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Abstract

In this paper, the strong limit theorem for weighted sums of sequences of negatively
dependent random variables is further studied. As an application, the complete
convergence theorem for sequences of negatively dependent random variables is
obtained. Our results partly generalize and improve the corresponding results of Cai
(Metrika 68:323-331, 2008) and Wang et al. (Rev. R. Acad. Cienc. Exactas Fis. Nat, Ser. a
Mat,, 2011, doi:10.1007/513398-011-0048-0) to negatively dependent random
variables under mild moment conditions.
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1 Introduction

Definition 1.1 The random variables Xj, X5, ..., X, are said to be negatively dependent
(ND) if

n
P(Xy <x1,Xa <950, Xy Sxy) < HP(X;‘ <xp);
j=1

and

n
P(X1>x1,X0>%0,...,X, >%,) < HP(X; > %),
j=1

for all x1,%5,...,%, € R. An infinite sequence of random variables {X;;i > 1} is said to be
ND if every finite subset X3, X5, ..., X, is ND.

An array of random variables {X,;;i > 1,n > 1} is called rowwise ND random variables
if for every n > 1, {X,,;;i > 1} is a sequence of ND random variables.

Definition 1.2 The random variables X3, X>,...,X,,, n > 2 are said to be negatively asso-
ciated (NA) if for every pair of disjoint subsets A; and A, of {1,2,...,n},

cov(fi(Xisi € Ay, o(Xjsj € Az)) <0,
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whenever f; and f; are increasing for every variable (or decreasing for every variable), such
that the covariance exists. An infinite family {X;;i > 1} of random variables is said to be
NA if every finite subfamily is NA.

The concept of ND random variables was introduced by Ebrahimi and Ghosh[1], and the
concept of NA random variables was introduced by Joag-Dev and Proschan [2]. Obviously,
independent random variables are ND. Joag-Dev and Proschan [2] pointed out that NA
random variables are ND. They also presented an example in which X = (X3, X3, X3, X4)
possesses ND, but does not possess NA. So, we can see that ND is much weaker than NA.
Because of the wide applications of ND random variables, the notions of ND random vari-
ables have received more and more attention recently. A large number of limit theorems
for ND random variables have been established by many authors. We can refer to [2-12]
etc. Hence, extending the limit properties of independent or NA random variables to the
case of ND random variables is highly desirable and of considerable significance in theory
and application.

As Bai and Cheng [13] remarked, many useful linear statistics based on a random sample
are weighted sums of independent identically distributed (i.i.d.) random variables. Exam-
ples include least-squares estimators, nonparametric regression function estimators, jack-
knife estimates and so on. In this respect, studies of strong laws for these weighted sums
have demonstrated significant progress in probability theory with applications in math-
ematical statistics; many authors studied the strong laws for weighted sums of random
variables. In the case of independence, Bai and Cheng [13] proved the following strong

laws of large numbers for weighted sums.

Theorem 1.1 (Bai and Cheng [13]) Let {X, X,;;n > 1} be a sequence of i.i.d. random vari-
ables with EX,, = 0. Suppose that 0 <o, B < 00,1 <p<2andl/p=1/a +1/8, and let
{a,;1 <i<mn,n>1)} be an array of real constants such that

n—00

n
Ay =limsupA,, <00, Ag, = nt Z | 1.1)
i=1
IfE|X,|P < oo, then

n
nhﬁn&) n P (Z am»X,») =0, a.s. (1.2)

i=1

Theorem 1.2 (Bai and Cheng [13]) Let {X, X,;;n > 1} be a sequence of i.i.d. random vari-
ables and

E{exp(thP’)} <00 forsomeh >0 and some y >0, (1.3)

and let {a,;;1 < i <n,n > 1} be an array of real constants such that (1.1) satisfies for o €
(0,2). Then for 0 < a <1 and b, = n"'*(log n)""?,

Zam'X,'/b,, -0 as (1.4)
i=1
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Moreover, for 1 < a <2 and b, = n"'*(log n)"'"**, and EX,, = 0,

n
Zﬂm’Xl’/bn -0 as, (1.5)
i-1

where § = y (o —1)/a(1 + y).
Wu [10] generalized and improved the above Theorem 1.1 to ND random variables, re-

moved the identically distributed condition as follows.

Theorem 1.3 (Wu [10]) Let {X,;;n > 1} be a sequence of ND random variables which is
stochastically dominated by a random variable X. Suppose that 0 < o, <00, 0 < p <2
and 1/p =1/a +1/B. If B > 1, further assume that EX,, = 0. Let {a,;;1 <i<n,n>1} be an

array of real constants such that
n
Y laul® < n. (1.6)
i=1

IfE|X,|P < oo, then

. -1/p X | =
nll)rgon (ZamX,) 0, a.s. 1.7)

i=1

Recently, Cai [14] and Wang et al. [12] have studied the complete convergence for NA ran-
dom variables and arrays of rowwise ND random variables under the exponential moment
conditions respectively. Their results generalize and improve the above Theorem 1.2 to NA
and ND random variables. Inspired by Cai [14], Wang et al. [12], and other papers men-
tioned above, we investigate the limit behavior of ND random variables and obtain some
complete convergence results. We use methods different from those of Cai [14] and Wang et
al. [12].

The main purpose of this paper is to further study the complete convergence for ND
random variables and arrays of rowwise ND random variables under weaker moment
conditions. As applications, the complete convergence for linear statistics of ND random
variables and arrays of rowwise ND random variables are obtained without assumptions
of being identically distributed. The results obtained not only generalize the above The-
orem 1.2 to the case of ND and arrays of rowwise ND random variables, but also partly
improve the corresponding results of Cai [14] and Wang et al. [12].

Throughout this paper, C will represent a positive constant whose value may change
from one appearance to the next, and a, = O(b,) will mean a,, < C(b,,).

We will use the following concept in this paper. Let {X,; n > 1} be a sequence of random
variables, and let X be a nonnegative random variable. If there exists a constant C (0 < C <
o0) such that

P(1X,| = t) < CP(X > 1), (1.8)

for all £ > 0 and # > 1. Then {X,,;; n > 1} is said to be stochastically dominated by X.
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2 Main results and proofs

Now, we state and prove our main results of this paper.

Theorem 2.1 Let {X,;n > 1} be a sequence of ND random variables which is stochastically
dominated by a random variable X. Let T, = Z?:l aniXi, n > 1, where the weights {a,; : 1 <

i <n,n>1} are a triangular array of real constants such that a,; = 0 for i > n. Let

n
Ap =limsupAg, <00 Apy=n") " laul’, 2.1)
n=eo i=1

where B = max(a,y) forsome0<a <2,y >0anda #y.Assumethat EX,, =0 forl<a <2
and E|X|? < 0o. Then

oo
Z n_lP(|Tn| > 819,,) <00 forVe>0, (2.2)

n=1
where b, = n"'®(logn)""” .
In order to prove our results, we need the following lemmas.

Lemma 2.1 (Bozorgnia et al. [15]) Let random variables X1,X»,...,X, be ND,fi,fa,...,fn be
all nondecreasing (or all nonincreasing) functions, then random variables fi(Xy), f2(X3), ...,
fu(X,,) are ND.

Lemma 2.2 (Asadian et al. [4]) Let {X,;n > 1} be a sequence of ND random variables
with EX,, = 0 and E|X,|F < oo for some p > 2 and for all n > 1. Then there exists a positive
constant C = C(p) depending only on p such that for alln > 1,

p) < C{Xn:axgl’ + <Z (EX?))p/2:|. (2.3)

i=1 i=1

n
>
i=1

E(’

Lemma 2.3 Let X be a random variable and {a,; : 1 <i < n,n > 1} be an array of constants
satisfying (2.1), b, = n'’*(log n)*"” . Then

oo n
> n Y P(lawX| > by) < CE|X|P. (2.4)

n=1 i=1

The proof'is similar to that of Lemma 2.3 of Sung [16]. So, we omit it.

Lemma 2.4 Let {X,;n > 1} be a sequence of random variables which is stochastically dom-
inated by a random variable X. For any u > 0,t > 0 and n > 1, the following two statements
hold:

EIXu“I(IXu| <) < C[EIX[*I(IX] < t) + “P(1X| > £) |5 (2.5)

EIXu|“I(1X4| > £) < CEIX|"I(1X] > ¢). (2.6)
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Proofof Theorem 2.1 Without loss of generality, assume thata,; > O foralll <i<n,n>1.
Define that

X" = 4, Xl (185X < by) + bul(@iX; > by) = bul(@,X; < =b,);

j
Tj(n) _ Z (Xi(”) _EXZ,(")), foralli>1.
i=1

By Lemma 2.1, we can see that for fixed n > 1, {X;"); i > 1} is still a sequence of ND random

> ebn),

> 819,,)
). (2.7)

variables. It is easy to check that for any ¢ > 0,

(s

n
E aniX;
i=1

n

>l

i=1

> 8b,,) C (max | X;| > b,,) U (
1<i<n

which implies that

P(|T,| > eb,) < P(max |, X;| > bn) +P<
1<i<n

n
T+ Ex”
i=1

n
< ) P(lanXi| > by) +P(\T,§">\ > b, —

i=1

n

ZEX.(”)

i=1

Firstly, we will show that

b;l — 0, asn— oo. (2.8)

n
> B
i=1

Ify >a,by Y0 |aul? =37, |a|” < Cnand Lyapunov’s inequality,

1¢ 1 “
p Z || < (; Z |6lm‘|y) =G,
i1 i=1

which implies that % X M X MaXi<j<y |Gni|® = MaXi<j<y |ani|* < C for Vun>1.
If y <, it easily follows that max;<;<, |a,|* < C for Vn > 1.

For 0 < & < 1, it follows from Lemma 2.4 and E|X|? < oo that

b—l

n
> e
i=1

<b;" Y [EX|
i=1

n

<b1 Y ElauXill(lawXil <ba) + Y P(lanXil > by)

i=1 i=1

< Cb;1 Z (Ela,,,'X|1(|am'X| < b,,) + b,,P(|amX| > b,,)) + CnP(Ia,,,'XI > b,,)

i=1

Page 5 of 10
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n

<Cb! Z (ElanX|I(|anX| < b)) + CnP(janX| > b,)

_ CZ ( ('“"‘X|) la,X| <b )) + CnP(|aX| > by)

=< CZ < <|an,X|) (lanX| <b )> + CnP(|anX| > by)

<CZE(

) + CnP(lanX| > by)

=Cb,* Y |anl“EIX|* + CnP(jawX| > by)
i=1

ElaX|*
C(logn)™"" E|X|* Cn—'aba|
< C(logn)™VE|X|* + C(log n) ™" |a,|“E|X|* — 0 asn— oco. (2.9)

For 1<« < 2, it follows from Lemma 2.4, EX,, = 0 and E|X|? < oo that

n
b} ZEX}”)
i=1
n
<b' Y [EX{"]
i=1

<b! Z ElanXill(|anXi| < bu) + Y P(lawXi| > by)

i=1 i=1

< MY (ElanX 1 (|anX| < by) + buP(|aniX| > b)) + CnP(|anX]| > by)
i=1

n
< Cb," Y ElawX|I(|anX| > by) + CnP(|aX| > by)

i=1

< CZ < ('“’”X|) [(|awX| > bn)) + CnP(|anX| > by)

n o
< CZE( '“ZiX|) + CnP(|anX| > by)

i=1 n

C(logn)™"E|X|* + C(logn)™" |au|“E|X|* — 0, asn— oo. (2.10)

From (2.10) and (2.11), we can get (2.9) immediately. Hence, for # large enough,

n

P(ITul > eby) <Y P(lanXi| > by) + P(|T,5">y > %) (2.11)
i=1
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Secondly, we need only to prove that
= Zn_l ZP(|amX,'| > b,,) < 00;
n=1 i=1

> eb
4 Zn-lp<|T,§”>| > 7) < 00.
n=1

It follows from Lemma 2.4 and Lemma 2.3 that

n

o0
I Zn_l ZP(|ﬂniXi| > by)
n=1

i=1

< Ci nt iP(mm)ﬂ > b,,)
n=1 i=1

< CEIX|? < o0,

where 8 = max(«, y) for some 0 < <2 and y > 0.
It follows from Lemma 2.2 and the Markov inequality that

oo
e Zn_1P<|T,(I”)| - )
n=1

<CY u'bE(|TP))

b
2

n=1
00 n n ) pl2
<CY n'p? [ZE|X}”> "+ (ZE|X§”’| ) }
n=1 i=1 i=1
211 + I1,.

Page 7 of 10

(2.12)

(213)

(2.14)

(2.15)

Let p > max{2,y}, a < y, note that E|X|# = E|X|” < oco. It follows from Lemma 2.4,

Lemma 2.3 and the Markov inequality that

[e¢] n
m=cy wior Y Ex"[
n=1 i=1
n

oo n
< cZn-lb;P[Z |aPEIXPI(|laXi] < by) +
n=1 i=1 i=1

n n

00
< canb,f’{Z @ PEIXPT(|anX] < by) + Y B2P(|anX] > bn)}
n=1

i=1 i=1

o0 n oo n
<CY n'b Y lawl”EIXP +C Y n™ Y P(|anX| > by)
n=1 i=1 n=1 i=1

oo
<CY n"™(logn)™ + CE|X|" < oc.

n=1

bﬁp(mmXi' > bn)]

(2.16)
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If o« > y, note that E|X|? = E|X|* < co. We can get that

oo n
m=cy wiorY Ex"[
n=1 i=1

o0 n n
<CY w'bP Y lanlPEIXilPI(jaXi] < by) + ) BiP(lawXil > by)
n=1

i=1 i=1
oo n o0 n
<CY n'B > awl“EIX|“ + CY " n Y " P(|anX| > by)
n=1 i=1 n=1 i=1

< CZ n(logn) ™" + CE|X|* < oo. (2.17)

n=1

_ 2 pl2
Next, we will prove II, = C Y%, n7 b, (Y7, EIX™|") < oc in the following two cases.

Ifa<y <2ory<a<2,letp>max{2, %’}. Noting that E|X|* < oo, we can get that

o0 n ) pl2
I =CY n'b? (ZE|X§”)| )
n=1 i=1

0 n pl2
< Czl’flb;p (ZE|ﬂniXi|21(|aniXi| < bn))

n=1 i=1

0 n pl2
+CY n'b? (Z |bal*P(|aniXil > b,,))

n=1 i=1

00 n pl2
<CY nl'bp <2E|aniX|21(|a,,jX| <b,) +b2P(lauX| > b,,))

n=1 i=1

n=1 i=1

+ Ci nl <Xn: P(|aniX| > b,,))p

) n la ‘X|2 pi2 0 n pI2
<C) nt (ZE o1 (lanX| < bn)) +CY ! (Zp(mmm > bn))
n=1 i=1 n i

) n x| pl2 ) n X p2
< CZVIl(ZEla"bia l I(|am»X| < bn)) + CZn’1 (ZE'ayZa | )
n=1 i=1 n i

oo n pl2
<CY nlb” (Z |am-|“E|X|“>

s i-1
o0

< CZ n(log n) ™) < o0, (2.18)
n=1

Ify>2>aory>2>abyY " |aulf =", |a” < Cnand Lyapunov’s inequality,

(E1Z1)" < (E1Z)7)"" for0<a <y,

Page 8 of 10
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we can obtain that

1 1 “
= lanl" < (; > |am|y) <G
i=1 i=1

which implies that Z:’Zl |ani|* = O(n). Hence, from max;<;<y, |a,|* < Cn and the Holder

inequality, then Yk > «,
n n & x
— K=« Ls
Y lanil* =Y lawl*|an™* < Cnn's” < Cne.
i=1 i=1
So,

> laul® = 0(n*).
i=1

Letp >y,

00 n ) pl2
1, = czn-lbgp[(ZEle”)\ ) }
n=1 i=1
pl2

oo n pl2 oo n
<CY nl'bp (Z Iam|2> +CY 'y (Z Iam-l‘”>
n=1 i=1 n=1 i=1

(o]
<CY nlbrwle

n=1

[o¢]
< CZn’l(log n) " < oo. (2.19)

n=1

Hence, the desired result (2.2) follows from (2.15)-(2.19) immediately. The proof of Theo-
rem 2.1 is complete. O

Similar to the proof of Theorem 2.1, we can get the following results for arrays of rowwise
ND random variables.

Theorem 2.2 Let {X,;;i > 1,n > 1} be an array of rowwise ND random variables which is
stochastically dominated by a random variable X. Let T, = Y | a4, Xui, n > 1, where the
weights {a,; : 1 < i < n,n > 1} are a triangular array of real constants such that (2.1). Let
b, = n"*(log ). IfEX,; =0 for1 <a <2 and E|X|P < oo, then (2.2) holds true.

Remark 2.3 Note that the results of Cai [14] and Wang et al. [12] provide a stronger con-
clusion on the complete convergence for maximums of partial sums under the exponential
moment condition than the results presented in Theorem 2.1 and Theorem 2.2 above for
a # y; that is, they obtained results of the form

[e¢]

Zn‘lP(max |T;] > abn) <oo forVe>O0.
— 1=j=n
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It is still an open problem to obtain results of this type for ND random variables under
the conditions of @ # y and « = y. One suggests that a solution can be obtained if a better
moment inequality than that presented above in Lemma 2.2 could be established.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DW participated in the design of the study. HH conceived of the study, and participated in the design and proof of the
article. All authors read and approved the final manuscript.

Author details

'School of Mathematics Science, University of Electronic Science and Technology of China, Chengdu, 610054, PR. China.
2College of Science, Guilin University of Technology, Guilin, 541004, PR. China. 3Institute of Financial Engineering, School
of Finance, School of Applied Mathematics, Nanjing Audit University, Nanjing, 211815, PR. China.

Acknowledgements

The authors are very grateful to the anonymous referees and the editor Prof Andrei Volodin for their valuable comments
and some helpful suggestions that improved the clarity and readability of the article. This work was supported by the
Project Supported by Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi
Institutions of Higher Learning ([2011]47), the National Natural Science Foundation of China (No:71271042, 11061012),
the Plan of Jiangsu Specially-Appointed Professors and the Major Program of Key Research Center in Financial Risk
Management of Jiangsu Universities of philosophy and social sciences (No:2012JDXMO009).

Received: 15 February 2012 Accepted: 10 August 2012 Published: 17 October 2012

References
1. Ebrahimi, N, Ghosh, M: Multivariate negative dependence. Commun. Stat,, Theory Methods 10(4), 307-337 (1981)
2. Joag-Dev, K, Proschan, F: Negative association of random variables with applications. Ann. Stat. 11(1), 286-295 (1983)
3. Volodin, A: On the Kolmogorov exponential inequality for negatively dependent random variables. Pak. J. Stat, Ser. A
18, 249-254 (2002)
4. Asadian, N, Fakoor, V, Bozorgnia, A: Rosental’s type inequalities for negatively orthant dependent random variables. J.
Iran. Stat. Soc. 5(1-2), 66-75 (2006)
5. Sung, SH: A note on the complete convergence for arrays of dependent random variables. J. Inequal. Appl. 2011, 76
(2011). doi:10.1186/1029-242X-2011-76
6. Kuczmaszewska, A: On some conditions for complete convergence for arrays of rowwise negatively dependent
random variables. Stoch. Anal. Appl. 24, 1083-1095 (2006)
7. Amini, M, Zarei, H, Bozorgnia, A: Some strong limit theorems of weighted sums for negatively dependent generalized
Gaussian random variables. Stat. Probab. Lett. 77, 1106-1110 (2007)
8. Amini, M, Azarnoosh, HA, Bozorgnia, A: The strong law of large numbers for negatively dependent generalized
Gaussian random variables. Stoch. Anal. Appl. 22, 893-901 (2004)
9. Amini, M, Bozorgnia, A: Complete convergence for negatively dependent random variables. J. Appl. Math. Stoch.
Anal. 16, 121-126 (2003)
10. Wu, QY: A strong limit theorem for weighted sums of sequences of negatively dependent random variables.
J.Inequal. Appl. 2010, Article ID 383805 (2010). doi:10.1155/2010/383805
11. Wu, QY: Complete convergence for negatively dependent sequences of random variables. J. Inequal. Appl. 2010,
Article ID 507293 (2010). doi:10.1155/2010/507293
12. Wang, XJ, Hu, SH, Yang, WZ: Complete convergence for arrays of rowwise negatively orthant dependent random
variables. Rev. R. Acad. Cienc. Exactas Fis. Nat, Ser.a Mat. (2011). doi:10.1007/513398-011-0048-0
13. Bai, ZD, Cheng, PE: Marcinkiewicz strong laws for linear statistics. Stat. Probab. Lett. 46, 105-112 (2000)
14. Cai, GH Strong laws for weighted sums of NA random variables. Metrika 68, 323-331 (2008).
doi:10.1007/500184-007-0160-5
15. Bozorgnia, A, Patterson, RF, Taylor, RL: Limit theorems for dependent random variables. In: World Congress Nonlinear
Analysts'92, pp. 1639-1650 (1996)
16. Sung, SH: On the strong convergence for weighted sums of random variables. Stat. Pap. 52, 447-454 (2011)

doi:10.1186/1029-242X-2012-233
Cite this article as: Huang and Wang: A note on the strong limit theorem for weighted sums of sequences of
negatively dependent random variables. Journal of Inequalities and Applications 2012 2012:233.



http://www.journalofinequalitiesandapplications.com/content/2012/1/233
http://dx.doi.org/10.1186/1029-242X-2011-76
http://dx.doi.org/10.1155/2010/383805
http://dx.doi.org/10.1155/2010/507293
http://dx.doi.org/10.1007/s13398-011-0048-0
http://dx.doi.org/10.1007/s00184-007-0160-5

	A note on the strong limit theorem for weighted sums of sequences of negatively dependent random variables
	Abstract
	MSC
	Keywords

	Introduction
	Main results and proofs
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


