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Abstract

Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the
ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE),
we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways
(37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal
airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the
avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a
critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring
temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627
attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the
mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human
influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or
avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and
neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99,
exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza
viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the
temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza
viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical

evolutionary step enabling human-to-human transmission.
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Introduction

Influenza viruses circulating in the human population are
predominately type A and B, with type A being more common [1].
All influenza type A viruses originate from aquatic birds and
successful introduction of these avian viruses into the human
population, by either direct adaptation or reassortment with already
circulating human viruses, has led to influenza pandemics of historical

significance (reviewed in [2—4,5]). Stll, documented evidence of

transmission of avian influenza viruses directly from birds to humans
is rare, partly because species barriers restrict avian influenza virus
mnfection of the epithelial cells of the human respiratory tract, the
primary site of influenza virus infection and spread.

Influenza A viruses possess a hemagglutinin (HA) attachment
protein that binds sialic acid residues to facilitate infection of target
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epithelial cells. The HA of human influenza viruses preferentially
binds to terminal sialic acid (SA) residues with ®2,6 linkages,
whereas avian influenza viruses preferentially bind to SA with 02,3
linkages [6-9]. The prevalence of 2,6 SA but paucity of 42,3 SA
in the human respiratory tract has been considered to restrict
infection by avian influenza viruses [10]. Recent reports, however,
have detected significant levels of 2,3 SA on human airway
epithelium both @ vitro and ex vivo, including in nasopharyngeal
and tracheobronchial tissue [11-14]. This SA distribution also
correlated with avian influenza virus infection i vitro and ex vivo
and raised the possibility that avian viruses could infect the upper
airways m viwo. Therefore, although it is universally accepted that
human-to-human transmission of avian influenza viruses requires
adaptation of HA to switch from a2,3 to 2,6 SA usage, the
cumulative data published to date indicate that SA linkages and
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Author Summary

Influenza type A viruses are endemic in aquatic birds but
can cross the species barrier to infect the human respiratory
tract. While transmission from birds to humans is rare, the
introduction of novel avian influenza viruses into immuno-
logically naive human populations has significant pandemic
potential. Avian influenza viruses are adapted for growth at
40°C, the temperature of the avian enteric tract. However,
the human proximal airways, the likely site of initial
inoculation by influenza viruses, are maintained at a cooler
temperature (32°C), suggesting that zoonotic transmission
may be limited by temperature differences between the
two hosts. Using an in vitro model of human ciliated airway
epithelium, we show that avian influenza viruses grow well
at 37°C, a temperature reflective of distal airways, but are
restricted for infection at 32°C. A panel of genetically
manipulated human influenza viruses possessing avian or
avian-like surface glycoproteins were also restricted at 32°C,
but not 37°C, suggesting that avian virus glycoproteins are
not adapted for efficient infection at the temperature of the
proximal airways. Thus, avian influenza virus infection is
restricted in the human proximal airways due to the cooler
temperature of this region, thus limiting the likelihood of
zoonotic and subsequent human-to-human transmission of
these viruses.

their respective distribution in the human airways are not the sole
barrier to avian influenza virus infection [15-17]. Other host
factors and viral genes are likely also important determinants of
infectivity.

One such host factor that may limit zoonotic transmission is the
difference in host temperatures between avian and human tissues
that are susceptible to influenza virus infection. Avian influenza
viruses are adapted for replication in the avian enteric tract at 40—
41°C. While the surface temperatures of the human respiratory
tract are variable, a temperature gradient clearly exists in which
the surface temperature of the proximal large airways (i.e., nasal
and tracheal) average 32+/—0.05°C while temperatures of the
smaller, distal airways (i.e., bronchioles) are closer to that of the
core body temperature, 37°C [18,19]. While multiple transmission
routes have been described for influenza viruses, the proximal
airways likely represent a predominant site for human influenza
virus inoculation as they provide a large exposed surface area of
virus-susceptible epithelial cells [20]. These cells are directly
accessible by large droplet aerosols and by way of digital
inoculation of the nasopharynx and conjunctival mucosa
[12,21]. Inefficient infection by avian influenza viruses, even in
the presence of 2,3-linked SA, may be due to the cooler
temperature of the proximal airways compared to that of the distal
airways/lung regions where H5N1 avian influenza viruses appear
to replicate efficiently [22].

Avian influenza viruses are attenuated at temperatures below
37°C and cold sensitivity of avian viral RNA replication in cell
lines was linked to the presence of a glutamic acid at amino acid
627 in the avian virus polymerase subunit, PB2, instead of a lysine
in the human virus PB2 [23]. Lysine substitution at residue 627 of
H5NI1 viruses improved virus replication in mice [24]. In addition
to PB2, work utilizing human-avian reassortant viruses in MDCK
cells provided initial evidence that avian glycoproteins, HA and
neuraminidase (NA), may mediate temperature-dependent effects
on viral growth [25]. To our knowledge, other viral genes have not
been well characterized, nor the HA and NA further evaluated, in
their contribution to temperature sensitivity of avian influenza
viruses.

@ PLoS Pathogens | www.plospathogens.org

Influenza Virus Temperature Restriction

To characterize the temperature dependency of avian vs.
human influenza viruses in a relevant model of the target cell types
of the human airways, we utilized an @ vitro model of human
ciliated airway epithelium (HAE). This model closely mimics the
morphological and physiological features of the human airway
epithelium  wviwo and has been previously used to investigate
infection by diverse respiratory viruses [26—30]. In humans,
ciliated airway epithelium is present throughout the airways,
extending from the nasal cavity and large proximal airways into
the distal bronchiolar airway regions. Previously, we have shown
that both human and avian influenza viruses replicate well in HAE
and that human and avian influenza virus cell tropism correlates
with the respective distribution of the specific sialic acid linkages
[13]. However, these previous studies were conducted at 37°C,
reflecting conditions encountered in the distal airways [13]. Others
have also utilized these airway cell systems to characterize
influenza virus replication of wild-type and recombinant viruses
at 35°C [14,31,32]. In the present study, we utilize the HAE
model, in combination with influenza virus reverse genetics, to
investigate the influence of temperature on human and avian
influenza virus infection, replication and spread. We demonstrate
that, compared to human influenza viruses, avian influenza viruses
are severely restricted for infection of human airway epithelium at
the temperature of the human proximal airways. Then, using
different strategies to ‘avianize’ human influenza viruses, we show
that the temperature restriction of avian viruses is closely
associated with the avian HA and NA glycoproteins.

Results

Human and avian influenza virus infection of human
ciliated airway epithelium at 32°C and 37°C

We and others have previously shown that human and avian
influenza viruses infect and replicate in HAE [13,14,31]. Since our
previous experiments were performed at 37°C, a temperature
reflective of human distal airways, we have now compared human
and avian influenza virus infection and growth in HAE at
temperatures reflective of the proximal airways (32-33°C) and
distal airways (37°C). HAE were inoculated at either 32°C or 37°C
with a low multiplicity of infection (MOI; 0.01) of a representative
human virus, A/Victoria/3/75 (H3N2), or an avian influenza
isolate, A/Dk/Eng/62 (H4NG6). Virus growth and spread through-
out the epithelium at the two temperatures was measured and
compared over time and infection further characterized with
respect to virus-induced cytopathic effects (CPE).

At the temperature of the distal airways (37°C), the growth
kinetics and mean peak titers of A/Victoria/3/75 and A/Dk/
Eng/62 reached 2.3x10% pfu/ml and 4.7x107 pfu/ml, respec-
tively, by 48 hours post-inoculation (hrs pi) (Figure 1A). At the
temperature of the proximal airways (32°C), A/Victoria/3/75
showed a modest delay in replication but still reached maximal
titer of 7.8x107 pfu/ml by 48 hrs pi. In contrast, A/Dk/Eng/62
grew very slowly, with yields at time points up to 48 hrs pi reduced
by 3 to 5 logs compared to growth for this virus at 37°C or A/
Victoria/3/75 at either temperature.

In comparison to 48 hr titers, A/Victoria/3/75 titers at both
temperatures and A/Dk/Eng/62 titers at 37°C were reduced at
72 hr pi and every time point thereafter, indicating reduced
progeny virus production. A loss of titer was also observed for A/
Dk/Eng/62 at 32°C, but not before 120 hrs pi. To determine if
loss of titer after reaching maximum levels correlated with
increased CPE, we quantified adenylate kinase (AK) release by
dead/dying cells into the apical compartment as a sensitive and
global measure of cytotoxicity across the entire epithelial cell
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Figure 1. Infection of HAE by avian, but not human, influenza
viruses is restricted at temperatures of the proximal airways.
(A) Comparison of multi-cycle virus growth in HAE inoculated with
either A/Victoria/3/75 at 32°C (closed triangles) or 37°C (open triangles)
and A/Dk/Eng/62 at 32°C (closed circles) or 37°C (open circles) both at
MOI~0.01. Apical viral titers at times shown were determined by
standard plaque assay on MDCK cells. Data shown represents the mean
titer +/—standard error (SE; n=3-10 cultures). (B) Adenylate kinase
activity released into the apical compartment of HAE over time after
inoculation with A/Victoria/3/75 or A/Dk/Eng/62 at 32°C and 37°C as a
measure of viral-induced CPE. Data shown represents the mean fold
change over adenylate kinase activity derived from mock-inoculated
HAE +/—SE (n=3-8). Significance is noted (*p<<0.05) where viral titers
or AK levels obtained for A/Dk/Eng/62 at 32°C were statistically
different from all other titers/AK measurements (Dk/37°C, Vic/32°C and
Vic/37°C) at that particular time point. Significance is noted ("p<0.05)
where AK levels obtained for A/Dk/Eng/62 at 32°C and 37°C were
statistically different.

doi:10.1371/journal.ppat.1000424.g001

culture surface. Figure 1B indicates that substantial increases in
AK levels, indicative of the onset of CPE, are first detected at
48 hrs pi for A/Victoria/3/75 at 32°C and 37°C and A/Dk/
Eng/62 at 37°C. This induction of AK coincided with peak viral
titer for these viruses under these conditions (compare Figure 1A
and 1B) and suggested that the loss of titer correlated with the
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onset of CPE. Increasing levels of AK between 48 and 96 hrs pi
were directly associated with continually decreasing viral titers,
further supporting this claim.

A relationship between the kinetics of virus growth in HAE and
the level of CPE also suggested that CPE was a consequence of
viral replication. This assertion is supported by the fact that trends
in viral titers at a given time point are mirrored in AK levels
detected 48 hrs later (e.g., compare viral titers at 48 hr pi
(Figure 1A) to AK measurements taken at 96 hr pi (Figure 1B)).
Since viral titer and AK levels could be related to the numbers of
cells infected and/or the degree of virus replication within
individual cells we compared titers of human and avian influenza
viruses (Figure 1A) to the numbers of cells infected by each virus at
the two temperatures over time. Immunodetection of viral antigen
in inoculated HAE showed that human and avian influenza virus
antigen was not detected 3 hrs pi, indicating that levels of antigen
in residual viral inocula were below the limit of antibody detection
(data not shown). For A/Victoria/3/75, a few isolated cells were
positive for viral antigen by 6 hrs pi at 37°C, but by 24 hrs pi
considerable numbers of antigen-positive cells were detected
(Figure 2A). In agreement with our growth curves in Figure 1A,
A/Victoria/3/75 infected slightly fewer cells at 32°C compared to
37°C at 24 hrs pi, but importantly, A/Victoria/3/75 spread
efficiently within the epithelium at both temperatures and
differences in infection at early time points became less significant
over time (Figure 2A).

In contrast to A/Victoria/3/75, A/Dk/Eng/62 antigen was
detected in only a few cells 24 hrs pi at either temperature.
However, it should be noted that antigen-positive cells in en face
images are viewed linearly (Figure 2A) whereas viral titers are
shown on a logarithmic scale (Figure 1A). Thus, an apparently
small difference in titer as is seen at 24 hrs pi between A/ Victoria/
3/75 and A/Dk/Eng/62 at 37°C. may correspond to a larger
difference in the number of cells positive for viral antigen. While
our staining also confirmed previous data that avian influenza
viruses infect fewer human airway epithelial cells in comparison to
human influenza virus at 37°C (Figure 2A; [13]), the limited extent
of A/Dk/Eng/62 antigen positive cells at 37°C by 24 hr pi was
still unexpected given that titers at this time were slightly greater
than those for A/Victoria/3/75 at 32°C. Whether this represents
a difference in yield of infectious virus per infected cell between
human and avian viruses is presently not clear. Overall, A/Dk/
Eng/62 grew and spread well at 37°C, but was severely restricted
for growth at 32°C and antigen positive cells were barely
detectable before 48 hr pi for this virus at lower temperature.

HAE cultures infected with A/Victoria/3/75 at either 32°C or
37°C and A/Dk/Eng/62 at 37°C viewed en face exhibited loss of
integrity of the epithelium although the extent of injury and time
of onset varied (Figure 2A). Further evaluation of histological
cross-sections indicated that A/Victoria/3/75 infection at 37°C,
which had the highest and earliest induction of AK, resulted in the
earliest evidence of morphological injury at 72 hrs pi. HAE
infected with A/Victoria/3/75 at 32°C or 37°C or A/Dk/Eng/62
at 37°C all showed desquamation of the superficial layer of
columnar epithelial cells with basal epithelial cells remaining
attached to the matrix support by 120 hrs pi (Figure 2B). Similar
cytopathology has been reported for A/Udorn/307/72 influenza
virus infection of HAE wn vitro and for clinical human influenza
virus infection i vivo [29,33]. The detection of AK in apical washes
of A/Dk/Eng/62-infected HAE at 32°C suggested that this virus
did eventually compromise cellular integrity at the lower
temperature, but dramatic morphological effects were not seen
at least for up to 120 hrs (Figure 1B and 2B). It should be noted,
however, that at 120 hrs pi, A/Dk/Eng/62-infected HAE at 32°C
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Figure 2. Spread and histopathology of avian and human influenza viruses in HAE at temperatures of the proximal and distal
airway. (A) Representative en face photomicrographs of HAE inoculated with either A/Victoria/3/75 or A/Dk/Eng/62 at 32°C or 37°C, fixed at 6, 24, 48
and 72 hrs pi and stained for viral nucleoprotein (green) to determine numbers of cells infected. Scale bar equals 100 um. (B) Representative
histological cross-sections of HAE at 24, 72 and 120 hrs after inoculation with A/Victoria/3/75 or A/Dk/Eng/62 at 32°C or 37°C. H&E counterstain. Scale
bar equals 20 um.

doi:10.1371/journal.ppat.1000424.g002
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did display some morphological characteristics different from
uninfected and infected HAE at earlier time-points. Preliminary
assessment indicates that expansion of lateral spaces between the
columnar epithelial cells had occurred. Although we do not know
the significance of these morphological changes, we speculate these
observations are the initiation of CPE that will ultimately result in
similar cellular injury as seen for this virus at 37°C and human
viruses at both temperatures.

In sum, for both viruses at both temperatures, detection of
maximal numbers of antigen-positive cells correlated with high
titers (compare Figure 1A and 2A) and increasing CPE (Figure 1B).
By 72 and 120 hrs pi considerable loss of cells from the culture was
evident and this correlated with the drop off in viral titers at these
time points (Figure 1A). Thus, we conclude that in the context of
maximal infection in which there were no additional target cells
available for infection within the finite surface area of the HAE
culture, ongoing replication in antigen-positive cells shown at 48
and 72 hrs pi resulted in increased cell death. This CPE led to a
reduction in the number of viable, virus-producing cells and in
turn, to a reduction in progeny virus. Although A/Dk/Eng/62
induced CPE when sufficient titers were generated at 37°C, one
consequence of restricted replication of this avian influenza virus
at 32°C was a reduction in overt CPE in HAE, even at later time
points associated with considerable viral titers.

Avian influenza virus restriction at 32°C is independent of
avian virus strain

To determine whether other avian, but not human, influenza
viruses display temperature dependent phenotypes, we performed
multi-step growth curves with more human H3N2 isolates (A/
Eng/26/99 and A/Udorn/307/72) and A/Dk/Sing/97, an avian
isolate of different subtype (H5N3). Growth of both human-
derived influenza viruses tested, A/Eng/26/99 (H3N2) and A/
Udorn/307/72 (H3N2), was not significantly different between
32/33°C and 37°C (Figure 3A and 3B). Indeed, these two
additional human influenza virus strains showed even less
difference in titer between temperatures than was determined for
A/Victoria/3/75.

Assessment of growth of avian influenza virus, A/Dk/Sing/97
(H5N3), over a 48 hr time course at 37°C showed similar growth
kinetics to that of A/Eng/26/99 (H3N2), reaching titers of 7 x10°
pfu/ml and 1.6 x10° pfu/ml, respectively (Figure 3A and 3C). In
contrast, at 32°C, A/Dk/Sing/97 (H5N3) failed to grow at all
(Figure 3C). Clearly, the restriction of A/Dk/Sing/97 at 32°C
compared to 37°C was an even more striking phenotype than A/
Duck/Eng/62. As the avian influenza virus strains used in this
study were seclected at random, with no selection for a
temperature-dependent phenotype, we propose that low temper-
ature restriction of avian influenza viruses, but not human
influenza viruses, may be broadly characteristic of avian influenza
viruses. The extent of restriction, however, may be variable
between different virus strains.

Since the avian virus isolates used in these experiments are
neither derived from samples obtained from humans nor passaged
in human cells & wvitro, we next investigated whether growth
attenuation at low temperatures would be retained in a highly
pathogenic H5NT1 (A/VN/1203/04) influenza virus isolated from
a fatal human case [34]. We compared infection kinetics of H5N1
(A/VN/1203/04) at 33°C and 37°C on HAE using A/Udorn/
307/72 in parallel cultures as a human influenza virus control. As
described above, A/Udorn/307/72 grew with similar kinetics at
33°C and 37°C (Figure 3B). A/VN/1203/04, however, exhibited
slower replication kinetics at 33°C. when compared to that for
37°C (Figure 3D). Indeed, titers were significantly decreased at
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33°C vs. 37°C at 24, 48 and 72 hrs pi. In addition, only at 37°C
did A/VN/1203/04 approach similar peak titers as the human A/
Udorn/307/72 virus by the end of the 72 hr time course
(Figure 3D). Histological analyses of A/VN/1203/04-infected
HAE at either temperature showed absence of obvious CPE in
sharp contrast to A/Udorn/307/72 that obliterated the epitheli-
um by 72 hrs pi (Figure 3E). The lack of obvious CPE after H5N1
infection contrasts reports that H5N1 induced extensive apoptosis
in mammalian airway cells [35,36]. The fact that we did not
observe obvious CPE with this highly pathogenic virus warrants
further investigation but is in line with the limited cell damage
shown following infection with A/Dk/Eng/62 for 72 hrs
(Figure 2B). In sum, using diverse examples of human and avian
influenza viruses we have shown that avian influenza viruses, but
not human influenza viruses, are restricted for infection and
growth in HAE at the lower temperature of 32°C.

‘Avianization’ of human virus polymerase restricts
growth in HAE at both 32°C and 37°C

Previously, the polymerase subunit PB2 has been shown to play
an important role in host range restriction of avian influenza
viruses in mammalian cells [37-39]. In influenza virus strains that
circulate in humans, amino acid residue 627 in PB2 is a lysine,
whereas in the majority of avian strains it is a conserved glutamic
acid residue. The presence of glutamic acid at PB2 627 (avian-like)
has been reported to account for the lower replication of avian
influenza strains in mammalian cells and has been linked with
reduced polymerase activity at lower temperature (33°C) in some
cell systems [23,24]. To assess the potential impact of this PB2
amino acid residue in restriction of avian influenza viruses at
32°C, we generated a recombinant A/Victoria/3/75 virus
containing the PB2 K627E mutation and compared its growth
with that of the isogenic wild-type virus in HAE at 32°C and 37°C.
The K627E mutation resulted in restriction of the virus at both
temperatures (Figure 4Ai), and although titer at 32°C was 1.3 logs
lower than at 37°C at 24 hrs pi, this difference was no greater than
the differences in growth for wild-type virus at these temperatures
(1.5 logs; Figure 4Ai). Moreover, at the later time points analyzed,
48 and 72 hrs pi, the PB2 mutant did not show a significant
difference in titer between the two temperatures. These data
indicate that the K627E mutant virus was restricted for growth in
HAE but that restriction was not temperature-dependent. Indeed,
quantification of the numbers of infected cells identified by en face
staining revealed that the K627E mutant virus infected a similar
percentage of cells compared to wild-type virus at 24 hrs pi
(Figure 4Aii) and that the mutant was capable of spread since new
cells were infected by 48 hrs with similar kinetics to that of wild-
type A/Victoria/3/75 at both 32°C and 37°C (Figure 4Aii).
Statistically, there was no difference between the wild-type and
PB2 mutant viruses at either 32°C or 37°C at 48 hrs pi with
respect to percent influenza virus-antigen positive epithelium.
Together, these data suggest that the amino acid residue at PB2
627 influences viral fitness in HAE, but does not confer to a
human virus the temperature-dependent phenotype of avian
influenza virus infection in human ciliated airway epithelium.

Human influenza viruses with avian-like glycoproteins
display restricted replication and spread at 32°C in HAE
Our initial phenotype indicated that A/Dk/Eng/62 was
restricted in its ability to spread from cell to cell within the
epithelium at 32°C (Figure 2A). Several events in the viral life cycle
that are critical for spread, including release of progeny virions
from previously infected cells and attachment and entry into new
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Figure 3. Temperature-dependent growth of different serotypes of influenza viruses in HAE. Multi-step growth kinetics of (A) human
influenza virus A/Eng/26/99 or (C) avian influenza virus A/Dk/Sing/97 (MOI~0.1) at 32°C (open circles, dashed line) or 37°C (closed circles, solid line) in
HAE +/—SE (n=3 cultures). Multi-step growth kinetics in HAE inoculated with an MOI~0.03 of (B) A/Udorn/307/72 (H3N2) or (D) A/VN/1203/04
(H5N1) at 33°C (open circles, dashed line) or 37°C (closed circles, solid line). Data represents mean titer across two different donors, each performed in
duplicate +/—SE. Viral titers were determined by plaque assay in (A) and (B) and by TCIDs, assay for (C) and (D). No significant differences in growth
between temperatures were found for either A/Eng/26/99 or A/Udorn/307/72. A/VN/1203/04 was significantly restricted for growth at 24, 48 and
72 hrs pi (*p<<0.05). (E) Representative histological cross-sections of HAE infected for 72 hrs at 37°C with A/Udorn/307/72 or A/VN/1203/04 and
compared to mock-inoculated HAE. H&E counterstain. Scale bar equals 20 um.

doi:10.1371/journal.ppat.1000424.g003

target cells, are mediated by influenza virus glycoproteins. Thus,
we hypothesized that glycoprotein function could be responsible
for the restricted infection of HAE by avian influenza viruses at the
lower temperature of 32°C. To test whether HA and/or NA
contributed to the restricted phenotype of avian influenza viruses
at 32°C, we used reverse genetics to generate mutant viruses
genetically altered to confer avian virus-like glycoprotein specific-
ities on the A/Victoria/3/75 background. First, mutations in HA
previously shown to switch sialic acid usage from 02,6 to 02,3
linkages (L226Q), S228G) [40] were introduced to generate the
Vic-226-228HA virus. Second, we generated a reassortant virus in
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which the Victoria NA was replaced by that of the avian virus A/
Chick/Italy/1347/99 to generate Vic+Chick N1.

We again compared virus replication and spread of the
recombinant viruses to that of wild-type A/Victoria/3/75 at the
two temperatures. As stated above, replication measured for the
wild-type virus was slightly compromised at lower temperature,
noticeable at 24 hrs pi. Restriction at this time point was also
observed during infection of HAE with Vic-226-228HA, as it had
been for the PB2 mutant virus. Specifically, a 2.5 log decrease in
virus growth was determined for Vic-226-228HA at 32°C
compared to 37°C at the 24 hr time point (Figure 4Bi). However,
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Figure 4. Comparison of replication kinetics and spread of A/Victoria/3/75 with an avianized PB2, HA and/or NA to wild-type virus.
Multi-step growth kinetics in HAE inoculated with (Ai) PB2 polymerase mutant (K627E), (Bi) HA (L226Q, S228G) mutant, (Ci) Vic+Chick N1 reassortant
virus, (Di) Vic (226-228)HA+Chick N1 at 32°C (solid line, closed circles) or 37°C (solid line, open circles). Wild-type A/Victoria/3/75 growth curves at 32°C
(closed triangles) and 37°C (open triangles) are repeated in each panel and shown as dotted lines in (Ai), (Bi), (Ci) and (Di) for comparison. Data
represent mean titer across 3-8 cultures +/—SE. Significance is noted (*p<<0.05) where viral titer obtained for the mutant or reassortant virus at 32°C
was statistically different from all other viral titers (mutant/37°C, wild-type/32°C and wild-type/37°C) at that time point. Significance is noted
(Tp<0.05) where viral titers obtained for the mutant / reassortant virus at 32°C and 37°C were statistically different. Quantification of numbers of cells
infected (determined by en face staining for viral nucleoprotein) in HAE at 24 and 48 hrs pi at 32°C and 37°C for (Aii) PB mutant virus, (Bii) HA mutant

@ PLoS Pathogens | www.plospathogens.org

May 2009 | Volume 5 | Issue 5 | e1000424



Influenza Virus Temperature Restriction

virus and (Cii) N1 reassortant virus. Data obtained in parallel for wild-type A/Victoria/3/75 is repeated in each graph (striped bars) for comparison to
the mutant (solid bars). Data shown represents the mean of the percentage of influenza virus antigen-positive epithelium across 10 different fields +/
—SE. Differences in viral antigen positive epithelium between temperatures for each virus at 48 hrs pi is noted as significant (*p<<0.05) or insignificant
(NS). A one-way ANOVA model showed no significant differences between the wild-type virus and PB2 mutant at 32°C and 37°C at 48 hrs pi. (Dii)
Representative en face photomicrographs of HAE inoculated with A/Victoria/3/75 or Vic (226-228)HA+Chick N1 at either 32°C or 37°C and stained for
viral nucleoprotein (green) to determine numbers of cells infected 72 hrs pi. Scale bar represents 100 um.

doi:10.1371/journal.ppat.1000424.9004

unlike the PB2 mutant virus, the difference between replication at
32°C and 37°C for Vic 226-228HA was also significant at the
48 hour time point. Moreover, this mutant virus with avian virus-
like sialic acid usage spread less efficiently than wild-type at 32°C
so that by 48 hrs pi the number of virus antigen-positive cells was
significantly different (Figure 4Bii). In contrast, at 37°C, Vic-226-
228HA infected similar numbers of cells as the wild-type virus by
48 hrs; indeed, the mutant virus was able to spread significantly
more efficiently at the higher temperature (Figure 4Bii).

Similarly, the reassorted virus Vic+Chick N1 displayed a 2 log
decrease in viral titer in HAE at 32°C compared to 37°C at 24 hrs
pi. Although this difference was not appreciably greater than the
difference in titer between temperatures for either wild-type virus or
the PB2 mutant, Vic+Chick N1, unlike wild-type A/Victoria/3/75
and Vic 627PB2, maintained the ~2-log difference in growth at
48 hrs pi (Figure 4Ci), suggesting this virus was more restricted at
the cooler temperature. Quantification of numbers of infected cells
illustrated that, like Vic-226-228HA, Vic+Chick N1 was restricted
for spread at 32°C which was significant at 48 hrs, but was capable
of spread similar to wild-type A/Victoria/3/75 at 37°C
(Figure 4Cii). Together these data suggest that avianizing either
the HA or NA glycoprotein of an otherwise human influenza virus
limits spread and subsequent infection at 32°C compared to 37°C.

We next generated a recombinant influenza virus containing both
the 226-228HA and Chick N1 and tested infection and growth in
HAE at 32°C and 37°C in comparison to wild-type A/Victoria/3/
75. At 24 hrs pi, the double glycoprotein-altered virus exhibited
similar restriction as observed for the other viruses. Nonetheless, an
overall evaluation of the double glycoprotein-altered virus suggested
that as infection proceeded, this virus was profoundly restricted at
32°C compared to 37°C (Figure 4Di), exhibiting >2 log reduction in
titer at 48 hrs. Notably, titers for the wild-type virus differed by less
than 0.5 logs between temperatures at this time point. Furthermore,
the double glycoprotein-altered virus was still significantly restricted
at 72 hrs pi when titers at 32°C were compared to those at 37°C. The
level of restriction observed for the double mutant was greater than
that observed for either virus containing each of these mutations/
substitutions individually. Moreover, analysis of viral antigen positive
cells at 72 hrs by en face staining of infected HAE indicated
compromised spread of Victoria (226-228HA}+Chick N1 which
was more severe at 32°C than 37°C (Figure 4Dii).

Determination of CPE during these experiments revealed that
the double glycoprotein-avianized virus only produced CPE at
72 hrs pi when experiments were performed at 37°C, whereas
wild-type human virus produced CPE earlier and at both
temperatures (data not shown). These data are consistent with
the levels of CPE observed for A/Dk/Eng/62 (H4N6) and A/
Victoria/3/75 (H3N2) in our initial studies (Figure 1B) and suggest
that altering the human virus glycoproteins to avian virus-like
characteristics has profound effects on infection, spread and CPE
in the environment of the human ciliated airway epithelium.

Avian influenza virus glycoproteins dictate cell tropism
and restrict growth of virus in HAE at 32°C

One potential caveat of the recombinant viruses with avianized
HA and/or NA utilized in our previous analysis was that they
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contained HA and NA pairs that had not co-evolved. To eliminate
the possibility that the restriction we observed with these
recombinant viruses was due to an imbalance between the
activities of the surface glycoproteins that were not evolutionarily
optimized, we next generated reassorted influenza viruses on a
common genetic background, possessing human or avian
glycoproteins with co-evolved pairings. This was achieved using
human recombinant A/PR/8/34 (HIN1) in which the wild-type
H1 and NI glycoproteins were replaced by the H3 and N2
glycoprotein pair from A/Victoria/3/75 (generating PR8+Vic
HA/NA) or the H7 and NI glycoprotein pair from A/Chick/
Italy/1347/99 (generating PR8+Chick HA/NA, previously
termed RD3) [41]. Since we and others have shown differential
cell-type tropism between human and avian influenza virus in
HAE [13,14], we next determined if avianizing the human virus
HA by mutation or substitution (in the presence or absence of an
avian NA) recapitulated the cell-type tropism exhibited by wholly
avian influenza viruses in HAE. As shown by immunofluorescent
detection in histological sections of infected HAE, PR8 containing
A/Victoria/3/75 glycoproteins infected both ciliated and non-
ciliated cells in HAE with a tropism similar to wild-type A/
Victoria/3/75 (Figure 5). In contrast, A/Victoria/3/75 with two
avian-like amino acid substitutions in HA and PR8+Chick HA/
NA only infected ciliated cells, a tropism that was mirrored by
wholly avian virus [13,14]. These data clearly show that the
ciliated cell tropism of avian influenza viruses is dictated by
properties of the viral glycoproteins. These results correlate with
the known increased sialic acid binding preference of avian HA for
a2,3-linked SA, and to the presence of a2,3-linked SA on ciliated
cells in HAE [8,13,14].

Growth kinetics in HAE of PR8+Vic HA/NA and PR8+Chick
HA/NA inoculated at equal MOI (0.01) revealed that PR8+Vic
HA/NA infection and growth was efficient at both 32°C and 37°C
(Figure 6A). PR8+Chick HA/NA grew at 37°C to identical titers
as PR8+Vic HA/NA at 32°C recapitulating our data obtained for
wholly human (A/Victoria/3/75) and wholly avian (A/Dk/Eng/
62) viruses. In contrast, PR8+Chick HA/NA was severely delayed
in growth at 32°C and generated titers that were >2 logs less than
titers obtained for this virus at 37°C at both 24 and 48 hrs pi.
Indeed, PR8+Chick HA/NA, like A/Dk/Eng/62 avian influenza
virus (Figure 1A), was significantly restricted for growth at 32°C at
12, 24 and 48 hrs pi compared to growth at 37°C and growth of
PR8+Vic HA/NA at either temperature.

As observed for wholly human and avian influenza viruses, peak
titers were reached for PR8+Vic HA/NA at both temperatures
and PR8+Chick HA/NA at 37°C by 48 hrs pi after which a
decline in viral titer was apparent. Again, as noted in our
observations with human and avian influenza viruses, the loss of
viral titers with time correlated with the onset of CPE. While
PR8+Chick HA/NA infection at 32°C: did not result in substantial
AK release until 96 hr pi, increased AK activity was detected in
cultures inoculated with this virus at 37°C. AK activity measured
in cultures at this temperature increased with similar kinetics and
reached similar levels as AK measured in cultures inoculated with
PR8+Vic HA/NA at either temperature. Furthermore, the
kinetics of AK induction demonstrated that again, AK was
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Figure 5. Cell tropism of human, avian and avianized viruses in HAE. Representative cross-sections of inoculated HAE, fixed 24 hrs pi, were
probed for viral antigen (NP; green) and a.—acetylated tubulin, a marker for ciliated cells (red). Notably, the staining pattern for wild-type A/Victoria/3/
75 was identical to that of PR8+Vic HA/NA. Arrows mark ciliated cells infected with either wild-type A/Victoria/3/75 or PR8+Vic HA/NA; arrow-head
denotes non-ciliated cells infected by these viruses. These data indicate that viruses with Victoria glycoproteins were able to infect both cell types
previously shown to express 22,6 SA [13]. Viral antigen was detected only in ciliated cells in cultures inoculated with Vic-226-228HA (in the Victoria
background with either endogenous N2 or avian N1 or PR8+Chick HA/NA). Scale bar equals 20 um.

doi:10.1371/journal.ppat.1000424.g005

consequential to viral replication and that, overall, CPE induced
by reassortant viruses was reflective of CPE measured for human
and avian influenza viruses.

En face staining of HAE at 24 hr intervals after inoculation
showed PR8+Chick HA/NA spread to additional target cells at
37°C at a rate similar to that of PR8+Vic HA/NA at 32°C and
correlated with the titers measured for these two viruses under
those conditions (Figure 6C and 6D). At 32°C, however,
PR8+Chick HA/NA spread was severely compromised and
resembled the infection characteristics shown for A/Dk/Eng/62
(H4N6) in Figure 2A. Thus, by replacing human glycoproteins
with those from an avian virus isolate, we have recapitulated the
effect of temperature on infection and growth kinetics as well as
the degree of cytotoxicity produced by wholly avian influenza virus
interactions in human ciliated airway epithelium. The relative
contributions of reduced cell-cell spread and reduced CPE by
avian-like influenza viruses at temperatures of the proximal
airways to i viwo infection and pathology will, however, require
further investigation.

Discussion

We have performed comparative studies of the infection kinetics
of human and avian influenza viruses in a model of human ciliated
airway epithelium at temperatures reflective of the human
proximal and distal airways. Our data show that avian and
avianized influenza viruses are restricted for infection and growth
in HAE at 32°C but not 37°C, while human viruses infect and
grow efficiently at both temperatures. Based on these data, we
suggest that while the warmer temperatures of the distal airways
enable comparable infection by both human and avian influenza
viruses, the cooler temperatures of the human proximal airways
only support efficient and robust infection of the ciliated airway
epithelium by human influenza viruses. We speculate that the
observed restriction for avian and ‘avianized’ viruses in HAE
would render avian influenza viruses more susceptible to innate
and adaptive immune responses that limit pathogenicity i vivo.
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These results have significant impact on our understanding of why
avian influenza viruses rarely undergo zoonotic transmission and
why, when the rare human case does occur, that avian influenza
virus infection and pathology manifest predominately in the
warmer distal airways and lungs.

The inability of avian influenza viruses to replicate efficiently at
cooler temperatures has been linked to the viral polymerase
subunit, PB2 [23,24]. In the present study, mutating position 627
in a human virus PB2 to an avian virus conserved residue resulted
in growth restriction at both 32°C and 37°C, suggesting that this
residue is important for general viral fitness in HAE, but is not
responsible for the differences in infection seen at 32°C vs. 37°C.
Two recent reports also found that viruses with 627E in PB2 were
attenuated regardless of temperature in human bronchial
epithelial cells and MDCK cells, respectively, although in other
cell systems including human small airway epithelial cells, a
temperature specific effect was found [24,42]. It should be
emphasized that those studies were performed in non-differenti-
ated epithelial cells unlike our studies that use human differenti-
ated airway epithelial cells. We and others have previously shown
that differentiated airway epithelial cell models enable discrimi-
nation of attenuated phenotypes of respiratory virus infection
whereas non-differentiated cells do not [26,27,43]. In addition, we
also show using HAE, that the H5N1 strain A/VN/1203/04,
which possesses a lysine at position 627 (human adaptation), is still
restricted for growth at 32°C, albeit less so than avian influenza
viruses that have never infected humans. The attenuation in HAE
of this H5N1 isolate which possesses a “human” amino acid at
residue 627 in PB2 suggests other residues in the polymerase
subunit or other viral proteins altogether are involved in
temperature sensitivity of avian influenza viruses.

In our initial experiments, spread of avian influenza viruses
from cell to cell at 32°C was compromised in cultures inoculated at
low MOI, suggesting a potential role for the envelope glycopro-
teins, HA and NA, in mediating temperature restriction. Previous
work by Kaverin and colleagues also demonstrated temperature
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Figure 6. Temperature restriction of avian influenza viruses at
32°C can be mimicked by inserting avian envelope glycopro-
teins into human influenza viruses. (A) Multi-step growth kinetics
initiated in HAE over time with PR8+Vic HA/NA at 32°C (closed triangles)
or 37°C (open triangles) and PR8+Chick HA/NA at 32°C (closed circles) or
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37°C (open circles) in HAE. Apical viral titers were determined at the
times shown by standard plaque assay. Data shown represents mean
titer across 4-8 cultures +/—SE. (B) Adenylate kinase activity in apical
washes of virus-infected HAE expressed as fold-change over adenylate
kinase activity in mock-inoculated HAE +/—SE (n=4-8). Significance is
noted (*p<<0.05) where viral titers or AK levels obtained for PR8+Chick
HA/NA at 32°C were statistically different from all other titers/AK
measurements (Chick/37°C, Vic/32°C and Vic/37°C) at that particular
time point. Significance is noted ('p<0.05) where AK levels obtained for
PR8+Chick HA/NA at 32°C and 37°C were statistically different. (C,D)
Representative en face photomicrographs of viral nucleoprotein
immunoreactivity (green) in HAE inoculated with (C) PR8+Vic HA/NA
or (D) PR8+Chick HA/NA, at 24, 48 and 72 hrs pi at 32°C (lower rows) or
37°C (upper rows).

doi:10.1371/journal.ppat.1000424.g006

effects on growth of human-avian reassortant viruses containing
avian glycoproteins [25], although this work was performed in
non-polarized MDCK cells and did not investigate additional
correlates of infection such as spread and CPE. In our study, we
generated recombinant influenza viruses based on the A/Victoria/
3/75 or A/PR/8/34 genetic backbone that were engineered to
contain avian-like and/or avian glycoproteins and characterized
infection in HAE. Kinetic studies showed that although human
influenza viruses that possessed avian or avian-like surface
glycoproteins were modestly restricted compared to wild-type
viruses at 37°C, these mutant viruses were able spread like wild-
type viruses throughout HAE at this temperature. Wide-spread
infection throughout HAE was even observed for viruses in which
their endogenous HA was replaced or mutated to preferentially
bind 02,3 SA, restricting tropism to ciliated cells. Efficient
replication of Vic-226-228HA at 37°C in our studies corroborates
previous work by Matrosovich and colleagues in which little effect
of HA-specificity ‘switching” on replication was noted unless a very
low MOI (0.00004) was used for inoculation [44]. In contrast,
Wan and Perez described more profound differences in replication
in HAE at 37°C with recombinant viruses that differed only in
their receptor specificity [31]. However, it should be noted that
their recombinant viruses were based on an HIN2 avian strain
that yielded relatively low titers, and their initial infections were
performed at 35°C before incubating at 37°C [31].

Compared to 37°C, viruses with a preference for binding to
®2,3 SA, including Vic-226-228HA, were restricted for growth
and spread in HAE at 32°C. Notably, the H5N1 strain examined
in this study also maintains preference for 02,3 SA binding [45];
thus, we may surmise that this characteristic of A/VN/1203/04
contributes to its attenuation observed in HAE. The contribution
of 02,3 SA usage to replication of influenza viruses investigated by
Hatta et al. in the upper respiratory tract of mice may have been
masked in the mouse model (the 627 mutation in PB2 being more
apparent) as mice express solely avian virus-like receptors (02,3
SA) in their airways [46]. Restriction of 2,3 SA-binding viruses in
HAE at 32°C was not due to a discrepancy in SA expression since
HAE maintained at either 32°C or 37°C expressed similar levels of
02,6 and 02,3 SA (as detected by Sambucus nigra (SNA) and Maackia
amurensis (MAA) lectin staining, respectively; data not shown).

In conjunction with the HA, the sialidase activity of NA is
crucial for successful virus penetration of mucus layers for initial
infection and subsequent release of progeny virions from infected
cells [47,48]. This is especially critical both # viwo and in HAE
models in which the luminal epithelial cell surface is robust with
glycoconjugates displaying abundant terminal sialic acid moieties
that may act as false receptors for influenza viruses [49]. Using
standard laboratory assays that employ small monovalent soluble
substrates for cleavage by NA (MUNANA), we were not able to
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demonstrate any temperature-dependent loss of NA activity
associated with either human or avian virus (data not shown).
However, the ability of the avian virus NA to cleave biologically
relevant substrates present in HAE may be compromised at 32°C
vs. 37°C restricting both initial infection and subsequent spread of
the virus throughout the epithelium. This is supported by our data
which demonstrate restricted growth and spread of reassortant
viruses containing avian virus NA, including Vic+Chick N1 and
PR8+Chick HA/NA in HAE at 32°C.

In addition to their independent functions, the balance between
the binding affinity of the viral HA and the sialidase activity of the
NA is also critical for eflicient infection. The ability of A/Victoria/
3/75 viruses with mutations or substitutions in either the HA or
NA alone to infect similar numbers of cells and replicate to
comparable peak titers as for wild-type virus at 37°C implies that
these viruses were not crippled by the mismatch between the
specificities of their HA and NA. Replication and spread of
influenza viruses that possess an avian HA paired with its
“matched” NA was even more compromised than that of
recombinant viruses with individual changes to levels seen with
wholly avian viruses. Thus, viruses with co-evolved glycoprotein
pairs exhibit restricted replication at low temperatures and both
HA and NA genes contribute to the phenotype.

Together, these data imply that in the complex environment of
the luminal surface of the human ciliated airway epithelium, the
viral surface antigens have a marked effect on the extent of virus
infection and that temperature plays an important role in limiting
avian, but not human, influenza virus infection and spread in the
cooler proximal airway regions. Given these results, we draw
attention to other recently published data using the HAE model in
which mutations in viruses that are growth attenuated i vivo
display similar growth attenuation in HAE but not in non-
differentiated cell lines, suggesting that HAE possess discriminat-
ing properties of attenuating phenotypes of mutants of respiratory
viruses [26,27]. Admittedly, in the present study, despite restriction
in both growth and spread, wild-type avian viruses and human
viruses with avian or avian-like glycoproteins did eventually reach
high titer at 32°C at later time points. The efficiency of infection
and replication of a virus that inoculates the airway epithelium,
however, is likely a critical factor in determining whether the virus
is capable of establishing infection in a host that normally possesses
innate and adaptive immune systems that attempt to limit virus
infection and spread. At temperatures of the distal airways, avian
influenza viruses displayed similar infection kinetics as human
influenza viruses and would therefore, in the case of sufficient
inoculum reaching these distal regions, be as likely to establish
infection. Indeed, the clinical pathology findings for humans
infected with H5N1 do report distal airway infection in ciliated
bronchioles and lung regions [22]. Under these conditions of
inoculation and infection, avian influenza viruses present in the
distal airways may still be unable to spread to proximal airway
regions without additional adaptation to cooler temperatures. One
caveat of this prediction is that virus may be transported to
proximal airway regions by innate mucus clearance mechanisms
indicating that caution is required when attempting to identify
proximal infection by viruses in airway secretions obtained from
tracheal swabs.

In conclusion, the present study substantiates differential host
temperature as a critical barrier for infection by avian influenza
viruses. Since the ciliated airway epithelium of the proximal
airways is a major portal for influenza virus infection and spread,
accessible by multiple inoculation routes (e.g., ocular, nasopha-
ryngeal or aerosol), the inability of avian influenza viruses to
establish infection and spread in these regions would be predicted
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to reduce the frequency of successful zoonotic transmission.
Furthermore, the ability of human influenza viruses to generate
high viral titers in the human proximal airways is likely a factor in
effective human-to-human transmission and the induction of
airway epithelial cell cytotoxicity as shown in this study may
increase particulate matter perhaps associated with virus that
facilitates inoculation of new hosts. Rapid induction of cytoto-
pathic effects by human, but not avian, influenza virus infection at
the temperature of the human proximal airways may also
contribute to the onset of other host defenses such as sneezing
and coughing that facilitate clearance of particulate matter/virus
from the airways and potentially promote transmission between
human hosts.

Materials and Methods
Cells

Human airway tracheobronchial epithelial cells isolated from
airway specimens from patients without underlying lung disease
were provided by the National Disease Research Interchange
(NDRI, Philadelphia, PA) or as excess tissue following lung
transplantation under University of North Carolina at Chapel Hill
(UNC) Institutional Review Board-approved protocols by the
UNC Cystic Fibrosis Center Tissue Culture Core. Primary cells
derived from single patient sources were expanded on plastic to
generate passage 1 cells and plated at a density of 3x10° cells per
well on permeable Transwell-Col (12-mm diameter) supports
(Corning, Inc.). HAE cultures were grown in custom media with
provision of an air-liquid interface for 4 to 6 weeks to form
differentiated, polarized cultures that resemble i vivo pseudostrat-
ified mucociliary epithelium, as previously described [50]. Madin-
Darby Canine Kidney (MDCK) cells were maintained in DMEM
(Gibco-Invitrogen, Inc.) supplemented with 10% fetal bovine
serum and 1% penicillin / streptomycin (Sigma-Aldrich, Inc.).

Viruses

Influenza virus A/England/26/99 (H3N2) was isolated at the
Health Protection Agency, Colindale, London, UK, during the
routine surveillance program and has been minimally passaged in
MDCK cells [51]. A/Dk/Singapore/97 (H5N3) and A/Dk/
England/62 (H4NG6) are typical avian influenza strains that have
been passaged in both embryonated chicken eggs and MDCK
cells during laboratory handling. Highly pathogenic A/VN/1203/
04 (H5N1) was biologically derived and minimally passaged in
embryonated chicken eggs. A/Udorn/307/72 (H3N2) was passed
in baby hamster kidney (BHK) cells and represents a clone
expanded once in embryonated chicken eggs. Recombinant
viruses, including wild-type A/Victoria/3/75 (H3N2) and mutants
in either the A/Victoria/3/75 (H3N2) or A/PR/8/24 (HINI)
background, were generated from cloned cDNA in 293T and
MDCK cell co-cultures as previously described [52,53]. Mutant
viruses were generated in either the A/Victoria/3/75 (H3N2) or
A/PR/8/34 (HINI) genetic background as follows: 1) Vic
627PB2; A/Victoria/3/75 containing a lysine to glutamic acid
amino acid substitution at position 627; 2) Vic-226-228HA; A/
Victoria/3/75 containing two amino acid substitutions in the HA
gene (L226Q), S228G) that confer an avian-like receptor binding
preference [6,40]; 3) Vic+Chick N1; A/Victoria/3/75 in which
segment 6 containing the endogenous N2 NA gene was exchanged
for the N1 NA gene from avian isolate A/Chick/Italy/1347/99; 4)
Vic-226-228HA+Chick N1; A/Victoria/3/75 containing both
L226Q) and S228G mutations and the avian N1; 5) PR8+Vic HA/
NA; A/PR/8/34 in which the endogenous H1 and N1 were
replaced with the H3 and N2 from A/Victoria/3/75 and 6)
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PR8+Chick HA/NA (RD3); A/PR/8/34 in which the endoge-
nous H1 and N1 were replaced with the H7 and N1 from A/
Chick/Italy/1347/99. (RD3 was previously described as a
candidate vaccine strain [41].) The last two reassortant viruses
were generated by substituting segment 4 and segment 6 from PR8
with those from either A/Victoria/3/75 (H3N2) or A/Chick/
Italy/1347/99 (H7N1). The multi-basic cleavage site in the avian
H7 HA gene used in these studies was removed prior to rescue of
these recombinant viruses for safety. Available accession numbers
(GenBank: http://www.ncbi.nlm.nih.gov.libproxy.lib.unc.edu) are
V01086 for A/Victoria/3/75 HA and CAD37074 for A/Chick/
Italy/1347/99 HA.

Viral inoculation and growth in HAE

HAE were rinsed with PBS to transiently remove apical
secretions and supplied with fresh basolateral medium prior to
moculation. Virus inoculum was diluted in PBS and applied to the
apical surface of HAE for 2 hrs at either 32°C, 33°C, or 37°C, as
indicated. Following incubation, viral inocula were removed and
cultures incubated at 32°C, 33°C or 37°C for the duration of the
experiment. Viral growth kinetics were determined by performing
apical washes with 300 pl of serum-free DMEM for 30 min at
either 32°C or 37°C.. Washes were harvested and stored at —80°C
prior to analysis. Viral titers in the apical washes were determined
by standard plaque assay or tissue culture infectious dose (TCID)5q
assay on MDCK cell monolayers as previously described
[13,52,54].

En face staining

At various points post-inoculation (pi), HAE were fixed in cold
methanol-acetone (50/50) and stored at 4°C. Cultures were then
permeabilized with 2.5% triton-X 100/PBS++ (containing 1 mM
CaCly, and 1 mM MgCl,) and blocked with 3% bovine serum
albumin (BSA) in PBS++ before being probed with mouse anti-
influenza virus nucleoprotein (NP; Chemicon, Inc.; 1:100) and
immunoreactivity detected with fluorescein isothiocyanate (FITC)-
conjugated anti-mouse IgG secondary antibody (Jackson Immu-
noResearch Laboratories, Inc., 1:500). Fluorescent images were
obtained using a Leica DMIRB inverted fluorescence microscope
equipped with cooled-color charge-coupled-device digital camera
(MicroPublisher; Q-Imaging, Burnaby, BC, Canada). The per-
centage of the epithelium positive for viral antigen as an index of
percentage of infected cells was quantified over 5 images per
culture by black and white pixilation of each image and computer
calculation of percent black pixels after inverting the image. This
technique determines percentage of black pixels in a defined area
and does not account for differences in fluorescent intensity.

Measures of CPE

Viral-induced cytotoxicity was determined by measuring
adenylate kinase activity in apical washes using a commercially
available assay (Lonza, Inc.). Apical samples were centrifuged
prior to freezing to remove any cellular contaminants present in
the wash. Luminescence detected in samples from infected HAE
were normalized to uninfected HAE and expressed as fold change
over AK measured in uninfected (mock) HAE. Morphological
assessment of cytotoxicity in HAE was performed with parafor-
maldehyde (PFA, 4%)-fixed histological sections (5 um) stained
with hematoxylin and eosin.

Detection of a2,3 and a2,6 linked sialic acids

HAE maintained at either 32°C or 37°C for 72 hrs prior to
sialic acid detection were washed, blocked with 3% BSA/PBS++
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and probed with biotinylated SNA or MAA lectins to detect 02,6
and 2,3 SA, respectively (Vector Laboratories, Inc.; EY-
Laboratories, Inc.; 1:100). HAE were then fixed in 4% PFA and
incubated with streptavidin-alexafluor 488 (Molecular Probes,
Inc.; 1:500) applied to the apical surface to detect lectin binding.

Immunohistochemistry

HAE fixed in methanol:acetone, were probed en face with
antibody against viral NP (Chemicon, Inc.; 1:100) and FITC-
conjugated goat anti-mouse IgG1 and IgG2a (Jackson ImmunoR-
esearch Laboratories, Inc., West Grove, PA; 1:500), then
embedded in paraffin. Histological sections (5 um) were prepared
and reprobed for viral antigen using standard immunofluorescence
protocols. Briefly, sections were bathed in 2.5% triton-X 100/
PBS++ for 30 min, blocked in 3% BSA/PBS++ and incubated
with antibodies in 1% BSA/PBS++. Primary antibodies were anti-
viral NP (Chemicon, Inc., as above) and anti-alpha acetylated
tubulin (Zymed Laboratories, Inc.; 1:2000), a marker for ciliated
cells. Secondary antibodies were FITC-goat anti-mouse IgG2a
and Rhodamine red-conjugated goat-anti-mouse IgG2b (Jackson
ImmunoResearch Laboratories, Inc.; 1:500). Sections
prepared with FluorSave mounting media (EMD Chemicals,
Inc.) and images captured using a Leica DMIRB inverted
fluorescence microscope equipped with a cooled color charge-
coupled-device digital camera (MicroPublisher; Q-Imaging, Bur-
naby, British Columbia, Canada).

were

Statistical analysis

Linear mixed models were fitted to the repeated measurements
of log-transformed viral titer over time that included effects for the
four treatment groups (defined by virus and temperature), eight
time points, and the interaction between treatment and time. We
note that in a small number of cases, there were only two
treatment groups (defined by temperature) and fewer than eight
time points. A heterogeneous autoregressive correlation structure
of order one was assumed for the repeated measurements. A joint
test of the interaction terms (21 degrees of freedom) provides an
assessment of the hypothesis of no differences among the four
treatment groups with respect to viral titer growth (log scale).
Provided this test was significant, indicating some differences
among the four growth curves, pair-wise differences between the
three treatment groups versus the a priori specified reference
group (generally the avian strain at the lowest temperature) were
carried out for each time point, and significant differences at the
0.05 level were noted. No adjustments for inflated Type I error
due to multiple comparisons were made. Missing observations
were assumed to be missing completely at random, based on the
fact that the investigators determined a priori to remove samples at
specific time points during the experiment.
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