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LAURENT POLYNOMIAL PERTURBATIONS OF LINEAR FUNCTIONALS.
AN INVERSE PROBLEM. *

KENIER CASTILLOf, LUIS GARZA¥, AND FRANCISCO MARCELLANf
Dedicated to Richard S. Varga, on the occasion of his 80tihtay.

Abstract. Given a linear functional in the linear spacd of polynomials with complex coefficients, we
analyze those linear functionafssuch that, for a fixedr € C, (£, (z + 2~ 1 — (a4 &))p) = (L, p) for every
p € P. We obtain the relation between the corresponding Cardtirgdunctions in such a way that a linear spectral
transform appears. If is a positive definite linear functional, the necessary arfticgent conditions in order for
L to be a quasi-definite linear functional are given. The imtabetween the corresponding sequences of monic
orthogonal polynomials is presented.
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1. Introduction. LetT = {cy_;}x,>0 be a Hermitian Toeplitz matrix. On the linear
spaceA of the Laurent ponnomiaIéA = span {Zn}nEZ) with complex coefficients, we can
introduce a linear functional : A — C such that

(L,z"y =cn, n=0.

The complex numbet,, is said to be theeth moment associated with. From the Hermitian
character ofT’ we have

cn =(L,2")=(L,27") =T, neEL

Then, a bilinear functional associated within the linear spac® of polynomials with
complex coefficients can be defined as follows (seé.1])

(p(2),q(2)) . = (L, p(2)q(z71)),

wherep, q € P.

The functionall is said to be quasi-definite if the principal leading submag of T
are non-singular. In this case, there exists a unique seguEmonic polynomial$®n}n>0
such that

<®n7 ®m>£ = knén,m7

wherek,, = ||®,||* # 0 for everyn > 0. Itis said to be the monic orthogonal polynomial
sequence associated with

These polynomials satisfy the following recurrence relaidue to G. Széy(see ¥, 10,
16, 19)

(1.1) Dpyp1(2) = 2P (2) + Ppy1 (0) P} (2),
(1.2) Dy y1(2) = (1= [@n11(0)[*)2®Pn(2) + Pry1 (0) P44 (2),
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where @ (z) = 2"®,(z~!) is the so-called reversed polynomial associated #iff{z)
(see [L6]), and the complex numbe#gb,,(0)},>1, with |®,,(0)| # 1 for everyn > 1, are
called reflection (or Verblunsky) parameters. Moreoverhaee
k?L

(1.3) TH =1—[®,41(0))* n=0.

On the other hand, if the determinants of the leading pradcgubmatrices ofl’ are
positive, then the linear functional is said to be positiediite and it has the following
integral representation

(1.4) €p) = [ pedo(z), pen

whereo is a nontrivial probability measure supported on the umilei(see 7, 10, 11, 16]),
assuming:, = 1. We will maintain this assumption throughout the remairofithe paper.
The measure can be decomposed as the sum of an absolutely continuousimeadth

dl _ .
respect to the Lebesgue measg%eand a singular measure. Thusyit= ¢/, then
s

(1.5) do(6) = w(0) 5 + do(0).

In the positive definite case, there exists a unique sequarmthonormal polynomials
{®n},0 such that

<§0na @m>£ - 5nm
Notice thatp,,(z) = ®,,(2)/||®.||. Moreover, we havéd,, (0)| < 1 for everyn > 1.
Then-th reproducing kernek’, (z, y) associated witH®,, },, ., is defined by

- Q;(y)®;(= O ()P 1(2) = Prp1(y)Prya(2)
Ko(z,y) = (y,)gj &) _ Zanly Z,L+1(1—gZ) Y12,

j=0
Furthermore,
O (2) = kn K, (2,0).

In terms of the momente,, },, -, an analytic function in a neighborhood of= 0,

(1.6) Fz)=1+2 Z c_nz",
n=1

can be introduced. If is a positive definite linear functional, théf(z) is analytic in|z| < 1,
andfe (F'(z)) > 0 therein. In such a cask(z) is said to be a Carathéodory function and
it can be represented as a Riesz-Herglotz transform of th&ivial probability measurer
introduced in (.4) (see [, 11, 16])

m@:Aw+Z@my

w—z

As a convention, if{c; }rez is the sequence of moments associated with a quasi-definite
functional £, then the function given in1(6) is said to be the Carathéodory function asso-
ciated with£. F(z) can be interpreted as a functional "mirror" of the sequefigg,,>o.

The Carathéodory functions for some perturbations of a oreas(or its associated linear
functional) have been studied ihJ] for the following three canonical cases:
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(i) do = |z — a|?do, a € C, |z| = 1 (Christoffel transformation).
(ii) do = do+md(z—a)+md(z—a '), a,m € C, a # 0 (Uvarov transformation).
(i4i) do = ﬁda—&-m&(z—a)—l—ﬁé(z—a’l), |z] = 1,m € C,and|a] € R\ {0,1}
(Geronimus transformation).
These three examples of canonical spectral transform$3sge, 12, 14], among others) are
the analogues on the unit circle of the canonical specaastorms on the real line considered
by several authors; seé&,[17, 21, 22]. Moreover, if we denote these transformations by
Fola), Fu(a,m), andFg(«), respectively, then we have
PROPOSITIONL.1.
(i) Fala,m)o Fola) = Fu(a,m).
(i1) Fo(a) o Fa(a,m) = T (Identity transformation).
Notice that in these three cases, the corresponding Cadiihgfunctions are related by

Bie) = A(z)Fl()z()Z;— B(z)

where A, B, andD # 0 are polynomials in the variable They constitute examples of the
so-calledlinear spectral transformationsOther examples of spectral transformations have
been analyzed inlf3]. Furthermore, in%, 6] we have studied a perturbatidly, of £ defined

by
1 1 =
<£RaQ>: /j,§(z—a+z —a)q ) qua

wherea € C. Here the relation between the associated Carathéodoctidas is

FR(Z) _ [22 - (Oz—|—5z)z+ 1]F(Zl+ 22 + (61 —C_l)z— 1’

i.e., this is a linear spectral transform that is not one efdanonical linear spectral transfor-
mations above mentioned. Indeed, the Christoffel transétion is a particular case of this
transformation wheftRe(a)| > 1.

On the other hand, assuming thais a quasi-definite linear functional, necessary and
sufficient conditions for the quasi-definitenesgf are obtained ing] and [18]. This trans-
formation is denoted by («).

It is natural to analyze the existence of the inverse transdtion, i.e., if there exists a
linear functionalC z -1 such that

L7 (Lp-1,[z+ 27" = (a+@)p(2)) = (L,p(2)), pEA,

as well as if the quasi-definite character of the linear fiametl is preserved by such a trans-
formation. This is one of the goals of our contribution. Metthat the transformatiori (7)
does not define a unique linear functiong-.. As we will show in Sectior8, uniqueness
depends on a free parameter.

The structure of the paper is as follows. In Sectinwe assume the linear functional
Lr-1 is quasi-definite and we obtain the relation between theespaonding Carathéodory
functions. In Sectior8, we analyze the conditions on the nontrivial probabilityaseres
such thatC -1 is a quasi-definite linear functional and we obtain the nesmgsconditions
for L1 to be quasi-definite, an expression for the correspondiggesee of monic orthog-
onal polynomials, and a recursive algorithm to computeaitsify of Verblunsky parameters.
Finally, in Section4 several examples of this transformation for three illusteacases of
nontrivial measures are analyzed.
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2. Carathéodory functions. Assuming thatCz-: is a quasi-definite linear functional,
we will denote its associated Carathéodory functionfy . (z). First we will study the
relation betweerF'(z) and Fr-1(z).

PROPOSITION2.1. Fr-1(z), the Carathéodory function associateddg-, is a linear
spectral transformation of'(z) given by

2F(z) z+b z+b

22— (a+a@)z+1 ™ mzz—F

(21) FR—I(Z) =
whereb, b are the zeros of? — (o + @)z + 1, with |b| = 1, and

— _1 - n jm(él) Mo — _1 s Cim(&l)
o\ T amw) )0 "™ T 2\ m) )
Proof. From (L.7), we get

(2.2) Cok =C(ky1) + (1) — (@ + @)
Multiplying (2.2) by z*, k = 1,2, .. ., and replacing in1.6), we get

oo

Zc kz Z (k+1)% +Zc (k— 12 —(a+@ Zc kz
k=1

—(a+a) (FRl(g) —50> ’

Fz)=1=[z+2" = (a+@)|Fr1(2) +élz — 27 + (a + @)] — 2¢_1.
Therefore

F)+ [zt —2z—(a+@)]éy +2¢-1 — 1
24271 — (a+@) '
Notice that, from2.2), 1 + (a + @)éy = ¢ + ¢—1, and thus

FR—l(Z) =

2F(2) — 2% + (6_1 — &)z + ¢

Fri(z) =
R (2) 22— (a+a)z+1 ’
which is equivalent to4.1). 0
On the other hand, fron2(1)
_b_ _b_ )
_ | = b—b Kk
Fr-1(z) = P F(z) —my 1+bzz 2(1+b2) Zb

Jore) —k 0o
(Z % > F(z) —my <1+22 ) <1+22bk ’“)
k=1 k=1
and thus

50+2§ékzk= (be_z k) <1+2Zc Kz ) m, (1+2Zb 2 >

k=1 k=1

—my <1 +2 Z bkzk) .
k=1
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Therefore, comparing coefficients of on both sides of the last expression, we have for
n > 2,

n—1 —k -n
bk —b 10" —b —n ,

Cop = —C_ (k) + = — —myb — myb”.
kzzl b-b Ty ’

Comparing the independent terms and the coefficients fee can deduce2(2) forn = 0
andn = 1. Furthermore, denoting this transformation By-:., we obtain the following
result:

PrROPOSITION2.2.

(Z) fR(a)ofRﬂ(a) ZI, B

(it) Fr-1(a) o Fr(a) = Fy(b,my) o Fy (b, 112).
Proof.

() Itis evident from the definition of r and Fz-1.
(i) DenotingH (z) = (Fr-1(a) o Fr(a))(F(z)),

ZFR(Z) — 602’2 + (6_1 - 61)2 + éo
22— (a+a)z+1

2 (22— (a+@)z4+1)F(2)+224+(c1—c_1)z—1

H(z) =

—502’24—(6_1 —51)24—&0
22— (a+a)z+1
i (1 — 60)2’2 + (Cl —C_1 +5_1 — 51)2’ + 60 -1

=F
() 22— (a+@z+1
b b
=F(z) + Alzjb-#mzzij?

with my = m; + my, my = mq + me, and

o303 w0 2)

REMARK 2.3. Notice that ifa = —29Re¢(«r), and using 2.2), we obtain

T =ZT + oT + TZ',
whereZ is the shift matrix with ones on the first upper-diagonal aebg on the remaining
entries, andMl! denotes the transpose of the mafkik Furthermore, notice that Hermitian
Toeplitz matrices can be characterizedlas- T* together withZTZ! = T, and therefore

TZ' = TB,

whereB = I + aZ! + (Z')? is an infinite lower triangular matrix with ones in the main
diagonal, with the following structure
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whereA = [! ?]. On the other hand, is not difficult to show that

Ay 0 0
gt | AzlAr] 0
As | Ay | Ay ’

whereA; = A7 Ay = (=) TA-ITM*1 £k > 2, and
—a 1l—a

MAlN{l “4.

In other words B~ is a lower triangular block matrix, with Toeplitz structuiénally,

TS =T,
wheresS is given by
Ztlolo|... Al oo
Z1 Zg 0 AQ A1 0
S=27Z'B"' = , ,
0 Z1 Ztl . A3 A2 A1

with Z, = [} }],i.e.,S is also a lower triangular block matrix with Toeplitz struc.

3. Quasi-definiteness of 1. Let us consider a linear functionél; -1, such that
<‘C’R*17 [Z + 271 - (O[ +a)]p> = <£7p> )

where/ is a positive definite Hermitian linear functional on theelam space of Laurent poly-
nomials. Notice that we will assume thag . is also Hermitian.

For all values ot such thatfRe(a)| > 1, the Laurent polynomiat + 2 ~! — (a+@) can
be represented as a polynomial of the fatm- 3|2, c € R, 8 € C, i.e.,Lz-1 is a Geronimus
transformation, studied iri[ 15]. For this reason, we are only interested in those values of
such thab < |Re(a)| < 1. However, in this case the zerbandb of 22 — (o« + @)z + 1 are
complex conjugates and, furthermolig,= 1.

We will denote byo andé the measures associated wittand £ -1, respectively, i.e.,

~ do 7
B = el —ay 00— B+ mad(z =), ma,ms €R.

Here o is a nontrivial probability measure supported ©n which can be decomposed as
in (1.5.

Thus, ifo, = 0, then the integral

. /27r emew(e) ﬁ B L z"w(z) "
")y zHzl—(a+a)2r 2mi Jp 22— (at+a@)z+1 )
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has singularities in = b andz = b. These singularities can be removed if we consider

1 "w(6 .
i ) (z =€)
27t Jp 22— (a+ @)z + 1

_ Ml_b) ( /T ) g, - /T ‘j<b>d>

(3.1) _

- 271'2'(; ~) </T Zn[wf )—_bw(bﬂ dz = /T wdz

1 n 177'74 S
+ 5b"w(b) - 5b w(b)>7

assuming thab)(z) satisfies a Lipschitz condition of order(0 < 7 < 1) on T; see R(].
Notice that this is also valid &, # 0, as long asr; has a finite number of mass points
different fromb andb.

Now, assume thaf -1 is quasi-definite and Ief¥,, },,~( be the its corresponding se-
quence of monic orthogonal polynomials. Next, we will stdie relation betweefiv,, },,>0
and{@n}n>0.

PrRoPOSITION3.1. Let £ be a positive definite linear functional. Bz-.1 given as
in (1.7), is a quasi-definite linear functional, theln, (=), thenth monic polynomial orthogo-
nal with respect taC -1, is

_ k'rl kn *
(3.2 U,(z) = (z + 3 1) ®,_1(2) + (ti’n(()) - ]“\I/nﬂ(o)) P71 (2).

Conversely, if{¥,},-, is given by(3.2) and assuming thaW,,(0)] # 1, n > 1, then
{¥n},, is the sequence of monic polynomials orthogonal with retsjpe€ -1 .
Proof. Let

n—1
(3.3) Up(2) = u(2) + > Aum®(2).

m=0

Multiplying the above expression i, (z) and applyingZ, for 0 < m < n — 1, we get

<,c, \Ifn(z)m> = Ak,

or equivalently,

<cR71, 42!~ (a +§)]\Iln(z)<l>m(z)> -

)

Thus

A = ki <£R71, 2421 = (a +a)]\1/n(z)q>m(z)> , 0<m<n—L

If m=n—1,then

dunr = o (o GBS + (Lo (T )
= (e ()~ B O () + ]

= (1- ‘Ifn+1(0)m)-

-1

o~
3
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On the other hand, fdr < m <n — 2,

M = 1 (Lt 20 ()8 ()
— o (L ()~ B O V()T 1))
= (08,0,

Substituting these values int8.8), we obtain

kn - 2,009,
() = Bu(2) + 7 1<I>n_1(z) — k%o 11(0) > 7(]3 (2)
n— m=0 m
ifm, 7
(3-4) = Ou(2) + 7 Pno1(2) — kWi (0) K- (2,0)
];n I;n *
= On(2) + B (2) = T (002 (2).

Using the recurrence relation, we get

kn

T‘I’nﬂ(o)‘bflq(z)
n—1

K,
Un(2) = 2®n-1(2) + 8n(0)@;, 1 (2) + ——Pn-1(2) —
n—1

(3.5)

= <Z+ kkn ) (bnfl(z) + (CI)n(O) - kkn\I}nJrl(O)) (bjrktfl(z%

n—1 n—1

which proves the first statement of the proposition.
Notice that evaluating3(4) atz = 0, we get

kn kn
®,,-1(0) + ©,(0) —

— —,11(0),
kn—l kn—l +1( )

(3.6) ¥, (0) =

and thus 8.5) becomes

U, (2) = (z + kfﬂ) D,_1(2) + (\I',,L(O) - kf"ld),,b_l(o)> O, (2).

On the other hand, if we denotg, = k1 /k, andl, = ¥,.1(0) — v,®,(0), con-
sidering the reversed polynomial 8f,(z), then we obtain the following linear transfer
equation

] =L e i)

Notice that the determinant of the above transfer matrix is
(z+vn)(Wnz+1) — |ln|2z =22+ (1/,21 +1— |ln|2)z + v,
= (2 + 1) + 5 (1 = [2,(0)*) + 1 = [¥,,11(0)[%]2

+ Vn [V 11(0) @, (0) + ¥, 41(0)®,,(0)]2
=v, (2% = (a+@)z+ 1),
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where the last equality will become clear looking at7j in the following Proposition. Fur-
thermore, we get

(Unz + 1) Wi (2) — lnqj;-s-l(z)
vp[22 — (a+ @)z + 1]

(z 4+ vn) 714 (2) — lnz¥ni1(2)
vpl2? — (e + @)z + 1]

D,.(2) =

b

@(2) =

)

and thus we obtain the following alternative expression tbktes both sequences of poly-
nomials

[22 = (@ + @)z + 1]®n(2) = Vnia(2) + vy, [Tnia(2) — D1 (0)V7 11 (2)]-

Now we prove that the sequence of monic polynomials, },,>o, given in 8.2, is or-
thogonal with respect td z-:. Notice that¥,,1(z) — ¥,,+1(0)¥}(2) is a polynomial of
degreen + 1 that vanishes at = 0 and, thusV,,,1(z) — ¥,,41(0)U} (2) = zp(z), where
p(z) is a polynomial of degree. Then,

D(2) = (2 4 1)) + 1 (2) — T (O 121 (2) + (o2 1)y (2)]
= (4 ) B (2) B 0)B)y (2)] (81 (2) + (021 (2)]
—U 1 (0)[ln—12®Pn1(2) + (Vn12 + 1)@}, (2)]
=20,_1(2)[z+ v + 1, P,(0) — U, 11 (0)1),—1]
+05,_1(2)[(2 + vn)Pn(0) + Iy — Vi1 (0) (Vn—12 + 1)

=2(z 4 Vn-1)Pn_1(2) + 20, 1P} _1(2) = 2V, (2),

where the fourth equality follows froni(3) and 3.6). That is,{\I/n}@O satisfies arecurrence
relation like (L.1) and therefore it is an orthogonal sequence with respecoreesinear
functional £. We will prove thatl = Lz-:. For0 < k < n — 1, consider

<£, 24 270 —(a + @), (2)7") = <E, 22— (a+a)z+ 1]<I>n(z)5k+1>

= (£ Wnra(2)2) 407 (£, Wt (2) = @ua (005 ()7 )
= 0.

On the other hand, fdt = n we get
<£~a Vpi2(z) + Vrtl[\lln-i-l (2) — ¢)n+1(0)\1/:1+1(z)}2k+1> = Vgllgn-i-l = kn.

Thus,{®,,},.>0 is the sequence of monic polynomials orthogonal with resfpele + 2~ —
(o +@)]L. Butthen[z + 2~! — (o +@)]£ = £ and, thereforef = L 1. 0

PROPOSITION3.2. Let £ be a positive definite linear functional andits associated
measure. IfZ -1 is a quasi-definite linear functional, then

(i) [3m(c1)]? # (1 = [Re(a)]?)f — Re(a)éo — 7,

(i1) (1—[9n(0)]?) V2 + Aps1vy + 1 = |[¥pq1(0)* = 0, forn > 1,
where4,, = ¥,,(0)®,,—1(0) + ¥,,(0)®,_1(0) + o + @.

Proof. From @.2), for k¥ = 0 and assuming that = 1, we have

1

Re(¢1) = 5t Re(a)Co.
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In addition, in order forZ -1 to be a quasi-definite functional, we need

o C1

det T, = =& — [Re(é1)]? — [Im(é1)]? £ 0,

cC_1 (o

whereT is the Toeplitz matrix associated withp -1 and T, is its correspondingy x n
leading principal submatrix. Therefore, for the choicewpive get

m(e)? £ - |5+ Reta)dn]

which is(z). Thus,éy andJm[¢,] are free parameters, whifée(¢, ) is determined by, and
the choice of.
Furthermore, we have

ky = <(I)n(z)7q)n(z)>£ = (Vn(2), (I)n(z»ﬁ = <[Z +271 - (a —Q—E)}\Iln(z),@n(z»ﬁ
= (2Wn(2), Pn(2)),_, + (Wn(2),2Pn(2)),, , — (@ + @) (Vn(2), Pn(2))
= —[V,11(0)®,(0) + o +a]];n +(Vn(2), 2Pn(2))

RrR—1

—1

rR—1 '

On the other hand, fron8(4),

(Wo(2), 2802,

kn kn
= Un(2), 2V, (2) 2®,-1(2) + Vp1(0)2®5,_4(2)
knfl knfl r
7. l%n 7. ]‘%n 7
=—0,11(0)9,(0)k, — A kn, + U, 1(0)P,—1(0)kp,
n—1 n—1

and from @.6),

(Wn(2), Z(I)n(Z»LR_I ==V, 11(0)9,(0)k, —

=—U,1(0)0,(0)k, — kn +
kn—l kn—l

Thus, ifA,11 = ¥, 41(0)®,,(0) + ¥,,41(0)®,,(0) + o + @, then

) P
kn - _An-i-lkn + (|\Ijn+1(0)|2 - 1) A o krm
i i RS
00 gl o] - ()

Since, from 8.6), %\Ifﬁl(o) = k’én ®,,_1(0) + ®,(0) — ¥, (0), we obtain

n—1

1—|T,(0)* = -4, — (1= |®,-1(0)]%) Fn )
kn—l kn—l
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Therefore,
~ 2 ~
2 kn kn 2
(3.7) (1—[®n-1(0)]%) .- +Ank ) +1—|v,(0)]* =0,

which is (7). 0
Now, from (3.6),
knfl
kn
[©(0) = W (0)] [Tazy (1 = [P£(0)?)

= n = -+ (I)n, 0 5 n 2 1.
[T (- [ (OR)é 1(0)

Thus, we can build an algorithm to compute recursively tijgisace{ V., 1(0) },>1, starting
from ¥, (0) = —2; see Algorithm3.3

\Ijn+1(0) = @n,I(O) + [én(o) - \I/n(O)]

ALGORITHM 3.3.

INPUT: Q, 50, {@H(O)}n21
1: ComputeRe(é;) = 1 + Re(a)é
2: if () in Proposition3.2 holdsthen

3 Ty (0)=—L
. Co
4: end if
5. forn=1,2,...do
[@4(0) = ¥, (0)] TTzy (1 — [®k(0)?)

6: v, 0) = T = +®,_41(0

Y] [T, (1 — [0 (0) P 1(0)
7. if |¥,41(0)| = 1 then
8: break
9: endif
10: end for

4. Examples.

4.1. A Christoffel case.Letdo = |z — 1|2%. Is well known (see6]) that the family
of Verblunsky parameters associated witis

1
(I)n = ) 2 ]-
0) n+1 "
Now, let us consider the perturbation
|z — 12 de

= - :1
z+z7 1 —(a+a)2n’ Il =1,

wherefRe(a) = 0.6. Notice thath = 0.6 + 0.8:. Then, according to3( 1),

_ 1 /‘27r e — 112 -0.8 db /2” le? — 112~ 0.8 db

Co = —— —— — — —
7160 |y 1—(06408)e®2r J; 1—(0.6—08i)e i 2r|’

1

= 157 (0.6 = 0.8i — (0.6 +0.80)) = 1,
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10

0sF

1ok
FIGURE 4.1. Verblunsky parameters for the Christoffel case.

10|

=10}

FIGURE 4.2. Verblunsky parameters for the Christoffel case with= 2000.

and
_ 1 /27r (|’ —1J> = 0.8)e? db /‘2” (le’? —1]> — 0.8)e db
C1 = —— ——— — — —
"T16i )y, 1-(06408)e®2r ), 1-—(0.6—08i)e 2
1 1
+ 5064 0.80)(0.8) = 5(0.6 — 0.80)(0.8)| = 0.4.

Observe thafi) in Proposition3.2 holds. Applying the algorithm, the fir§00 Verblunsky
parameters are shown in Figutel.

Notice that all of the new Verblunsky parameters are reakyTdre distributed on both
sides of the origin, in nearly symmetric intervals. If weeapthe computation fot = 2000,
then the values accumulate over such intervals. This is showigure4.2.

4.2. The case of constant Verblunsky parametersWe consider linear functionals
such that the corresponding measures are supported on afitlaecunit circle which doesn’t
containb; andb,. Such a situation appears (ség 16]) when ®,,(0) = a, n > 1, with
0 < |a| < 1. Here the measure associated wit§ ®,,(0) },,>1 is supported on the arc

AV:{€i92V<9<27T—V}7
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with cos(v/2) := /1 — |a|?, but it can have a mass point locatedBn The orthogonality
measurer is given by

5°) ,
(4.1) do = df +m,6(z —e'm),

wheree’” = 1=2

2la|?—a—a if 11 9 1

— T—a] if [1—2a| >1,
m, = ]

0, if |1 —2a|l<1

Moreover, the orthonormal polynomials associated witire given by

B 1 — 2B o 20— 2
(p”(z)_(l_alg)n/g<(2+ )z . —z(1—a )ﬁ ;, nelN,

with

z24+1—/(z—e")(z —e ™)
2 =
2
Consider a perturbation of (1) given by
do

do =

z+z71 —(a+a)’

with 9Re(a) = 0.8 anda = 0.5¢. Notice that in this caseé, = 0.8 + 0.6i and thush ¢ A,,.
Then,

i \/sm 30+ $m)sin(360 — &)
df = —0.458 76,
‘o= / 2(cos @ — 0.8)msin(%)

/5’3?‘ (cosf + isin®) \/sin(%é‘ + &m) sin(360 — gm)

¢ = . df = 0.13299,
x 2(cos @ — 0.8)msin(%)
and(z) holds. In such a situation, the algorithm becomes
_ \I/n 1— 2\n—1
U, (0) = [a O)A = falH)"" s

[Ti=a (1= [Wk(0)?)

and the firsb00 Verblunsky parameters are shown in Figdra As shown in this figure, the
Verblunsky parameters associated with the modified medsawe the same argument with
respect to a certain point (the value«f That is, they are located on a straight line, on both
sides ofa. Whenn increases, the density of the points on the line increaseshawn by
Figure4.4.
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FIGURE 4.4. Verblunsky parameters for the constant case with 2000.

4.3. A Bernstein-Sze@ case.Consider the Bernstein-Szgegieasure

1—18 do
= 1.
do T GE2n’ 0<|8] <
It is well known [16] that in this case the Verblunsky parameters are give®@hy)) = —5

and®,,(0) = 0, n > 2. Consider the measurk defined by

1 do
[+ 271 — (a+a)]le? — 3|2 o’

do =

SettingRe(a) = 0.8, 3 = 0.5, and computing the first moments using 1j, we get
¢o = —0.9308 andé; = —0.2395. The results produced by the algorithm for the figH0
Verblunsky parameters are shown in Figdr. Notice that the behavior of the Verblunsky
parameters is similar to the previous example.
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FIGURE 4.5. Verblunsky parameters for the Bernstein-Szegd case.
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