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Following the mathematical approach of Kelly (2003), rigorous version of infinitesimal deformation 

approach (ID) was applied to analyze fcc  bcc martensitic phase transformation observed in Fe-31wt 
Ni alloys considering the twinning shear system as the lattice invariant system (LIS). The expressions 
for crystallographical parameters associated with the martensitic phase transformation such as habit 
plane orientation, rotation matrix, total shape deformation matrix, orientation relationships between 
austenite and martensite phases, etc., have been obtained by using the rigorous version of infinitesimal 
deformation approach, taking into account only the information about the lattice parameters of the 
austenite and martensite phases. The habit plane orientation obtained from the infinitesimal 

deformation approach (ID), for example, for the value of volume fraction 0.39876 in Fe-31wt Ni alloy, is 
found as (0, 0.58033, 0.81438) while the habit plane obtained from rigorous version of (ID) approach 
associated with the martensite transformation is (0.185064, 0.594242, 0.782705) which is an agreement 
with that calculated from the Wechsler-Lieberman-Read (W-L-R) theory. The difference between the two 
habit plane orientations is 10.8

0
. Moreover, the calculations carried out for zirconia, in which there are 

small values of the principal distortions, in the present study certainly indicate that infinitesimal 
deformation approach (ID) gives almost the same results as (W-L-R) theory. For the other 
crystallographical parameters, such as magnitude of total shape deformation, volume fraction, 
orientation relationship, the rigorous version of (ID) approach gives essentially the same 
crystallographical solutions as those calculated (W-L-R) theory. So, it is concluded that the rigorous 
version of (ID) approach in the habit plane orientation is better than the infinitesimal deformation 
approach (ID) for the alloys in question.   
 

Key words: Martensitic transformation, solid-solid phase transitions, crystallography of martensite phase 
transformations. 

 
 
INTRODUCTION 
 
Phenomenological crystallographic theories of martensite 
transformation were introduced in 1950’s and are based 
on the concept that the interface plane between the  
martensite and parent phase is essentially macro-
scopically invariant – that is, undistorted and rotated. The 
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equivalence of the various formulations by Wechsler-
Lieberman-Read (W-L-R) (Wechsler et al., 1953) and 
Bowles-Mackenzie (B-M) (Bowles and Mackenzie, 1954) 
has been demonstrated many time (Christians, 1955). 
These theories have gained general acceptance because 
of the agreement between theory and experiment in a 
number of cases. However, one must conclude that only 
a few specific martensite transformations are adequately 
accounted for, when these theories are applied to various 
martensitic   transformation   in   iron   alloys   and   steels  



 
 
 
 
(Wechsler et al, 1953; Bowles and Mackenzie, 1954; 
Bullough and Bilby, 1956; Dunne and Wayman, 1971; 
Christians, 1955; Nishiyama, 1978; Wayman, 1964). In 
recent years, some researchers (Kato and  Shibata-
Yanagisawa, 1990; Shibata-Yanagisawa and Kato, 1990) 
adopted a theory based on the infinitesimal deformation 
approach (ID) taking into consideration both symmetric 
strain components and the antisymmetric rotation com-
ponents of deformation in which this theory is an 
approximation of the finite deformation-based pheno-
menological crystallographic theory (FD) or (PT). In the 
infinitesimal deformation approach, there is superposition 
of the solutions since this approach neglects the second- 
and higher- order terms of the magnitude of the lattice 
distortions. 

However, the advantage of ID-based pheno-
menological theory is that all solutions can be expressed 
in simple and analytical forms while the disadvantage of it 
is that the miller indices can be expressed in the form as 
{hk0} instead of {hkl} observed experimentally. The 
difference in habit plane indices between ID and FD 
becomes larger as the lattice distortion components 
involved in a transformation become larger. However, it is 
of course true that the ID analysis is the approximation of 
the FD analysis. Therefore, in a recent paper by Kelly 
(2003), a modification was carried out on this approach. It 
is very convenient for the actual numerical calculations 
since this approach, which is called rigorous version of 
infinitesimal deformation approach, is quite easily 
applicable to some of the systems associated with 
martensitic transformations.  

In the present study, taking the (101)  011  twinning 

system as the lattice invariant shear (LIS) deformation 

observed in Fe-31 wt Ni alloys, the reformulation of 
rigorous version of the infinitesimal deformation approach 
is given briefly and the results calculated from the 
crystallographic parameters are applied for the fcc to bcc 
martensite transformation in the above alloy. However, 
the results obtained in the (W-L-R) or (B-M) theories are 
suitable for a comparison with the results of the rigorous 
version of ID approach treated in the present study, ID 
approach and experimental values. 
 
 

DETERMINATION OF CRYSTALLOGRAPHIC 
PARAMETERS ASSOCIATED WITH MARTENSITE 
TRANSFORMATION 
 

In the phenomenological theory of the martensitic 
transformation, the total shape deformation can be 
written in matrix form as follows: 
 

T = R.B.P                                          (1) 
 

where R is the rigid body rotation matrix which describes 
the orientation relationship and the invariant plane 
distortion, B is Bain strain and P is the simple shear. 
Whereas, it is assumed that this expression in the ID 
approach is taken as in the form T = R + B + P,  because  
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this approach neglects the second- and higher- order 
terms of the magnitude of the lattice distortions. However, 
the following form is more convenient to treat the case 
twinning as the LIS deformation: 

2 1(1 ) ( )R f f    F B Φ B
. B1 and B2 are the 

lattice deformation matrices for variant 1 and 2, 

respectively, and   denotes a rotation which is 
geometrically necessary to make variant 1 twin related to 
variant 2. Here, f is the volume fraction of variant 1 of the 
product phase which is twin-related to variant 2. In order 
for T to describe invariant plane deformation (IPS), the 
elements of the matrix T

n
 must be satisfied as: T11

n
 , T12

 n
, 

T21
 n

 , T22
 n

 , T31
 n

  and T32
 n

 = 0 (Kato and  Shibata-
Yanagisawa, 1990; Shibata-Yanagisawa and Kato, 
1990). These constitute the necessary (but not sufficient) 
condition for the IPS deformation. The n indicates that the 
matrix is described on x1

n
 - x2

n
 - x3

n 
orthonormal 

coordinate system (n system) with the x3
n 
plane parallel to 

the invariant plane that is the habit plane. It is well known 
that the matrix T

γ
 expressed on the austenite coordinate 

system (γ) can be converted into T
n 

expressed on the n 
coordinate system, which is defined by the usual tensor 
conversion given in Equation (9). In order for the habit 
plane to be invariant (undistorted and unrotated), the 
rotation matrix, R , must become an antisymetric form. 
The elements of this matrix must satisfy R11

γ
 = 0, R22

γ
 = 

0, R33
γ
 = 0, R12

 γ
 = -w3, R13

 γ
 = w2, R21

 γ
 = w3, R23

 γ
 = - w1, 

R31
γ
 = - w2 and R32

γ
 = w1.  Here, w1, w2 and w3 are unknown 

angles of rotation. These angles,  f,  the direction cosine 

angles  and  (these angles determines the habit plane 
direction) can be found from the condition T

n
 = 0. Then, 

the orientation relationship between parent and product 
phase can be determined from the R

γ
 matrix.  

In the present study dealing with rigorous version of the 
ID approach, T matrix in Equation (1) can be defined as 
follows (Kelly, 2003; Ledbetter and Dunn, 1999; 
Ledbetter and Dunn, 2000): 
 

T = 
2

1
[F

T
F–I]                                    (2)                          

 

where F
T
 is the transpose of the F = B P matrix, which 

leaves the habit plane undistorted, and so that F matrix is 
taken in the form: 
 

21)1( ΦBBF ff                           (3) 
 

Here, f is the relative amount of twins. For the selected 

(101)  011  twinning shear system as LIS, the Bain 

strain matrices in Equation (3) can be taken in the 
following forms: 
 



















3

2

1

1

00

00

00







B                 (4) 
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and   
 



















1

2

3

2

00

00

00







B                (5) 

 
In order for the martensitic phase to be internal twinned, 

the  phase crystal subjected to a lattice deformation B1 

called crystal 1 must be rotated relative to the  phase 
crystal subjected to the lattice deformation B2 called 

crystal 2 by an angle . The expression of relative 
rotation matrix Ф is calculated as 
 

2 2

1 3 1 3

2 2 2 2

1 3 1 3

2 2

1 3 1 3

2 2 2 2

1 3 1 3

2
0

cos 0 sin

0 1 0 0 1 0

sin 0 cos 2
0

  

    

    

   

  
  

     
       
 

   
  

   

Φ
       (6) 

 
Furthermore, F matrix in the obtained total shape 
deformation T via Lagrangean-strain formulation 
(Wayman, 1964) is obtained as using Equations (3) to 
(6): 
 























)1(0

00

0)1(

33

2

11

ff

ff

F







                                  (7)                                        

 

Here,   is defined as    2

3

2

1

2

3

2

1   . Taking 

into consideration of det  IFF T

2

1
= 0 in Equation (2), 

the two values of volume fractions f are derived as: 
 

}
)(

)1)(1)((2
11{

2

1
22

3

2

1

2

3

2

1

2

3

2

1








 f         (8) 

 

The total shape deformation matrix 
n

ijT  expressed on 

particular orthonormal 
nx1 , 

nx2 , 
nx3  coordinate system 

can be derived from T matrix expressed on the γ-
coordinate  system  by  an  usual   tensor   transformation  
 


 


3

1

3

1k l

γ

klljki

n

ij TAAT                (9) 

 

where the ija  are direction cosines between 
nx1 , 

nx2 , 

nx3  and  

1x ,  


2x ,  


3x   axes.  It  can  be   given  that  the  

 
 
 
 

elements of direction cosines Aij as: A11 = cos cos , A12 

= – sin , A13 = sin cos , A21 =cos sin, A22  = cos, A23 

= sin sin, A31 = – sin, A32 = 0 and A33 = cos . 
In order for T to describe the invariant plane 

deformation, the following elements of the matrix T  have 
the form: 
 

0221211  nnn
TTT              (10) 

 

θ and  angles determining the habit plane direction (That 

is, n = [cos , sin sin , sin cos ] in the spherical 

coordinate system) can be calculated from Equation (10), 
as: 
 






11

22tan
T

T
               (11) 

 

and 
 

tan = 11 22

13

cos
T T

T

 




                                                       (12)  

 

On the other hand, the orientation relationship between  

and  phase can be obtained when the rotation matrix R 
is detrmined. Details of these calculations are not 
presented  here, since they are found easily in some 
advanced books (Nishiyama, 1978; Wayman, 1964). 
 
 
RESULTS AND DISCUSSION 
 

Lattice parameter of the  phase (austenite) associated 

with the alloy Fe-31 wt Ni is a = 3.5910.001A
o
 and the 

lattice parameters of  phase (martensite) are a = 

2.8750.001 A° (Nishiyama, 1978 ). Using these values, 
the principal distortions are determined as: 
 

 132237.1221 



a

a
 and  

800613.03 



a

a
                                               (13) 

 

In order for a suitable comparison, if these values of η1 

and η2 for the alloy Fe-31 wt Ni are substituted into the 
expressions for the solution in Equations (8) to (12), 
some numerical values for various crystalographic 
parameters can be listed in Table 1. Using these values, 
Navruz and Durlu (1999) gave a reformulated 
infinitesimal deformation approach to martensite 
crystallography for the only slip system (101)γ [-1 0 1] γ.  
From Table 1, it can be seen that the obtained habit 

plane in the ID approach for f = 0.39876 is given  as  (0,  
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Table 1. A comparison of the numerical solutions of rigorous version of ID and WLR theory, ID Approach with experimental results for fcc to 

bcc martensitic transformation observed in an Fe-31 wt Ni alloy. For the deteailed experimental analysis and applications of WLR theory, it 
can be refered to the references (Nishiyama, 1978; Wayman, 1964).  
 

Parameter ID Approach Rigorous version of  ID 
Approach 

WLR Theory Experimental 

Habit plane, n 

0

0.58033

0.814380

 
 
 
  

 

















185064.0

782705.0

594242.0

 

















594242.0

782705.0

185064.0

 

















5948.0

7823.0

1848.0

 

















5770.0

7998.0

1656.0

 

Volume fraction, f 0.398760 0.225753 0.225756 0.360576 - 

      

Magnitude of total shape deformation (mT) 0.1994 0.225753 0. 225756 0.22580 - 

      

Orientation relationship     - 

  100 -  100  6.66
o
 2.36

o
 6.23

o
 7.61

o
 - 

 010 -  010  4. 76
o
 6.31

o
 6.31

o
 6.32

o
 - 

 001 -  001  11.47
o
 6.23

o
 2.36

o
 9.68

o
 - 








011 - 







 

111  4.41
o
 3.61

o
 3.61

o
 3.62

o
 2.4

o
 

)111( - )011(  9.12
o
 0.53

o
 0.53

o
 0.54

o
 0.3

o
 

 
 
 

 
 
Figure 1. In unit streographic triangle, theoretical and 

experimental habit plane determinations for Fe-31wt.% Ni alloy. 
 

 
 

0.58033, 0.81438) (Dogan and Havvatoglu, 2003) while 
the habit plane obtained from Rigorous version of (ID) 

approach associated with the martensite transformation 
is (0.185064, 0.594242, 0.782705) = (3 10 14)γ. It is 
easily seen from the investigation of the results 
mentioned above that the difference between habit plane 
calculated in the ID approach and that obtained from the 
rigorous version of (ID) approach is about 0.18 radians or 
aproximately 10.8° which is expected from the ID 
approach, because the habit plane derived from the ID 
approach and that from the phenomenological crystallo-
graphic theory at small principal transformation 
distortions are identical to each other (Kelly, 2006; Zhang 
and Kelly, 2009). It is also seen that the habit plane 
direction obtained from the rigorous version of (ID) 
departs from the normal for the observed habit plane (3 
14 10)γ (Dunne and Wayman, 1971; Nishiyama, 1978 ) 
only by 1.78

o
. In order to observe these differences 

among the reported habit planes more clearly for the 

transformation observed in Fe-31 wt Ni alloy, we drew 
them together in a unit stereographic triangle, as shown 
in Figure 1. 

In order for a suitable comparison of the orientation 
relationship, it is of interest to focus attention on the 
closed packed planes and directions in the two lattices 

which are nearly paralel that is,  011   111 and 

)111(   )011( . For example, the orientation relation-

ship for )111( and )011( planes between the  result  in  
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Table 2. A comparison of the numerical solutions of Rigorous version of ID approach and WLR theory, ID Approach with experimental 
results for fcc to bcc martensitic transformation observed in a ziconia alloy. For the ID approach and WLR Theory it can be refered to 
the references (Kato and Shibata-Yanagisawa, 1990) and (Nishiyama, 1978; Wayman, 1964), respectively.  
 

Parameter ID Approach Rigorous version of  ID Approach WLR Theory 

Habit plane, n 

 

















0

5556.0

8247.0

 

 





















011909.0

56264.0

82674.0

 

 





















562465.0

01191.0

826745064.0

 

 

















 0118.0

5625.0

8267.0

 
     
Volume fraction, f 0.4048 0.593178 0.406822 0.4068 
     
Magnitude of total shape deformation, mT 0.009752 0.009666 0. 009716 0.009688 
     
Orientation relationship     

  100 -  100  0.261
o
 0.26

o
 0.26

o
 0.258

o
 

 010 -  010  0. 617
o
 0.26

o
 0

o
 0.613

o
 

 001 -  001  0.599
o
 0.01

o
 0.26

o
 0.556

o
 

 
 
 

the present study and that of the experimental result 
differs only by 0.24°. We thus found that the orientation 

relationship for )111( and )011( planes calculated 

from the rigorous version of ID approach well fits the 
results of WLR theory and experiment for the alloy Fe-31 

wt Ni. It is seen from Table 1 that this difference is 
about 9

o
 when a calculation of orientation relationship 

associated with )111( and )011( planes is carried out 

for the work treated in the present study and the ID 
approach. On the other hand, as can be seen in Table 1, 
an excellent agreement for magnitude of total shape 
deformation, mT, among the rigorous version of ID, WLR 
theory, ID approach and experiment is found. 

Moreover, the crystallographic parameters in Tables 1 
and 2 for zirconia were recalculated in order for a 
comparison between the two results from the point of 

view that the habit planes of the alloy Fe-31 wt Ni and 
zirconia alloy have the small strains. 

Before examining the features of the crystallographic 
analysis associated with the cubic (c) to teragonal (t) 
transformation in zirconia alloys using the afore-
mentioned theories, it is appropriate to give a brief 
information on this transformation. One of the zirconia 
alloys is Zr02-%3 mol Y2O3 and occuring at high cooling 
rates in this arc-melted sample, the c– to- t 
transformation produces a marked suface relief at a free 
surface, consistent with the simple shear displacements 
(Srinivasan, 1989). Combined with the absence of 
dectable composition fluctuations in the transformed 
volume, this relief has been taken to indicate that the 
transition is displacive and diffusionless. The cubic- 
tetragonal displacive transformation in zirconia is a 
ferroelastic transition and the representative species is 
given by m3mF4/mmm. Their morphology contains 

closely spaced twin platelets of certain crystallographic 
orientations. In most cases, more than one twin orien-
tation, including sometimes the so-called herringbone 
structure, are present within a single grain. Some variants 
apparently intersect each other. The twins could come 
either from the c-to-t transformation itself, as incorporated 
in the so-called LIS operation during the transformation,” 
or from the mechanical accommodation of the product t 
phase subsequent to the transformation. Indeed, from a 
phenomenological, crystallographic viewpoint, it can be 
readily predicted that the cubic-to-tetragonal transfor-

mation will most likely entail {011}(01


1) twinning systems 
in the microstructure to minimize the distortional energy 
(Kato and Shibata-Yanagisawa, 1990). Such an analysis 
has been performed by Kato and co-workers for zirconia 
systems, which explains the experimental observations 
very well. 

Zirconia alloy have the following lattice parameters 
(Kato and  Shibata-Yanagisawa, 1990): The lattice 
parameter of the cubic phase is aγ = 5.127 A

o 
and the 

lattice parameter of the tetragonal phase are aα = bα = 
5.093 A

o
 and cα =5.177 A°. These  give 

 

1 2 0.993368
a

a





     and 
3 1.009752

c

a





        (14)  

 

It is clearly seen from Table 2 that the differences 
associated with the crystallographic parameters, for 
example the habit plane direction, for the work treated in 
the present study and the ID approach are neglible. We 
find from the rigorous version of (ID) approach that the 
habit plane normal (-0.82674, 0.562465, -0.01191) is in 
agreement with the habit plane normal (-0.8247, 0.5656, 
0) = (-3 2 0)  which  is  calculated  from  the  ID  approach  



 
 
 
 
(Kato and  Shibata-Yanagisawa, 1990). This plane is of 
the form {hk0}. It can be inferred that the habit plane 

calculated in the alloy Fe-31 wt Ni ( Navruz and Durlu, 

1999 ) shifts from (14 10 3)γ  to )230( calculated in 

zirconia alloy. The angle between the planes (14 10 3)γ 

and )230(  is about 11
o 

and this is the remarkable 

difference in the martensite phase transformations in the 

alloy having large principal distortions such as Fe-31 wt 
Ni alloy. 

In summary, in the present study, taking into consi-
deration some alloys having values of small and large 
principal distortions in Bain deformation matrix, the 
purpose of the present study is to provide simple 
solutions for some parameters associated with crystallo-
graphy of martensite phase transformation observed in 

Fe-31 wt Ni and zirconia alloys by using the rigorous 
version of (ID) approach, which depends on the Kell’s 
mathematical approach. In addition, a realistic com-
parison between the rigorous version of (ID) approach, ID 
approach and experimental observations to the 
crystallography of martensite phase transformation from 
the point of view principal distortions is presented. 
Although the ID approach offers simple picture of the 
calculation model associated with crystallography of the 
martensite phase transformation, its predictions do not 
agree with the WLR theory in a number areas, especially 
such as habit plane, becuse it assumes the principal 
strains are infinitely small. Thus, for infinitely thin 
martensite plate it is obviously seen from the 
investigation treated in the present study that the ID 
approach can produce no more information than the 
prediction of WLR theory. Moreover, the results obtained 
from the Rigorous version of (ID) approach are in good 
accordance with those calculated from WLR theory as 
well as experimental observations. 
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