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APPROXIMATION OF THE SCATTERING AMPLITUDE
AND LINEAR SYSTEMS *

GENE H. GOLUB, MARTIN STOLL¥, AND ANDY WATHEN#

Abstract. The simultaneous solution ofz = b andA”y = g, whereA is a non-singular matrix, is required

in a number of situations. Darmofal and Lu have proposed a mdiheed on the Quasi-Minimal Residual algo-
rithm (QMR). We will introduce a technique for the same pumbased on the LSQR method and show how its
performance can be improved when using the generalized L S QochétVe further show how preconditioners can
be introduced to enhance the speed of convergence andsliiffiesent preconditioners that can be used. The scat-
tering amplitudey” z, a widely used quantity in signal processing for example ghaese connection to the above
problem sincer represents the solution of the forward problem gnid the right-hand side of the adjoint system.
We show how this quantity can be efficiently approximated gi$hauss quadrature and introduce a block-Lanczos
process that approximates the scattering amplitude, anchwhit also be used with preconditioning.
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1. Introduction. Many applications require the solution of a linear system
Ax = b,

with A € R"*™; see B]. This can be done using different solvers, depending orptbp-
erties of the underlying matrix. A direct method based onlibefactorization is typically
the method of choice for small problems. With increasingrimaimensions, the need for
iterative methods arises; setb| 39] for more details. The most popular of these methods are
the so-called Krylov subspace solvers, which use the space

K (A, rg) = span(rg, Arg, A?rg, ..., Ak_lro)

to find an appropriate approximation to the solution of thedir system. In the case of a sym-
metric matrix we would useG [26] or MINRES [32], which also guarantee some optimality
conditions for the current iterate in the existing Krylovbspace. For a nonsymmetric ma-
trix A it is much harder to choose the best-suited metlgdrES is the most stable Krylov
subspace solver for this problem, but has the drawback afjbagry expensive, due to large
storage requirements and the fact that the amount of workt@=tion step is increasing.
There are alternative short-term recurrence approacheh, &BICG [9], BICGSTAB [46],
QMR [117], ..., mostly based on the nonsymmetric Lanczos processsd methods are less
reliable than the ones used for symmetric systems, but cantheless give very good results.
In many cases we are not only interested in the solution ofcitveard linear system

Ax = b, (1.1)
but also of the adjoint system
ATy =g (1.2)
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simultaneously. In14] Giles and $ili provide an overview of the latest developments regard-
ing adjoint methods with an excellent list of referencese Blpplications given inl4] are
widespread: optimal control and design optimization in¢betext of fluid dynamics, aero-
nautical applications, weather prediction and data ataiion, and many more. They also
mention a more theoretical use of adjoint equations, réggra posteriori error estimation
for partial differential equations.

In signal processing, the scattering amplitude: connects the adjoint right-hand side
and the forward solution. For a given vectpthis means thatlz = b determines the field
from the signab. This signal is then received on an antenna characterisedebyectorg
which is the right-hand side of the adjoint systetfiy = g, and can be expressed @sz.
This is of use when one is interested in what is reflected wheadar wave is impinging
on a certain object; one typical application is the desigisteflth planes. The scattering
amplitude also arises in nuclear physigk fuantum mechanic2g] and CFD [L3].

The scattering amplitude is also known in the context ofrojatation as the primal linear
output of a functional

JP(z) = gz, (1.3)

wherez is the solution of {.1). The equivalent formulation of the dual problem resulttia
output

J(y) =y, (1.4)

with y being the solution of the adjoint equatich?). In some applications the solution to
the linear systemslL(1) and (L.2) is not required explicitly, but a good approximation to the
primal and dual output is important. 129 Darmofal and Lu introduce a QMR technique
that simultaneously approximates the solutions to the dodvwand the adjoint system, and
also gives good estimates for the values of the primal antifdanational output described
in (1.3 and (.4).

In the first part of this paper we describe tQ@Rr algorithm followed by alternative
approaches to compute the solutions to the linear systérisgnd (L.2) simultaneously,
based on the sQr and GLSQR methods. We further introduce preconditioning for these
methods and discuss different preconditioners.

In the second part of the paper we discuss how to approxirhatedattering amplitude
without computing a solution to the linear system. The ppaktreason for this approach,
rather than computing;, and then the inner product gfwith x;, relates to numerical sta-
bility: the analysis in Section 10 ofiB] for Hermitian systems, and the related explanation
in [45] for non-Hermitian systems, shows that approach to be semsn finite precision
arithmetic, whereas our approach based on Gauss quadisittn@re reliable. We briefly
discuss a technique recently proposed by S&akud Ticly in [45] and methods based on
BICG (cf. [9]) introduced by Smolarski and Saylot], 42], who indicate that there may be
additional benefits in using Gauss quadrature for the catioul of the scattering amplitude in
the context of high performance computing. Another papacemed with the computation
of the scattering amplitude i21].

We conclude the paper by showing numerical experimenthfosblution of the linear
systems as well as for the approximation of the scatteringlitude by Gauss quadrature.
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2. Solving the linear systems.

2.1. TheQMR approach. In [29], Lu and Darmofal presented a technique using the
standardQMR method to obtain an algorithm that would approximate theitgmt of the
forward and the adjoint problem at the same time. The basg@vsi is the nonsymmetric
Lanczos process (se&l, 47])

AVk = Vk+1Tlf+1,k7
AWy, = Wig1Tes1 ke

The nonsymmetric Lanczos algorithm generates two seqeeViceand W, which are
biorthogonal, i.e.}V," Wy, = I. The matriced} 1, andT}1 , are of tridiagonal structure

where the blockg; ;. andi.,,C are not necessarily symmetric. With the chaige= ro/ ||7o]|,
whererg = b — Axg andzy, = xg + Vici, we can express the residual as

[rell = 16 — Azo — AViex|| = [Iro — Vir1 D1 kckll = [[Ves1(Iroll €1 — Thra wer) |-
This gives rise to theuasi-residual-? = ||ro|| &1 — Ti41.x¢x, and we know that
il < Vil 17211
see [L1, 25] for more details. The idea presented by Lu and Darmofal washibose

w1 = 3o/ |80, wheresy = g — ATyq andy, = yo + Widy, to obtain the adjoint quasi-
residual

sl = |lllsoll ex = Thsr kdli|

in a similar fashion to the forward quasi-residual. The teast-squares solutiong, d;, € R*
can be obtained via an updated QR factorization; 88el[1] for details. It is also theoreti-
cally possible to introduce weights to improve the convecgebehaviour; sed [].

2.2. The bidiagonalization orLSQR approach. Solving
Ax = b, Aty =g

simultaneously can be reformulated as solving

a1 ]=1) e

The coefficient matrix of systen® (1)
0 A

is symmetric and indefinite. Furthermore, it is heavily usdakn computing singular values
of the matrixA and is also very important in the context of linear least sggiaroblems. The
main tool used for either purpose is the Golub-Kahan bidiafjpation (cf. [L5]), which is
also the basis for the well-knowrsQr method introduced by Paige and SaundersS#.[

In more detail, we assume that the bidiagonal factorization

A=UBVT (2.3)
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is given, wherd/ andV are orthogonal and is bidiagonal. Hence, we can express forward
and adjoint systems as

UBVIz=b and VBTUTy=y.

So far we have assumed that an explicit bidiagonal factioizg2.3) is given, which
is a rather unrealistic assumption for large sparse matricepractice we need an iterative
procedure that represents instances of the bidiagonalizptocess; cf. 15, 23, 34]. To
achieve this, we use the following matrix structures

AV = Upy1DBy, 2.4)
ATUpyr = ViBE + apprvpsrei '
whereVy, = [vy,...,v;] andUy, = [ug, ..., u] are orthogonal matrices and
o
B2 a2
By = B3
Qg
Br+1

The Golub-Kahan bidiagonalization is nothing else thanlLifweczos process applied to the
matrix AT A, i.e., we multiply the first equation o2(4) by A” on the left, and then use the
second to get the Lanczos relation fof A,

ATAVk = ATUk+1Bk = (VkBg + a;HlkaefH) By = VkBgBk + dk+1vk+16{+1,

with &1 = apy10ke1; See B, 27] for details. The initial vectors of both sequences are
linked by the relationship

ATu1 = 1V7. (25)

We now use the iterative process describeid)(to obtain approximations to the solutions
of the forward and the adjoint problem. The residuals at tegn be defined as

r, =b— Axy (2.6)
and
sk =g— Ay, (2.7)
with
Tp = x0 + Viz and  yp = yo + Urprwy.

A typical choice foru; would be the normalized initial residual = ro/ ||ro||. Hence, we
get for the residual norms that

el = ||b — Azg]| = [[b — A(xo + Vezr)|| = [lro — AVizs]|
= |Iro — U1 Brzill = |[l|7oll €1 — Brzll,
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—LSQR adjoint
----LSQR forward
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FIGURE 2.1. Solving a linear system of dimensiv60 x 100 with theLSQR approach.

using @.4) and the orthogonality af; ;. The adjoint residual can now be expressed as

skl = |lg = ATwr|| =[] — A" (o + Uns1wi) |
= Hg - ATyO - ATUkJrlwkH

= ||s0 = Vi B{ w — o 1Vk11€44 1 W] - (2.8)

Notice that £.8) cannot be simplified to the desired structljiso|| e — B wy||, since the
initial adjoint residuals, is not in the span of the current and all the followingvectors.
This represents the classical approadoRr [33, 34], where the focus is on obtaining an
approximation that minimizelgy. | = ||b — Az ||. The method is very successful and widely
used in practice, but is limited due to the restriction gilegr{2.5) in the case of simultaneous
iteration for the adjoint problem. In more detail, we are aole to choose the second starting
vector independently, and therefore cannot obtain theetbkast squares structure obtained
for the forward residual. Figur2.1 illustrates the behaviour observed for all our examples
with theLsQrmethod. Here, we are working with a random matrix of dimemgiad x 100.
Convergence for the forward solution could be observed wah&arge number of iteration
steps was executed, whereas the convergence for the adjgithial could not be achieved at
any point, which is illustrated by the stagnation of the adjsolution. As already mentioned,
this is due to the coupling of the starting vectors. In thetrsection we present a new
approach that overcomes this drawback.

2.3. GeneralizedLsSQR (GLSQR). The simultaneous computation of forward and ad-
joint solutions based on the classicalQr method is not very successful, since the starting
vectorsu; andwv; depend on each other through%). In [40] Saunders et al. introduced
a more general SQrR method which was also recently analyzed by Reichel and3Yg [
Saunders and coauthors also mention in their paper thatetigoh presented can be used to
solve forward and adjoint problem at the same time. We wadtdss this here in more detail
and will also present a further analysis of the method diesdrin 37, 40]. The method of
interest makes it possible to choose the starting veatprand v; independently, namely,
up = ro/ ||rol| andvy = so/ ||sol|- The algorithm stated ir8[7, 40] is based on the following
factorization

T
AV = U1 Ths1,6 = U Th ) + Brr1ukt1€y,

; ! (2.9)
AUy = Vit 1Skt1,6 = ViSkk + Mk 1Vk41€ 5
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where
Vk:[vl,...,vk] and Uk:[ul,...,uk]

are orthogonal matrices and

ar M R
Bo g . ne 02
Tyy1, = e I Sky1,k = o 0
B o M Ok
Br41 Nk+1

In the case of nbreakdown, the following relation holds
ngk == Tk’k.

The matrix factorization given ir2(9) can be used to produce simple algorithmic state-
ments of how to obtain new iterates foy andv;:

Brt1uk+1 = Avkp — qpup — Ye—1Uk—1, (2.10)
M1k = ATw, — Spop — Op_1vp_1.

The parameters;, v;, d;, 0; can be determined via the Gram-Schmidt orthogonalization p
cess in the classical or the modified version. Furthermgrends; are determined from the
normalization of the vectors ir2(10).

Since it is well understood that the classical Golub-Kahidielgonalization process in-
troduced in 5] can be viewed as the Lanczos algorithm applied to the maitfid, we want
to analyze whether a similar connection can be made fogtls®Rmethod given in37, 40].
Note that if the Lanczos process is applied to the matig)(with starting vectoru, O]T,
we get equivalence to the Golub-Kahan bidiagonalizaties;§, 27] for details.

The generalizedsQr method GLSQR) given in [37, 40] looks very similar to the Lanc-
zos process applied to the matrix %) and we will now show that in generalLsQRcan not
be seen as a Lanczos process applied to this matrix. The dsiitezation then gives

Uk+1 0 A Up g Up—1
= — — Ok , 2.11
Vk+1{vk+1] |:AT 0}{%] fk{vk] le[vkl] (2.11)
and the resulting recursions are

Vit1Uk+1 =  Avgp — Eup — Op—1Uk—1,
T
Vpt1Vk41 = At up — Epvk — 0k—1Vk—1.

The parameterg;._1, £, andvy,, are related to the parameters from tiesQRprocess via
& = u{Avk + 'UgAT'LL]C = i + (Sk,
or—1 = ui_1 Avg + v}  ATup = 1 + i1,
and since the Lanczos process generates a symmetric tnidibignatrix, we also get
Vk41 = Ok = Vk + Nk-

1Wwe discuss breakdowns later in this section.



ETNA
Kent State University
http://etna.math.kent.edu

184 G. H. GOLUB, M. STOLL AND A. WATHEN

The orthogonality condition imposed by the symmetric Larscgrocess ensures that

[ ufyy v ] [ Z: } =0,

which reduces ta:} ,u; + vi,,vx = 0. This criteria would be fulfilled by the vectors
coming from thesLsQrRmethod, because it creates two sequences of orthonorniatsen
general, the vectors coming from the symmetric Lanczosgs®do not satisfygﬂu;c =0
andvy, v = 0.

In the following, we study the similarity afLsQRand a special block-Lanczos method.
In [40] a connection to a block-Lanczos for the matiX A was made. Here we will discuss
a method based on the augmented matig)(

Hence, we assume the complete matrix decompositions

AV =UT and ATy =vTT,

with S = T'T'. Using this relations, we can rewrite the linear systém)(as

v e S e 2.12)

We now introduce the perfect shuffle permutation
II = [61,637‘..,62,64,...] (213)

and usdl to modify (2.12), obtaining

U 0 T 0 T 7 ur o y|l [b

(o0 e % P[5 [0]-]0] e
We now further analyze the matrices given2nl(4). The first two matrices can also be written
as

L L]
0 0 U10U20
| pr || |
H:

| | |

up U 0
|
|

[
0 0 0|vy vy 0 v 0 vy
[N I A |

Next, we study the similarity transformation on

0 T
T7 0
usingII, which results in
0, vT
U, 0, Ul
- 0o T T
T_H{TT O}H = v, , (2.15)
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with

0 | 0 B
@I—[ai 0} and \Ill_[% A }

Using the properties of thesQr method by Reichel and Y&F], we see that the matrix is

an orthogonal matrix and furthermore that if we wiite= [U;,Us, - - - ], where
|
Uy 0
e
0 v
|

thenuU; = I for all i. Thus, one particular instance at stepf the reformulated method
reduces to

0 A
Upt1Vtr1 = [ AT }Uk — U Of — U1 VF_;.

Hence, we have shown that tke2 SQrR method can be viewed as a special block-Lanczos
method with stepsiz®; see P2, 23, 30] for more details on the block-Lanczos method.

2.4. GLSQR and linear systems. The GLSQR process analyzed above can be used to
obtain approximate solutions to the linear system and tf@ragystem. We are now able to
setu; andv; independently and choose, for initial guessgsy, and residualsy = b— Axy,

S0 =49 — AT:UO,
0 50

ol

Hence, our approximations for the solution at each stepigea dpy

U1 and V1

ol

T = xo + Vizk (2.16)
for the forward problem and
Yk = Yo + Urwy, (2.17)

for the linear system involving the adjoint. Using this aBd we can express the residual
at stepk as follows: for the forward problem

7kl = 16 — Az|| = [[b = A(zo + Vazi)ll = [Iro — AViz|
= Iro — Uks1Tes1,02k ]| = |Uf 1m0 — Thgr w2 |
= HH7“0|| €1 — Tk+1,kaH (2.18)

and, in complete analogy,

skl = ||lg — ATyw]| = ||Vile150 — Sk1ewi|
=||lIsoll ex = Sk+1,rwi]- (2.19)

The solutiong;, andw,, can be obtained by solving the least squares systerhd gnd .19,
respectively. The QR factorization is a well known tool tdvedeast squares systems of the
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above form. We therefore have to compute the QR factori@aifd’. . , and Sk 5. The
factorization can be updated at each step using just onen&iegation. In more detail, we
assume that the QR factorizationtf ,_1 = Qr—1R;—1 IS given, with

e[

andR;_, an upper triangular matrix. To obtain the QR factorizatiof)p, , we eliminate
the elemenp;, ;1 from

7 0 1 0 I 1 QRer + Vp_1€k
{kl }Tkl,k_[ k—1 :||:k,k1 kCk 7k1k1:|

0 1 0 1 0
J Br+1 (2.20)
_ [ Ri—1 Qp_i(arer + Yip—1€k-1) }
0 Br+1

by using one Givens rotation. The same argument holds foQfRelecomposition of the
matrix Si41 % Thus, we have to compute two Givens rotations at every stegolve the
systems 2.18 and @.19 efficiently. There is no need to store the whole basior U, in
order to update the solution as described2ri@ and @.17); see also5]. The matrix Ry,

of the QR decomposition of the tridiagonal matfix, ; 5 has only three non-zero diagonals.
Let us defineCy, = [co,¢1,. .., ch—1] = VkR,gl. Note thatc is a multiple ofv; and we can
compute successive columns us'@igl%k =V, l.e.,

Chie1 = (Vg — The1 kChm2 — Th—2,kCk—3) Tk i, (2.21)
where the; ; are elements o, Therefore, we can update the solution
z =20 + |[rol Cr (QFe1) .y = Th-1 + ar—1¢k1, (2.22)

whereay,_1 is thekth entry of||ro|| QT e;.

The storage requirements for tbeSQrmethod are similar to the storage requirements
for a method based on the non-symmetric Lanczos processppssed by Lu and Darmo-
fal [29]. We need to store the vectaus, v;, u;_1, andv;_1, to generate the basis vectors for
the next Krylov space. Furthermore, we need to store thesspaatriced, ;1 ;, and.Sy41 k.
This can be done in a parameterized fashion (remember thahtk tridiagonal matrices) and
sincely ; = S,ij, until the first breakdown occurs, the storage requiremantle reduced
even further. The triangular factors ©f , and.S;; ; can also be stored very efficiently,
since they only have three nonzero diagonals. Accordin@ @) the solutionsr; andyy
can be updated storing only two vectefs » andc;,_ 3 for the forward problem, and another
two vectors for the adjoint solution. Thus the solutions banobtained by storing only a
minimal amount of data in addition to the original problem.

In [37], Reichel and Ye solve the forward problem and introducetée breakdownin
the case that the matri%;, , associated with the adjoint problem has a zero entry on the
subdiagonal. Note that until a breakdown occurs it is noessary to distinguish between
the parameters of the forward and adjoint sequence, Singe= S,Zk. We will discuss these
breakdowns and show that they are indketky breakdownswhich means that the solution
can be found in the current space. When the breakdown occei@ssume that the parameter
Or+1 = 0 whereas),+1 # 0, in which case Reichel and Ye proved &8[ Theorem 2.2] that
the solutionz), for the forward problem can be obtained viga = xo + ||ro]| VkT,;,iel. The
same holds i3, 11 # 0 whereas),.1 = 0, in which case the solutiog, can be obtained
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viayr = yo + ||sol| UkS,;,lfel. In the case whep¥, 1 = 0 andn,; = 0 at the same time,
both problems are solved and we can stop the algorithm. Natethis is in contrast to the
breakdowns that can occur in the non-symmetric Lanczosegsoc

In both cases, we have to continue the algorithm since orlgdfution to one of the two
problems is found. Without loss of generality, we assuméetha; = 0 whereasj,.1 # 0,
which means that the forward problem has already been sol@edsidering that now we
have

Brt1ur+1 = 0 = Avg — o — Ye—1Uk—1,

we can use

Q1 Upg1 = AVpp1 — YUk

to computeuy . 1, a strategy implicitly proposed by Reichel and Ye 37

From the point where the breakdown occurs, the band steicithe matrix7},41
would not be tridiagonal anymore, but rather upper bidiaj@mce we are computing the
vectorug1 based onvgjur11 = Avgy1 — Yrug. There is no need to update the solution
xy, in further steps of the method. The vectass.; generated by this two-term recurrence
are used to update the solution for the adjoint problem inyawewill now describe. First,
we obtain a new basis vectoy,

T
Nj+10j41 = A" uj — 0505 — 01051

and then update the QR factorization $f; , to get a new iteratgy. If the parameter
nj+1 = 0, the solution for the adjoint problem is found and the methad be terminated.
In the case of the parametef..; becoming zero, the solution for the adjoint problem can
be obtained using the following theorem, which stands ingete analogy to Theorem 2.3
in [37].

THEOREM 2.1. We assume thatLsQR does not break down until step of the algo-
rithm. At stepn we gets,,, .1 = 0 andn,,+1 # 0, which corresponds to the forward problem
being solved. The process is continued#or m with the updates

O 1Uky1 = AVp1 — YUk
and
vpr1 = ATug — Spvy — 0
Ne+1Vk+1 = Uk Uk k—1Vk—1-

If the breakdown occurs at stép the solution of the adjoint problem can now be obtained
from one of the following two cases:
1. if the parameter; = 0, then the adjoint solution is given by

yr = yo + |[soll UxS;, pe1;
2. if the parametety;; = 0, then the adjoint problem can be recovered using
Yk = Yo + Upwy.
Proof. The proof of the first point is trivial since, fo...1 = 0, the least squares error in

ﬁ%}cHHTOH €1 — Sky1 kWi
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is equal to zero. For the second point, we note that the solut, to the least squares
problem

min ||||roller — S w
eRkH” ol €1 k+1.k kH
satisfies the following relation

S£+1,k (lIsoller — Sky1,pwr) = 0.

The breakdown with,; = 0 results in

App1Up+1 = 0= Avgpr — Vg,
which means that no new ,; is generated in this step. In matrix terms we get
AVipr = U1y gt
ATU, = Vig1 Sigan-
This results in,
A(g — ATy) = A(So — ATUkwk) = A(SQ — Vk+1Sk+1,kwk)
= Asg — AViy1Skq1, 0wk = ||So]| AVipr€1 — AViy1 Sk p Wi
= ||sol| UxTk k+161 — UnTh k+1Sk+1,6Wk
= UpTx 41 (||s0]l €1 — Sk+1,6wk)
= UrSii1 s (Isoll €1 — Skra pwr) = 0,
using the fact thas , , = Tx »11; see Theorem 2.1 ir8[]. Due to the assumption thak
is nonsingular the solution for the adjoint problem is gy, = yo + Urwy. O
This theorem shows that tlee. sSQrmethod is a well-suited process to find the solution
of the forward and adjoint problems at the same time. Thekidl@ans that may occur in
the algorithm are all benign, which underlines the diffeeito methods based on the non-

symmetric Lanczos process. In order to give better reltgthif the method based on the
nonsymmetric Lanczos process, look-ahead strategiestbideeimplemented; cf10, 36).

2.5. PreconditionedGLSQR. In practice theGLSQR method can show slow conver-
gence, and therefore has to be enhanced using precondgiteghniques. We assume the
preconditionerM = M; M is given. Note that in generdll; # M. The preconditioned
matrix is now

A= MTAMG Y,
and its transpose is given by
AT = MyTATMT.
Since we do not want to compute the matﬁxwe have to rewrite theLsQrmethod

_ —1 —1
Bjtrujr = My AMy " vj — agjuj — yj-1tj-1,

_ _ (2.23)
Njr10j41 = My TAT M uy — 6505 — 05101,
to obtain an efficient implementation of the preconditiopeacedure, i.e.,
Bir1Myuj1 = AMy 'v; — o Myuy — v 1 Myuj -y, (2.24)

T _ AT Ag—T T T
’I7j+1M2 ’Uj+1 =A Ml uj - 5]‘M2 ’Uj - Q‘j_le Uj—l-
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If we Setpj = M1Uj, MQ(IAJ' =Vj,4q; = Mg’t]j, andMin)j = Uj, we get

Bi+1pj+1 = AGj — op; — Vj-1Pj-1,

. (2.25)
Ni+1qi41 = ATD; — 605 — 0;-1q5-1,
with the following updates
q; = Myt v7 My My q77 (2.26)
pj =M uy = M7 M p;. (2.27)

We also want to compute the parametersy;_1, ¢;, andd;_, which can be expressed in
terms of the vectorg;, ¢;, p;, andg;. Namely, we get

D>>

vj,u5) = (A, ),

o uj—1) = (Adj, Pj-1),
uj,v;) = (AP, 45),
uj,vj-1) = (AP, gj-1),

mw

= (Av
= (Av
= (
= (
which can be computed cheaply. Note, that we need to evaliafe and Ag; once in
every iteration step. The parametgts.; andn;,, can be computed using equatiods26
and @.27); see Algorithml for a summary of this method.

ALGORITHM 1 (Preconditione@LSQR).
for k=0,1,...do
Solve (M Ms)q; = g
Solve (M1 M{')p; = p;
ComputeAg;.
Computery; = (Ag;, p;) andy; 1 = (Ag;, pj-1).
Computes; 1 andp;1 via Bj41pj+1 = Adj — a;pj — vj-1Pj-1
ComputeAT'p;
Computed; = (A"p;, ;) andd; 1 = (A" p;,Gj-1).
Computen; 1 andg; 1 Vian;11qj11 = ATp; — ;g5 — 051951
end for

This enables us to compute the matri@gs., » and Sy efficiently. Hence, we can
update the QR factorizations in every step using one Givaiasion for the forward problem
and one for the adjoint problem. The solutiansandy;, can then be updated without storing
the whole Krylov space, but with a recursion similar ©22. The norm of the precondi-
tioned residual can be computed via the well known recursion

il = Isin(@x)[ fIrr—1ll

wheresin(6y) is associated with the Givens rotation at skepThere are different precon-
ditioning strategies for enhancing the spectral propemieA to make theGLsSQR method
converge faster. One possibility would be to use an incoragdlé) factorization ofA and
then setM; = L and M, = U; see B9 for more details.

Another technique is to use the fact that thesQr method is also a block-Lanczos
method for the normal equations, i.e., the system matriixitha to be preconditioned is now
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AT A. We therefore consider preconditioning techniques thatall-suited for the normal
equations.

One possibility would be to compute an incomplete Choleskydrization ofdA” A, but,
since the matrixA” A is typically less sparse tha#h and we never want to form the matrix
AT A explicitly, we consider preconditioners coming from an L€gdmposition ofd. In [39]
incomplete LQ preconditioners are discussed and used asarglitioner to solve the system
with AAT. This strategy can be adopted when trying to find a soluti@nsgstem withA” A.

Another approach is based on incomplete orthogonal faethoins, where a decompo-
sition A = QR + E, with @ orthogonal andE the error term, is computed. There are
different variants of this decompositioB,[35] which result in a different structure of the
matrix R. In the simple case of the so-called cIGO (column-Incongpldivens Orthogo-
nalization) method, where entries are only dropped based their position, we restrick
to have the same sparsity pattern as the original matrixVe now usel) and R from the
incomplete factorization and séf; = @@ and M, = R, which givesA = QT AR~ for the
normal equationsi”’ A = R-TATQQTAR™' = R-TAT AR~'. Hence, we can usR as
a preconditioner for the normal equations and thereforéh®eLSQrRmMethod.

3. Approximating the scattering amplitude. In Section2 we gave a detailed overview
of how to compute the solution to the forward and adjointdingystem simultaneously. In
the following, we present methods that allow the approxiomadf the scattering amplitude
or primal output functional directly, without computing@pximate solutions to the linear
systems.

3.1. Matrices, moments and quadrature: an introduction. In [18, 19] Golub and
Meurant show how Gauss quadrature can be used to approximate

T
u' f(W)o,
wherelV is a symmetric matrix and is some function, not necessarily a polynomial.

This can be done using the eigendecomposition= QAQ™, with orthogonalk, and
we assume; < Ay < --- < \,. As aresult we get

uTF(W)o = uTQF(A)QTv. (3.1)

By introducinge = Q7w and3 = QTv, we can rewrite$.1) as
u" fWo = F(A)B =D FA)ifi. (3.2)
=1
Formula 8.2) can be viewed as a Riemann-Stieltes integral
b
Tl =t fW)o= [ 700 daN); (3:3)
see [L8] for more details. We can now express3) as the quadrature formula
b N M
[ H0Vda() = 3w f(t) + 3 vt () + RL,
@ j=1 k=1

where the weightsy;, v, and the nodes; are unknowns and the nodeg are prescribed.
Expressions for the remaindé&¥|[f] can be found in 18], and for more details we recom-
mend b, 6, 12, 16, 17, 24]. We will see in the next section that, in the caseuof v, we
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can compute the weights and nodes of the quadrature ruleniphsapplying the Lanczos
process to the symmetric matfiX; see P4]. Then, the eigenvalues of the tridiagonal matrix
will represent the nodes of the quadrature rule, and thecfirstponent of the corresponding
eigenvector can be used to compute the weights.

3.2. The Golub-Kahan bidiagonalization. The scattering amplitude or primal output
JPr(z) = g%« can now be approximated using the connection between Gamassajure
and the Lanczos process. To be able to apply the theory ofbGuid Meurant, we need the
system matrix to be symmetric, which can be achieved by

JP(z) = gT (AT A)TTATh = gT(ATA)'p = g" F(AT A)p, (3.4)

using the fact that = A~'bandp = ATb. In order to use the Lanczos process to obtain
nodes and weights of the quadrature formula, we need a syietkversion of 8.4)

JP(x) =~ [(p+9) " (ATA) Hp+g)— (g—p)"(ATA) (g —p)].

el W

Good approximations t + )T (AT A)~(p+g) and(p — g)T (AT A)~L(p — g) will result
in a good approximation to the scattering amplitude. Here pwesent the analysis for the
Gauss rule (i.e = 0) where we apply the Lanczos processitbA and get

ATAVN = Ty + ryek, (3.5)
with orthogonalVy and
g 52
Ty = B2 as
BN
By an

The eigenvalues df’y determine the nodes of
b N
[ 10V da(h) = 3" wft) + R,
a j=1

whereR|f] for the functionf(z) = 1 is given by

N

Rolf) = s [ I - 1] da.

=1

Notice that, since the matriXx” A has only positive eigenvalues, the residig[f] will
always be positive, and therefore the Gauss rule will alwgys an underestimation of the
scattering amplitude.

The weights for the Gauss rule are given by the squares ofrteefements of the nor-
malized eigenvectors @fy. Instead of applying the Lanczos processifo4, we can simply
use the Golub-Kahan bidiagonalization procedure preddnt8ection2.2. The matrixTy
can be trivially obtained fromX4), via Ty = B% By. SinceTy is tridiagonal and similar
to a symmetric matrix, it is relatively cheap to compute itgeavalues and eigenvectors.
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In [20] Golub and Meurant further show that the evaluation of theression
N
ijf(tj)
j=1
can be simplified to

N

ijf(tj) = ef f(Tw)es,

j=1

which reduces te] T e, for f(z) = 1/z. The last expression simply states that we have
to find a good approximation for th@, 1) element of the inverse dfy. If we can find
such a good approximation fc@ifjgl)(lyl), the computation becomes much more efficient,
since no eigenvalues or eigenvectors have to be computertéotine the Gauss quadrature
rule. Another possibility is to solve the systéfyz = e, which is relatively cheap for the
tridiagonal matrix7y .

Golub and Meurant8, 19] give bounds on the elements of the inverse using Gauss,
Gauss-Radau, Gauss-Lobatto rules, depending on the Lapcaoess. These bounds can
then be used to give a good approximation to the scatterimdjtaiaie without solving a linear
system withT'y or using its eigenvalues and eigenvectors. We will only dghe bounds
connected to the Gauss-Radau rule, i.e.,

2
_ 51
t1’1 a p

2
ti1—b+ %1 1
SIvhaspg— =
11— tia+ sy

1, —tiab+si ~
with s? = Do i a?,, andt; ; the elements of'y. These bounds are not sharp since they will
improve with the number of Lanczos steps, and the approiom#d the scattering amplitude
will improve as the algorithm progresses. It is also possiblobtain the given bounds using
variational principles; seep]. In the case oG applied to a positive definite matrig, the
(1,1)-element oiTjg1 can be easily approximated using

N—-1
(Tfl) _ L ) ) 2
Dy =3 > alrl®,
||T‘0H =0

whereq; and||r;|| are given at evergG step. This formula is discussed it 43, 44], where
it is shown that it is numerically stable. FromJ we get that the remainde®[f] in the
Gauss quadrature whefeis the reciprocal function, is equal to the error at stegf cG for
the normal equations, i.e.,

[ =2kl a4 / 7ol = Ralf).

Hence, the Golub-Kahan bidiagonalization can be used tooappate the error focc for
the normal equationg!p).

3.3. Approximation using GLSQR (the block case). We now want to use a block
method to estimate the scattering amplitude usingQr The 2 x 2 matrix integral we
are interested in is now

/abf()\)da()\)z { bOT gOT } {Aol A(;T } {8 2}
i

(3.6)
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In [18], Golub and Meurant show how a block method can be used torgtenguadrature

formulae. In more detail, the integrﬁaf’ f(A) da()N) is now a2 x 2 symmetric matrix, and
the most general quadrature formula is of the form

b k
/ F(N) da(X) = 3 C;F(H;)C; + RIS (3.7)

with H; andC; being symmetri@ x 2 matrices. Expressior8(7) can be simplified using
Hj = Q;A;Q7,

whereQ); is the eigenvector matrix antl; the2 x 2 diagonal matrix containing the eigenval-
ues. Hence,

k

k
> Cif(H)C =Y CQT F(A)Q;C;,
=1

i=1

and if we writeC; Q7 f(A;)Q;C; as

f)z12] + f(A2)z22

wherez; is thej-th column of the matri>CijT. Consequently, we obtain for the quadrature
rule

2k
> FN)zz)
=1

where )\; is a scalar and; = [z§1),zj(2)]T € R?. In [18], it is shown that there exist
orthogonal matrix polynomials such that

Api—1(A) = p;(M)B;j +pj-1(\)D; + p; 2 (M) B,

with po(A\) = I andp_1(\) = 0. We can write the last equation as

)\[PO()\)7 N aprl()\)] = LpO()‘)7 s apkfl()‘)],zrk + [Oa .. '707pN()\)Bk]T7
with
D, BF
B Dy BT
Té‘/: .'. .-. .'. 3
By Dy1 B,
Br1 Dy

which is a block-tridiagonal matrix. Therefore, we can define quadrature rule as

b 2k
/ FO)da(h) = Y- Fuial + RIS (3.8)

where2k is the order of the matrify, 6; the eigenvalues df, andu; the vector consisting
of the first two elements of the corresponding normalizeémigctor. The remainde|f|
can be approximated using a Lagrange polynomial and we get

(2k) b
rifl = Lot [ sy dan
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wheres(z) = (z—01)(z—02) ... (x—02x5). The sign of the functior is not constant over the
interval [a, b]. Therefore, we cannot expect that the block-Gauss ruleyalwaderestimates
the scattering amplitude. This might result in a ratherltagory behavior. In 18], it is also
shown that

2k
> fOul =" f(Ti)e,
i=1

with e = (I2,0,...,0). In order to use the approximatioi.), we need a block-Lanczos
algorithm for the matrix

0 A

AT 0 |-

The GLsQRalgorithm represents an implementation of a block-Laneczethod for this ma-
trix and can therefore be used to create a block-tridiagovatix 7; as introduced in Sec-
tion 2.3, Using this, we show in the second part of this section thatcar® compute an
approximation to the integral given iB.€). Hence, the scattering amplitude is approximated
via

2k
NoT 0 gTac
Zlf()‘z)ului ~ |: ng 0

without computing an approximation todirectly.
Further simplification of the above can be achieved follgwanresult in #5]: since
from (2.15

0 T
Tk:HQk{Tg‘ Ok ]ngw

wherellyy, is the permutationZ.13 of dimension2k, in the case of the reciprocal function
we have

_ o 1.1
' T, e = eIl [ 7! ko } I3,

o 0 elTTk_Tel
T eI e 0 '

Note that with the settinggy = b — Az andsy = g — ATy, the scattering amplitude can
be written as

9T AT = sT AT g 4 sTwo + yd b

With our choice ofzy = yo = 0, we get that the scattering amplitude is approximated by
st A~1rg. Starting thesLsQRblock-Lanczos process with

(/51 0
0 U1 ’
whereu; = rq/ ||rol| andvy = so/ ||so||, results il? A= u; = e T e;. An approxima-

tion to the scattering amplitudg” A~'b is thus obtained via

so A7 ro = [[roll llsoll e Ty ex.
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3.4. PreconditionedGLSQR. The preconditionedsLSQR method was introduced in
Section2.5, and we now show that we can use this method to approximatectiitering
amplitude directly. In the above we showed tlkasQRr gives an approximation to the scat-
tering amplitude using that

b ~T
_| 0 29
[ =] 2, %7 |

Reformulating this in terms of the preconditioned methogtg)
9" = g" A b= (M; " g)T (M AM )T (M)
=g My Mo A M M D = g7 A7 = g7,
which shows that the scattering amplitude for the precamid system
Az =b,
with A = M;YAM; ', 2 = Moz andb = M; 'b, is equivalent to the scattering amplitude
of the original system. The scattering amplitude can tloeegtbe approximated via

0 47z
g 0 '
3.5. BICG and the scattering amplitude. The methods we presented so far are based

on Lanczos methods fot” A. The algorithm introduced in this section connegisc (see
Algorithm 2) and P], a method based on the nonsymmetric Lanczos process asdatier-

ing amplitude.
ALGORITHM 2 (Biconjugate Gradient Metho&ICG)).
for k=0,1,...do
T
_ SkTk
Ak = qi Apg
Th+1 = Tk + Pk
Yk+1 = Yk + Qg
Thi1 = Tk — aApg
k1 = sk — Al g

T
ﬁ _ Sk41Tk+1
k+1 sTre

Pk+1 = Tk+1 + Br+1Pk
Qk+1 = Sk+1 + Brt1qr
end for

Usingr; = b — Az; ands; = g — AT'y;, the scattering amplitude can be expressed as

N—-1
gTA T = Z ajsir;+ sy A ry, (3.9)
j=0

whereN is the dimension of4; cf. [45]. To show this, we usey = b, sy = g, and
sj ATy = sT AT g = (g — ATyy)TATHb — Azj) — s AT i
= (g9~ ATy; + ATyj — ATy ) TAT 0 — Azy + ATy — ATay)
— 51 AT i
= (sj41 + AT (Y1 — ) TAT (rjsn + A1 — 25)) = 8731 A7 754

_ T T T _ T
= %‘(qj Tjt1 + S5 41P5 + Qjq; Apj) = QjsS; Ty,
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2-norm of the residual
5
T
L

GLSQR adjoint
0 ---GLSQR forward E
w0 — QMR adjoint i 1
10°L ----QMR forward ]

9 ! ! | ! |
10 0
Iterations

I I I I
120 140 160 180 200

FIGURE4.1. QMRand GLSQRfor a matrix of dimension00 (Example4.1).

where we usey; = ((fj;}; An approximation to the scattering amplitude at stép then
given by

k
g’ A b~ Zozjszrj. (3.10)
j=0

It can be shown thaB(9) also holds for the preconditioned versionso€ G with system
matrix A = M; ' AM, * and preconditioned initial residuats = M; 'b andso = M, *g.

Another way to approximate the scattering amplitudesriac was given by Saylor and
Smolarski j2, 41], in which the scattering amplitude is connected to Gausgisgadrature in
the complex plane. The scattering amplitude is then given by

k
TA e S 3.11
g ; - (3.11)

wherew; and(; are the eigenvector components and the eigenvalues, tegbeoof the
tridiagonal matrix associated with the appropriate formtioh of BICG; see §1] for details.
In[45] itis shown that 8.10) and @.11) are mathematically equivalent. Note that, in a similar
way to SectiorB.4, it can be shown that the scattering amplitude of the preiionéd system

is equivalent to the scattering amplitude of the precood@d version oBICG.

4. Numerical experiments.

4.1. Solving the linear system.In this Section we want to show numerical experiments
for the methods introduced in Secti@n

EXAMPLE 4.1. In the first example, we apply tkeavr and theGLSQrRmethods to a ran-
dom sparse matrix of dimensidno; e.g.,A=spr andn(n, n, 0. 2) +speye( n) in Matlab
notation. The maximal iteration number for both method20ig, and it can be observed in
Figure4.1thatcLsQRoutperformsQMR for this example.

EXAMPLE 4.2. The second example is the ma®RSIRRL, from the Matrix Market
collection, which represents a linear system used in odmasr modelling. The matrix size
is 1030. The results without preconditioning are shown in Figlr2 Results using the In-
complete LU (ILU) factorization with zero fill-in as a predditioner forGLsQrandQMR are

2http:// math. ni st. gov/ Matri xNar ket /


http://math.nist.gov/MatrixMarket/
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2-norm of the residual
-
5

- GLSQR adjoint| .,
o' -~ GLSQR forward
—QMR adjoint |
102 ---QMR forward
10° 0 1&0 2[‘)0 3(;0 A(‘)O ‘ 6(‘)0 7(‘)0 8(‘)0 9[‘)0 1000

500
Iterations

FIGURE 4.2. GLSQRand QMR for the matrix: ORSIRR. (Examplet.2).

- GLSQR adjoint
-~ GLSQR forward
—QMR adjoint
---QMR forward

2-norm of the residual

I I I I I I
0 50 100 150 250 300 350 400

200
Iterations

FIGURE 4.3. ILU preconditionedGLSQRand QMR for the matrix: ORSIRR. (Exampled.2).

given in Figure4.3. Clearly, QMR outperformsGLSQRin both cases. The choice of using
ILU as a preconditioner is mainly motivated by the fact tha are not aware of existing

more sophisticated implementations of incomplete orthnaféactorizations or incomplete

modified Gram-Schmidt decompositions that can be used itelbla®ur tests with the basic
implementations of cIGO and IMGS did not yield better nurc@riesults than the ILU pre-

conditioner, and we have therefore omitted these resultseipaper. Nevertheless, we feel
that further research in the possible use of incompleteogdhal factorizations might result
in useful preconditioners faGELSQR

ExXAMPLE 4.3. The next example is motivated (84], where Nachtigal et al. introduce
examples that show how different solvers for nonsymmetrstesns can outperform others
by a large factor. The original example i8] is given by the matrix
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P
S,
T

- GLSQR adjoint 1
-~ GLSQR forward| 4
—QMR adjoint
---QMR forward

2-norm of the residual
E\
5

I
10 20 30 60 70 80 90 100

50
Iterations

FIGURE 4.4. Perturbed circulant shift matrix (Exampte3).

The results, shown in Figure4, are for a sparse perturbation of the matfix.e., in Matlab
notation,A=1e- 3xsprandn(n, n, 0. 2) +J. Itis seen thaQMR convergence for both for-
ward and adjoint systems is slow, whereasQRconvergence is essentially identical for the
forward and adjoint systems, and is rapid.

The convergence afLSQR has not yet been analyzed, but we feel that using the con-
nection to the block-Lanczos process fof A we can try to look for similarities to the con-
vergence ofcG for the normal equationGNE). It is well known [31] that the convergence
of CGNE is governed by the singular values of the matfix We therefore illustrate in the
next example how the convergenceafsQris influenced by the distribution of the singular
values ofA. This should not be seen as a concise description of the mgvee behaviour,
but rather as a starting point for further research.

EXAMPLE 4.4. In this example we create a diagonal mattix diag(D1, Dy) with

1000 1

D, = € RPP and D, = . € R?9,

1000
q

with p + ¢ = n. We then createl = UXV”, whereU andV are orthogonal matrices. For
n = 100 the results oGLSQR, for D; € R9999 D, € R'%:10 andD, € R*%:59 are given in
Figure4.5. It is seen that there is a better convergence when therewes flistinct singular
values. Figurel.6 shows the comparison @fMR andGLSQRwithout preconditioning on an
example withn = 1000 and D of dimensiorn600; clearlyGLSQRIs superior in this example.

4.2. Approximating the functional. In this section we want to present results for the
methods that approximate the scattering amplitude direstbiding the computation of ap-
proximate solutions for the linear systems witrand A”.

EXAMPLE 4.5. In this example we compute the scattering amplitudegussie precon-
ditionedGLsQRapproach for the oil reservoir examplERSIRRL. The matrix size i4030.
We use the Incomplete LU (ILU) factorization as a precowodiir. The absolute values of
the approximation froneLSQRare shown in the top part of Figude7, while the bottom part
shows the norm of the error against the number of iteratiNioge that the non-monotonicity
of the remainder term can be observed for the applicatiagsLeQR.
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FIGURE 4.5. GLSQRfor differentD; (Example4.4).
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FIGURE 4.6. GLSQRand QMR for matrix of dimensiori000 (Example4.4).

EXAMPLE 4.6. In this example we compute the scattering using theopiitoned
BICG approach for the oil reservoir exam@¥RSIRR1. The matrix size i9030. We use the
Incomplete LU (ILU) factorization as a preconditioner. Tdiesolute values of the approx-
imation fromBiCcG are shown in the top part of Figure8, and the bottom part shows the
norm of the error against the number of iterations.

EXAMPLE 4.7. In this example we compute the scattering amplitudesiiygutheL SQR
approach presented in Secti@?. The test matrix is of sizé87 x 187 and represents
a Navier-Stokes problem generated by the IFISS packdgeThe result is shown in Fig-
ure4.9, again with approximations in the top part and the error etibttom part.

5. Conclusions. We studied the possibility of usingsQRr for the simultaneous solution
of forward and adjoint problems. Due to the link between ttaating vectors of the two
sequences, this method did not show much potential for dipaasolver. As a remedy, we
proposed to use theLsQRr method, which we carefully analyzed showing its relatiorato
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T T T
% 10° - - = Scattering amplitude H
= — Preconditioned GLSQR approximation
=%
£
E V
=)
£10° i
2
IS
O
w L L L L L L L L
20 40 60 80 . 100 120 140 160
Iterations
10° ‘ ‘
.
=
Q40 i
° 10
<
=
ks
£10° —
S
=z
107 | | | | |
0 50 100 150 . 200 250 300 350
Iterations

FIGURE 4.7. Approximations to the scattering amplitude and error (Epéew.5).

I’ 30
°
2 — —
5 20 —— Approximation using BiCG -
E - - =Scattering amplitude
g 10 i
5
0 |
g
3}
m _10 L L L L L L
10 20 30 . 40 50 60 70
Iterations
10"
8
=
ES]
ks
10 4
=
)
=z
10720 L L L L L L
0 10 20 30 . 40 50 60 70
Iterations

FIGURE 4.8. Approximations to the scattering amplitude and error (Epéew.6).

block-Lanczos method. Due to its special structure, we ble ® choose the two starting
vectors independently, and can therefore approximatediwiens for the forward and ad-
joint systems at the same time. Furthermore, we introducecopditioning for thesLSQR
method and proposed different preconditioners. We fe¢lntiwaie research has to be done to
fully understand which preconditioners are well-suiteddasQR, especially with regard to
the experiments where different singular value distriimsiwere used.

The approximation of the scattering amplitude, without fi@mputing solutions to the
linear systems, was introduced based on the Golub-Kahaagioidalization and its connec-
tion to Gauss quadrature. In addition, we showed how thepreetion ofGLSQR as a
block-Lanczos procedure can be used to allow approximatidrthe scattering amplitude
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FIGURE 4.9. Approximations to the scattering amplitude and error (Epéev.7).

directly, by using the connection to block-Gauss quadeatur

We showed that for some examples the linear systems appus#oiiGLSQR can out-
performQMR, which is based on the nonsymmetric Lanczos process, artgsotfheregMR
performed better. We also showed ho®QR and GLSQR can be used to approximate the
scattering amplitude on real world examples.
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