) and (G) mock-
infected. (B) and (H) rEG/D1-infected. (C) and (I) rEG/D1Q192H-infected.
(D) and (J) rEG/D1129D,I151T-infected. (E) and (K) rEG/D1-EG/12 HA-
infected. (F) and (L) rEG/D1-EG/12 HAH192Q-infected. In the IHC-stained
tissues, viral antigen is stained deep brown on a hematoxylin-stained
background (arrows). In mice infected with rEG/D1 and rEG/D1-EG/12
HAH192Q, positive staining was detected sporadically in the bronchiolar
epithelium (insert).
doi:10.1371/journal.ppat.1002068.g009
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in a ferret model [48]. Reports on lectin histochemistry showed

that BALB/c mice express both a2,3 and a2,6 SA in airway

epithelia, with a2,3 SA specifically expressed in the upper

respiratory tract and a2,6 SA expressed in pulmonary paren-

chyma [49]. Previous histochemistry report on seasonal human

influenza viruses H3N2 and H1N1 showed rare attachment to

mouse type I pneumocytes, indicating the presence of glycan

topologies in alveoli to which influenza viruses with a2,6 SA

binding affinity attach [27]. In this study, recombinant avian H5

viruses with single and double point mutations that should affect

receptor binding were found to have acquired a2,6 SA binding

affinity, and the resultant expansion of receptor specificity in vivo

contributed to enhanced virulence in mice. Indeed, virus titers in

the lungs of mice infected with the mutant viruses were more

than one log higher than in mice infected with the parental virus

(Figure 8C), corresponding to severe histopathological changes

(Figure 9). These results were consistent with histochemistry

showing that the mutants acquired enhanced attachment affinity

to human type I pneumocytes (Figure 6). Type I pneumocytes

comprise 96% of the alveolar surface area, which is extremely

thin, thereby minimizing the diffusion distance between the

alveolar air space and pulmonary capillary blood [50].

Therefore, viral binding specificity for this cell type has

implications for the development of pneumonia. However, other

factors also need to be considered, such as the low similarity of

the SA expression pattern in mice relative to that in humans

[26,27]. Thus, it would be of interest to determine the effect of

the substitutions in HA described here on virus virulence in the

ferret model, which is a more suitable animal model for human

H5N1 viral pneumonia [26,27]. Our studies also found that EG/

D1, an ancestral strain of currently circulating H5N1 viruses in

Egypt, was not highly pathogenic in mice, as indicated by an

MLD50 .105 FFU (Figure 8B). Avian and human H5N1 viruses

in Egypt, including EG/D1, encode PB2-627Lys, which

reportedly enhances the host range and virulence of influenza

viruses [30,47,51]. The results of this study indicate that this

Figure 10. Analysis of receptor docking modes of EG/D1 HA and HA mutants. Structural models of H5 HA. (A) Ribbon model of EG/D1 HA.
The trimeric globular-head region is shown. Key residues in our analysis are shown in a colored space-filling model. Receptor binding domains are
colored blue (130 loop), green (190 helix) and purple (220 loop). (B) Molecular surface of EG/D1 HA. The red circle indicates the receptor binding
pocket. (C) Docking models for EG/D1, EG/D1Q192H and EG/D1129D,I151T HA with a human-type receptor analog (PDBID code 1MQN). Residues 127E,
128A, 130S and 131G are colored green, as is 129S, and the other residues and domains are displayed in the same colors as above. An additional
hydrogen bond between E127 and T151 is indicated in the red circle. The Udock scores of the corresponding complexes are shown at the bottom.
doi:10.1371/journal.ppat.1002068.g010
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amino acid residue alone does not provide sufficient replicative

advantage in mammals for the influenza viruses (clade 2.2.1) in

Egypt, although it may be a prerequisite for H5N1 virus

virulence in mammalian hosts.

The mechanism underlying the emergence of H5N1 viruses in

Egypt with both a2,3 SA and a2,6 SA binding affinities is

unclear. Some H7 viruses isolated in North America from 2002–

2004 showed a marked decrease in a2,3 SA binding together with

increased binding to glycans with a2,6 SA [37], and several

H5N1 field isolates (clade 2.3.4) in the Lao People’s Democratic

Republic in 2007–2008 had reduced binding to a2,3 SA

receptors [52]. In contrast, H5 viruses isolated in Egypt have

retained the classical avian a2,3 SA binding affinity (Figures 2–5).

Previous studies have shown passage of H5N1 viruses through

land-based poultry as a possible mechanism for emergence of

dual receptor specificity [17,53]. However, most bird isolates in

Egypt, found to be clustered in sublineages A and B in this study,

were recently reported to be derived from domestic waterfowl,

not from land-based poultry [54]. In addition, these H5N1

viruses showed an appreciably different attachment pattern in the

human respiratory tract than that of typical avian viruses

(Figure 6). Therefore, the binding properties of H5 viruses in

Egypt may be the result of geographic and cultural factors that

have yet to be identified.

Egypt has a relatively large number of human cases of H5N1

virus infection, and the highest number of cases worldwide since

2009 [1,10]. The influenza virus phylogenetic tree suggests that

sublineages A and B, the focus of this study, emerged during virus

diversification in birds. At present, viruses grouped in sublineages

C and D are widely disseminated across Egypt. Therefore, it

remains possible that repeated circulation in birds would allow

sublineage C and D viruses to acquire amino acid change(s) other

than those identified here that could enable increased a2,6 SA

binding affinity, although the amino acid mutations identified here

may be useful markers in assessing H5N1 field isolates for their

potential to infect humans. Since clade 2.2 appeared in Egypt in

2006, Egypt has had a single known introduction of a clade 2.2.1

H5N1 virus. Neither introduction of other phylogenetically

distinct sublineages of clade 2.2 (I, II and III) nor reassortment

events between the sublineages, as detected in neighboring Nigeria

[55–57], have been documented in Egypt [7,58]. Such events also

were not observed in our phylogenetic analyses of HA and NA

genes (Figures 1 and S1). However, introduction of these

sublineages into Egypt could accelerate the evolutionary dynamics

of H5N1 virus. Moreover, all Egyptian viruses (clade 2.2.1), which

emerged during the 2005 Qinghai Lake outbreak in China [3,4],

have mammalian-type PB2-627Lys [30,47,51], implying the

potential for evolution to a pandemic virus. Therefore, there is a

critical need for continued surveillance of birds to monitor

receptor specificities of H5N1 field isolates in Egypt as well as

the pandemic potential of these strains.

Materials and Methods

Ethics statement
All animal studies were conducted under the applicable laws

and guidelines for the care and use of laboratory animals in the

Research Institute for Microbial Diseases, Osaka University,

approved by the Animal Experiment Committee of the Research

Institute for Microbial Disease, Osaka University, as specified in

the Fundamental Guidelines for Proper Conduct of Animal

Experiment and Related Activities in Academic Research

Institutions under the jurisdiction of the Ministry of Education,

Culture, Sports, Science and Technology, Japan, 2006.

Virus isolation and preparation
During outbreaks of highly pathogenic avian influenza in Egypt

from January 2007 to February 2009, 27 nasopharyngeal swab

and tissue samples (lung and trachea) were collected from sick or

dead chickens and ducks from commercial farms and backyard

farms. Of these samples, 21 were identified as H5-positive by

reverse transcription-polymerase chain reaction (RT-PCR) and

selected for virus isolation. Twenty viruses were eventually isolated

by single passage in the allantoic cavity of 11-day-old embryonated

chicken eggs. The allantoic fluids were then harvested and stored

as seed viruses at 280uC. Laboratory strains A/Duck/Hong

Kong/820/80 (H5N3) and human influenza A virus A/Japan/

434/2003 (H3N2) were kindly provided by Yoshinobu Okuno,

Kanonji Institute, The Research Foundation for Microbial

Diseases of Osaka University, Kagawa, Japan. For subsequent

studies, allantoic fluids were pre-cleared by centrifugation at

3,000 rpm for 20 min and filtration through 0.45 mm filters, and

viruses were then purified by centrifugation at 25,000 rpm for 2 h

through 20% and 60% sucrose. After collection of the virus-

containing fractions, viruses were suspended in PBS and pelleted

by centrifugation at 25,000 rpm for 2 h. Virus pellets were

resuspended in PBS and aliquots were stored as working stocks at

280uC. Virus titers were assayed as FFU by focus-forming assays

[59] on CEF cells for avian influenza viruses and on MDCK cells

for human H3N2 virus. All experiments with live H5N1 viruses

were performed in Biosafety Level 3+ (BSL 3+) conditions at

Osaka University, as approved for work with these viruses by the

Ministry of Agriculture, Forestry and Fisheries, Japan.

Cells
CEF cells were prepared from 11-day-old embryonated eggs.

MDCK cells were purchased from the Riken BioResource Center

Cell Bank (http://www.brc.riken.jp/lab/cell/english/). These cell

lines were maintained in Dulbecco’s Modified Eagle’s Medium

supplemented with 10% heat-inactivated fetal calf serum at 37uC
in a humidified atmosphere of 95% air and 5% CO2 as described

previously [60]. Human primary SAEC cells were purchased from

the Lonza Corporation (http://www.lonza.com/) and maintained

according to the manufacturer’s recommendations.

Sequence analysis
Viral RNA was extracted from viruses using Trizol Reagent

(Invitrogen, http://www.invitrogen.com/) according to the man-

ufacturer’s protocol. RT-PCR was done using an oligonucleotide

(Uni12) complementary to the conserved 39 end of viral RNA

[61]. Gene cloning and sequencing were done on at least 3

independent clones per segment as described previously [62].

The nucleotide sequence data analyzed for viruses in this study

are available in the DDBJ/EMBL/GenBank databases under the

accession numbers AB601121 to AB601156.

Generation of viruses by reverse genetics
Recombinant viruses were generated with a plasmid-based

reverse genetics system [63]. The viral complementary DNAs were

cloned into pUC18-based plasmids, between the human RNA

polymerase I promoter and the hepatitis delta virus ribozyme

(pPOLI). All viruses generated by reverse genetics carried the HA

gene of one of the viruses being studied, with the other genes

coming from EG/D1. The HA genes of EG/0929, EG/4822 and

EG/2039 were synthesized using the sequences registered in the

NCBI database Influenza Virus Resource (IVR, http://www.ncbi.

nlm.nih.gov/genomes/FLU/FLU.html) and site-directed muta-

gensis PCR (GeneTailor Site-Directed Mutagenesis System;
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Invitrogen). Mutant HA genes were generated by PCR-based site-

directed mutagenesis in the EG/D1, EG/12, EG/0929, EG/4822

or Eg/2039 HA background. All constructs were sequenced

completely to ensure the absence of unwanted mutations.

Recombinant viruses were generated by plasmid transfection of

co-cultured 293T and CEF cells, and were propagated in eggs.

The HA genes of the virus stocks were sequenced to detect the

possible emergence of revertants during amplification.

Genetic analysis
For phylogenetic analysis of HA genes, published HA sequences

of 85 representative H5N1 influenza A viruses isolated in Egypt

from 2006 to 2009 were obtained from the NCBI database

(http://www.ncbi.nlm.nih.gov/nucleotide). Phylogenetic analysis

was performed on those 85 HA sequences and on the HA

sequences of the 21 viruses isolated in this study using MEGA4

software [64] for the neighbor-joining method, with the nucleotide

sequences covering most of HA gene. Estimates of the phylogenies

were calculated by performing 1,000 bootstrap replicates. For

phylogenetic analysis of NA genes, published NA sequences from

the NCBI database of 65 representative H5N1 viruses isolated in

Egypt from 2006 to 2009 together with the NA sequences of 19

viruses isolated in this study were analyzed. For a database search,

published sequences of 260 HA genes from influenza A viruses

isolated in Egypt from 2006 to 2009 from NCBI IVR were

analyzed. For comparison, published HA sequences of 495 H5N1

influenza A viruses recently identified in Asia were also obtained

from NCBI IVR. These sequences were aligned by the MAFFT

program [65] and the HA1 regions were compared with the

sequences of the viruses isolated in this study.

Hemagglutination titration
Stocks of avian and human influenza viruses were serially

diluted with PBS and mixed with 0.5% chicken red blood cells

and 0.75% guinea pig red blood cells, respectively. Hemagglu-

tination by avian and human influenza viruses was observed

after incubation at room temperature for 30 min or 1 h,

respectively to determine their HAU. To correct for differences

in HAU values due to different blood lots, a reference virus

sample was used and HAU values of all virus samples were

adjusted relative to the reference HAU titer of EG/D1, which

was used in the optimization analysis of the following receptor

specificity assay.

Receptor specificity assay
Receptor binding specificity was analyzed by a solid-phase

direct binding assay as described previously [23,24,52], with a

sialylglycopolymer containing N-acetylneuraminic acid linked to

galactose through either an a2,3 or a2,6 bond (Neu5Aca2,3-

LacNAcb-pAP, and Neu5Aca2,6LacNAcb-pAP). Serial dilutions

of each sialylglycopolymer were prepared in PBS, and 100 ml was

added to each well of 96-well microtiter plates (Polystyrene

Universal-Bind Microplates, Corning, http://www.corning.com/).

The plates were then irradiated with 254 nm ultraviolet light for

10 min and each well was washed three times with 250 ml PBS.

Each well was blocked with 100 ml PBS containing 0.1% Tween 20

(PBST) and 2% bovine serum albumin at room temperature for 1 h.

After washing with ice-cold PBST, a solution containing influenza

viruses (64 HAU in PBST) was added to each well and the plates

were incubated at 4uC for 12 h. After washing five times with ice-

cold PBST, mouse anti-NP antibody (against influenza virus NP

protein) was added to each well and the plates were incubated at

4uC for 2 h. The wells were then washed five times with ice-cold

PBST and incubated with peroxidase-conjugated goat anti-

immunoglobulin (Histofine Simple Stain MAX-PO, Nichirei,

http://www.nichirei.co.jp/bio/english/) at 4uC for 2 h. After

washing five times with ice-cold PBST, 100 ml premixed tetra-

metylbenzidine-H2O2 substrate was added to each well. After

incubation at room temperature for 10 min, the reactions were

stopped with 50 ml 1 M H2SO4, and absorbance at 450/630 nm

was measured.

Binding data were plotted against the concentration of sialic

acid residues in the reaction solution and were analyzed using

GraphPad Prism version 5.0 (GraphPad Software, http://www.

graphpad.com/). To determine the apparent association con-

stant (Ka) values, nonlinear regression was used to fit the data

based on the one-site model. Each data point is the mean 6 SD

of three to six experiments, which were each performed in

triplicate.

Viral growth kinetics in SAEC and CEF cells
SAEC cells were infected in triplicate with the indicated viruses

at an MOI of 1 or 0.1. The virus inoculum was removed after 1 h

and the cells were washed and airway epithelial growth medium

(SAGM; Lonza) containing bovine pituitary extract (BPE; 30 mg/

ml), hydrocortisone (0.5 mg/ml), human epidermal growth factor

(hEGF; 0.5 ng/ml), epinephrine (0.5 mg/ml), transferrin (10 mg/

ml), insulin (5 mg/ml), triiodothyronine (6.5 ng/ml), bovine

serum albumin-fatty-acid free (BSA-FAF; 50 mg/ml), retinoic

acid (RA; 0.1 ng/ml), gentamycin (30 mg/ml) and amphotericin

B (15 ng/ml) was added. Acetylated trypsin (2 mg/ml, Sigma-

Aldrich, http://www.sigmaaldrich.com/) was also added to

SAEC cultures for propagation of human H3N2 virus. At the

indicated times post-infection, virus titers in the cell culture

supernatants were determined in triplicate by FFU assays in CEF.

For determination of viral growth in CEF cells, the cells were

infected in triplicate at an MOI of 0.1 or 0.01. At the indicated

times post-infection, virus titers were determined in triplicate by

FFU assays. Preliminary lectin-based flow cytochemistry studies

indicated a difference in SA expression on the surface of SAEC

and CEF cells without growth under air-liquid interface

conditions, with predominant expression of a2,6 SA in SAEC

cells and of a2,3 SA in CEF cells. Therefore, all cell cultures in

this study were established without air-liquid interface conditions

as described previously [47,66].

Virus histochemistry in tissue sections
To produce fluorescein isothiocyanate (FITC)-labeled viruses

for histochemistry, influenza viruses, purified and concentrated as

described above, were inactivated with formalin in PBS (0.025%

final concentration) for 24 h at 37uC. The virus mixture was then

dialyzed against PBS for 18 h at 4uC and complete inactivation

was confirmed by assay on MDCK cells. A 1 ml sample of

inactivated virus was then mixed with 0.1 ml 1.1 M carbonate-

bicarbonate buffer (pH 9.5) containing 0.55 mg FITC isomer I
(Invitrogen)/ml for 1 h at room temperature with constant

stirring, followed by dialysis of the mixture against PBS for 42 h

at 4uC. To check for hemagglutination activity by the inactivated

virus, the viral hemagglutination titer was assayed after formalin

inactivation and FITC labeling.

Formalin-fixed paraffin-embedded human respiratory tract

tissue sections were obtained from US Biomax, Inc. (http://

www.biomax.us/). The paraffin-embedded tissues were deparaffi-

nized with xylene and hydrated using graded alcohols. After

blocking with Carbo-Free Blocking Solution (Vector Laboratories,

http://www.vectorlabs.com/), the tissues were then blocked with

Blocking Reagent (Perkin Elmer, http://www.perkinelmer.com/).

FITC-labeled influenza viruses were incubated with tissue sections
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at 4uC for 12 h at a titer of 128 HAU per section. The FITC

label was detected with peroxidase-conjugated rabbit anti-

FITC antibody (Dako, http://www.dako.com/). The signal was

amplified with a tyramide signal amplification system (Perkin

Elmer) according to the manufacturer’s instructions. Peroxidase

was visualized with 3-amino-9-ethyl-carbozole (AEC+ Substrate

Chromogen, Dako), resulting in a bright red precipitate. Tissues

were counterstained with hematoxylin and embedded in Aquatex

(Merck Chemicals, http://www.merck-chemicals.com/). Omis-

sion of FITC-labeled virus was used as a negative control. The

specificity of the virus histochemistry was verified as follows. Tissue

sections, deparaffinized and hydrated as described above, were

treated with Arthrobacter ureafaciens sialidase (100 mU/ml, Nacalai

Tesque, http://www.nacalai.co.jp/) in sodium acetate buffer

(100 mM, pH 5.8) for 1 h at 37uC or mock-treated before

performing virus histochemistry. Micrographs were taken using a

Nikon Eclipse TE2000-U Inverted Microscope (Nikon, http://

www.nikon.com/).

Experimental infections in mice
To determine MLD50 values, groups of 6-week-old female

BALB/c mice (Japan SLC, Inc., http://www.jslc.co.jp/), under

isoflurane anesthesia, were inoculated intranasally with serial

10-fold dilutions of virus in 75 ml PBS, and MLD50 values were

calculated by the Reed-Muench method and expressed as FFU

required for 1 MLD50. Mice were observed daily for 14 d for

weight loss and mortality. Mice that lost .30% of their original

weight were euthanized. At 4 and 7 d after inoculation with

36104 FFU and at 4 d after inoculation with 36105 FFU

(because of mouse deaths before day 7 at this dose), virus titers

in the lungs were assayed as FFU in CEF cells. Virus titers in

lungs were expressed as log10 FFU. The lower limit of virus

detection was 2 log10 FFU/lung. For histopathology analysis,

mouse lungs collected at 7 d after inoculation with 36104 FFU

were fixed in 4% buffered paraformaldehyde, embedded in

paraffin, cut into 5 mm sections, stained with hematoxylin and

eosin, and examined by light microscopy. Immunohistochemical

staining for the H5 antigen was performed on deparaffinized

sections using a monoclonal antibody (C43) specific for the

nucleoprotein of influenza A virus by a two-step peroxidase

method (Hisfine Mouse Stain Kit, Nichirei) with diaminobenzi-

dine as the chromogen and hematoxylin as the counterstain. For

controls, unrelated antibodies were used in place of the primary

antibody.

Homology modeling and docking
The crystal structure of the HA of influenza virus A/Vietnam/

1194/04 (H5N1) (Protein Data Bank ID code 2IBX) [24] was used

as a template for homology modeling of EG/D1, EG/D1Q192H,

and EG/D129D,I151T by the Molecular Operating Environment

(MOE, http://www.chemcom.com). SA a2,3- and SA a2,6-linked

analogs (PDBID code 1MQM and 1MQN) were used as the input

for a docking study with the model HA structure using MOE

ASEDock [67]. The MMFF94x force field and the generalized Born

(GB) solvation model were used for the minimization step. The

complexes were evaluated by Udock scores which show the affinity

between ligand and receptor. Because SA a2,3- and SA a2,6-linked

analogs are a disaccharide and a trisaccharide respectively, the

absolute value of their Udock scores cannot be compared between

the complex bound to the a2,3-linked analog and that bound to the

a2,6-linked analog. However, Udock scores enable the binding mode

of the same analog to different HAs to be compared.

Supporting Information

Figure S1 Phylogenetic tree of NA genes of H5N1 viruses isolated

in Egypt. This tree includes published NA sequences of 63 H5N1

influenza A viruses isolated in Egypt, from the National Center for

Biotechnology Information database (minimum sequence length

1,150 nt), and 19 NA sequences determined in this study (sequence

length 1,350 nt). The sequences analyzed in this study are marked

with a black circle. Colors are used to highlight virus strains with

different hosts, isolation year and sublineage.

(TIF)

Figure S2 Optimization of viral HA titers for direct binding

assays. These assays were done using 4-fold dilutions of EG/D1

and EG/12 viruses (measured as HAU), with titers ranging from

512 to 8 HAU. Direct binding of viruses to sialylglycopolymers

containing either a2,3-linked (blue) or a2,6-linked (red) SA was

measured. Each data point is the mean 6 SD of triplicate

experiments.

(TIF)

Figure S3 Effect of reverse mutations in sublineage A and BI

virus HAs on receptor specificity. The reverse mutations to those

in Figures 3 and 4 were introduced into the HAs of sublineage A

virus EG/4822 (A) and sublineage BI virus EG/2039 (B). Direct

binding to sialylglycopolymers containing either a2,3-linked (blue)

or a2,6-linked (red) sialic acid was measured. Mutations are

indicated by subscripts. Each data point is the mean 6 SD of

triplicate experiments.

(TIF)

Figure S4 Specificity of virus histochemistry. Attachment of A/

Japan/434/2003 (H3N2), upper two panels, and EG/D1 virus,

lower two panels, to human respiratory tract tissues. Tissue

sections were treated or mock-treated with Arthrobacter ureafaciens

sialidase before performing virus histochemistry. The panels were

chosen to reflect the attachment pattern in each tissue section as

much as possible.

(TIF)

Table S1 Virus binding affinity to sialylglycopolymers.

(PPT)

Table S2 Virus strains encoding HA 129D/I151T and Q192H

mutations in avian influenza virus A virus subtypes.

(PPT)

Table S3 Properties of H5N1 influenza viruses in sublineage A.

(PPT)

Table S4 Properties of H5N1 influenza viruses in sublineage BI.

(PPT)

Table S5 Properties of H5N1 influenza viruses in sublineage

BII.
(PPT)
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