Electronic Transactions on Numerical Analysis. ETNA
Volume 23, pp. 1-4, 2006. Kent State University
Copyright © 2006, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

A CASE WHERE BALANCING IS HARMFUL*

DAVID S. WATKINS

Abstract. Balancing is a common preprocessing step for the unsymmetric eigenvalue problem. If a matrix is
badly out of scale, balancing can markedly improve the accuracy of the computed eigenvalues. This paper discusses
a situation where balancing has the opposite effect. If a matrix that is not out of scale has been transformed to
upper Hessenberg form, a subsequent balancing of the Hessenberg matrix will cause the condition numbers of the
eigenvalues to be degraded. Consequently the computed eigenvalues will be substantially less accurate than they
would have been if the Hessenberg matrix had not been balanced.

Key words. eigenvalues, balancing, condition number, Hessenberg form

AMS subject classifications. 65F15, 15A18

1. Balancing. When an unsymmetric eigenvalue problem is solved using standard soft-
ware such as MATLAB or LAPACK [1], the first step is often to balance the matrix [2, 4, 5].
The input matrix A is replaced by a rescaled matrix A = D7 1AD, where D is a diagonal
matrix chosen so that, for each 7, the ith row and the ith column of A have roughly the same
norm.' If the rows and columns of a matrix are badly out of scale to begin with, the balancing
step can have the effect of greatly reducing the norm of the matrix. After the balancing step,
the matrix is transformed to upper Hessenberg form, and its eigenvalues are computed by the
QR algorithm [3, 6]. If the matrix was out of scale to begin with, the use of balancing can
greatly improve the accuracy of the computed eigenvalues. In some cases balancing is crucial
to the success of the computation.

2. Balancing Hessenberg Matrices. In this paper we wish to discuss one situation in
which balancing has a detrimental effect on accuracy. Consider a scenario in which the ma-
trix has, for one reason or another, already been reduced to upper Hessenberg form, with
or without preliminary balancing. Suppose that the researcher is using MATLAB to do his
computations. (This researcher happens to be male.) Now, if he wants to find the eigenvalues
of the Hessenberg matrix H, he types eig (H). Unless he thinks to add the optional argu-
ment 'nobalance’, MATLAB will balance the Hessenberg matrix before using the QR
algorithm to compute the eigenvalues. This turns out to be a bad idea.

Consider a matrix A that is not normal but is well scaled. Suppose all eigenvalues of
A have algebraic multiplicity 1 and are well conditioned. For example, a random matrix
(almost always) has these characteristics. If we compute its eigenvalues using MATLAB’s
eig command, the matrix gets balanced first. This step has no effect, because A is already
well scaled. The matrix is then reduced to upper Hessenberg form, and its eigenvalues are
computed by the () R algorithm. Because all of the eigenvalues are well conditioned, eig is
able to compute them extremely accurately.

Now suppose that we compute the eigenvalues of A by a nonstandard path. First we
transform A to an upper Hessenberg matrix H = V* AV by a unitary similarity transforma-
tion. Then we balance the Hessenberg matrix before computing its eigenvalues. The transfor-
mation to Hessenberg form has the effect of seriously unbalancing the matrix. Consider what

*Received April 13, 2005. Accepted for publication November 29, 2005. Recommended by W. B. Gragg.
TDepartment of Mathematics, Washington ~State University, ~Pullman, Washington 99164-3113
(watkins@math.wsu.edu).
IBalancing programs in common use [3, 2] also include a sorting step that identifies obvious invariant subspaces.
In this paper we do not concern ourselves with the sorting step.

1

ETNA

Kent State University
etna@mcs.kent.edu

2 D.S. WATKINS

happens on the first step of the reduction [3, 6]. The first column undergoes a transformation

aii hll
a21 ho1
asi — Vl*a — 0 ,
an1 0

where hi; = ai1 and hay = (a3; + a?; + -+ + a2;)*/2. All of the weight is shifted from
the third through nth components onto the second component. This shifts a great deal of
weight onto the second row at the expense of the third through nth rows. The transformation
A — V}* A also affects columns 2 through n. Weight gets shifted among the rows but not in a
systematic way. The 2-norms of the columns are invariant under this transformation. The first
step is completed by multiplying by V3 on the right to complete the similarity transformation:
Vi* A — V* AV This transformation does not touch the first column. It shifts weight around
in columns 2 through n, but not in a systematic way. The 2-norms of the rows are unchanged
by this transformation. In summary, the first step of the reduction acts systematically on
the first column, shifting weight from rows 3 through n onto row 2. The other effects of
the reduction are nonsystematic. We expect the norm of the second row to be increased
significantly at the expense of the third through nth rows. The larger the matrix is, the bigger
the effect will be. We expect the norms of the columns not to undergo any systematic change.

The second step of the reduction is just like the first, except that it piles weight onto the
third row at the expense of rows 4 through 7. In general the kth step adds weight to row k + 1
at the expense of rows k + 2 through n. After n — 2 steps, a great imbalance can be built up.
The larger the matrix is, the more potential for imbalance there is.

We haven’t proven anything; we have just argued that it is plausible that the Hessenberg
matrix could be seriously unbalanced. That such an unbalance does build up in practice is
confirmed by numerical experiments, some of which will be presented below.

Even though the Hessenberg matrix may be seriously “out of balance” in a certain sense,
its eigenvalues are well conditioned. The unitary similarity transformation H = V*AV
leaves the condition numbers unchanged.

When we apply the balancing algorithm to H, it effects a diagonal similarity transfor-
mation H = D 1HD, where D may have a very large condition number. This has a bad
effect on the condition numbers of the eigenvalues. Recall that the condition number of an
eigenvalue X of H, is determined by the relationship between its left and right eigenvectors.
Suppose wT A = AwT and Av = v\, where w and v are normalized so that w”v = 1. Then
the condition number of A is k(A, H) = ||w||,||v||, [3, 6]. A large condition number is bad.
The best possible condition number is 1. We are assuming our matrix has well conditioned
eigenvalues, so none of these numbers is very large. Now consider the eigenvectors of H.
Corresponding to eigenvalue A we have left and right eigenvectors w” D and D~'v, which
satisfy (w” D)(D~'v) = 1, so the condition number of A is k(\, H) = || Dw||,|| D~ v]|,.
If D is ill conditioned, this quantity can be large. If some of the larger components of D
line up with nontrivial components of w, while some of the larger components of D! line
up with nontrivial components of v, then (), H) will certainly be large. Again we have not
proved anything, but it seems inevitable that some of the eigenvalues of H will have large
condition numbers. If so, the QR algorithm applied to H will not be able to compute them
accurately. These expectations are borne out by the numerical experiments.

3. Numerical Results. We will present just two examples that are typical of the many
that confirmed the expectations raised in the previous section. We chose fairly large examples

ETNA

Kent State University
etna@mcs.kent.edu

A CASE WHERE BALANCINGIS HARMFUL 3

in order to get dramatic effects. Both of our matrices are of dimension 800.
EXAMPLE 3.1. Our first example was generated by the MATLAB command
A = randn(n) + 1 * randn(n);

with n = 800. Thus its entries were iid random variables whose real and imaginary parts
have mean O and standard deviation 1. Although we did not know the exact eigenvalues
of this matrix, we were able approximate them very accurately, because they were all well
conditioned. According to MATLAB’s condeig function, the average eigenvalue condition
number of this matrix was 17, and the worst condition number was about 180. Thus our
computed eigenvalues could be in error by no more than a modest multiple of 180u, where
u = 1076 is the unit roundoff for double-precision arithmetic.

We transformed A to Hessenberg form H, then balanced H to produce another upper
Hessenberg matrix H = D~1HD. As predicted, the diagonal scaling matrix D turned out
be quite ill conditioned. Its largest main diagonal entry was 1.6 x 10* and its smallest was
7.5% 1079, yielding a condition number of 2.2 x 10'2. This means that the condition numbers
of the eigenvalues of H could be up to 10'2 times as large as those of H. In fact they turned
out to be somewhat less than that but bad nevertheless. Using MATLAB’s condeig function
we found that the average eigenvalue condition number of H was 2.9 x 108, and the largest
condition number was 3.4 x 1010,

We computed the eigenvalues of H using the () R algorithm and compared the computed
eigenvalues with the eigenvalues of A computed earlier, which are accurate and can be con-
sidered to be “exact”. The average error of the computed eigenvalues of H was 2.2 x 1077,
and the worst error was 2.7 x 1075, Thus balancing caused the eigenvalues of the benign
matrix A to be computed with surprisingly little accuracy. The errors were a good million
times bigger than they should have been.

EXAMPLE 3.2. Our second example was a random non-normal 800 x 800 matrix with
known eigenvalues. An upper-triangular matrix T was constructed as follows. The main-
diagonal entries, the eigenvalues, were chosen to be independent random complex numbers
whose real and imaginary parts were normally distributed with mean O and standard devia-
tion 1. The entries above the main diagonal were constructed just as the main diagonal entries
were, except that the standard deviation was 1/10 instead of 1. This gave the matrix a signifi-
cant but not-too-severe departure from normality. A random unitary similarity transformation
was applied to the upper-triangular matrix to yield a full matrix with known eigenvalues.” The
matrix was then reduced to upper Hessenberg form H. Because of the departure from nor-
mality, the eigenvalues of this matrix were not as well conditioned as those of the matrix in
Example 3.1. See Table 3.1 . The Hessenberg matrix H was balanced to produce another
upper Hessenberg matrix f = D~YHD. In this example the condition number of D was
even worse than in Example 3.1. The largest main-diagonal entry of D was 1.3 x 10° and
the smallest was 1.8 x 10712, yielding a condition number of 7.2 x 106, This suggests that
some of the eigenvalues of H may be so ill conditioned that they cannot be computed with
any accuracy at all.

The actual computed condition numbers are given in Table 3.1. As we mentioned earlier,
the eigenvalues of H are somewhat ill conditioned, but they are not so bad that the eigenvalues
cannot be computed with at least a few digits accuracy. On the other hand, the eigenvalues of
H are really badly conditioned.

We computed the eigenvalues of H and H by the QR algorithm and checked their accu-
racy by comparing them with the eigenvalues of the original upper-triangular matrix 7T'. The
results are given in Table 3.2. The eigenvalues of H were computed with errors around 106

2Technically speaking, we know the eigenvalues of 7" but not of A. Because of roundoff errors, the eigenvalues
of A are not exactly the same as those of T'.

ETNA

Kent State University
etna@mcs.kent.edu

D. S. WATKINS

TABLE 3.1
Eigenvalue condition numbers for Example 3.2

| average maximum
H (unbalanced) | 6.3 x 107 9.3 x 10°
H (balanced) 45x 102 6.1x10"

TABLE 3.2
Errors in computed eigenvalues for Example 3.2

average maximum
H (unbalanced) | 1.1 x 10~% 2.1 x 10~°
H (balanced) 20x1072 87 x107!

or less. This is about what we would expect, given the condition numbers. On the other hand,
but also in line with the condition numbers, we were unable to compute the eigenvalues of H
with any accuracy at all. The average error was about 0.02. Again balancing has degraded
the accuracy.

4. Conclusions. Balancing sometimes seriously degrades accuracy. In particular, one

should not balance a matrix after it has been transformed to Hessenberg form. However, we
must emphasize that balancing is usually not harmful and often very beneficial. When in
doubt, balance.

Acknowledgement. The phenomenon discussed in this brief paper was not dicovered

in the way it was presented here. The author spent several days wondering what was wrong
with his codes. He is indebted to David Day for pointing out that balancing was the issue.

[1]
[2]
[3]

[4]
[5]

[6]

REFERENCES

E. ANDERSON ET AL., LAPACK Users’ Guide, SIAM, Philadelphia, Third ed., 1999. Available also at
http://www.netlib.org/lapack/lug/lapack_lug.html.

T. Y. CHEN AND J. W. DEMMEL, Balancing sparse matrices for computing eigenvalues, Linear Algebra Appl.,
309 (2000), pp. 261-287.

G. H. GoLUB AND C. F. VAN LOAN, Matrix Computations, Johns Hopkins University Press, Baltimore,
Third ed., 1996.

E. E. OSBORNE, On pre-conditioning of matrices, J. Assoc. Comput. Mach., 7 (1960), pp. 338-345.

B. N. PARLETT AND C. REINSCH, Balancing a matrix for calculation of eigenvalues and eigenvectors, Numer.
Math., 13 (1969), pp. 293-304.

D. S. WATKINS, Fundamentals of Matrix Computations, John Wiley and Sons, Second ed., 2002.

