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This paper applied He’s energy balance method (EBM) to solve the non-natural vibrations and 
oscillations. We find that this method (EBM) works very well for the whole range of initial amplitudes 
and does not demand small perturbation and also sufficiently accurate to both linear and nonlinear 
physics and engineering problems. We consider a high nonlinear single degree of freedom to illustrate 
the effectiveness and convenience of the method. He’s energy balance method as approximate 
method and Runge-Kutta’s (RK) algorithm was also implemented to solve the governing equation 
through a numerical method. Finally, the accuracy of the solution obtained by the approximate method 
(EBM) has been shown graphically and compared with that of the numerical solution. 
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INTRODUCTION 
 
Most of engineering problems, especially some oscillation 
equations are nonlinear, and in most cases, it is difficult 
to solve such equations, especially analytically. One of 
the well-known methods to solve nonlinear problems is 
perturbation method. The traditional perturbation method 
contains many shortcomings. Recently, considerable 
attention has been paid towards approximate solutions 
for analytically solving nonlinear differential equation. 
Many nonlinear problems do not contain such 
perturbation quantity, so to overcome the shortcomings, 
many new techniques have appeared in open literature 
such as, Homotopy perturbation (Bayat et al., 2010; 
Bayat et al., 2011a), parameter–expansion (Kimiaeifar et 
al., 2010), parameterized perturbation (He, 1999), energy 
balance (Bayat et al., 2011b, c), variational approach 
(Bayat et al., 2011d; Pakar et al., 2011; He, 2007) and 
the other analytical  and numerical methods (Bayat et al., 
2011e, f, g, h; Shahidi et al., 2011; Soleimani et al., 2011; 
Ghasemi et al., 2011; Ehidiamhen, 2009; Yang, 2010). 

In the present paper, Energy balance method (EBM) 
was used for nonlinear oscillators, which was proposed 
by He (2002). This method can be seen as a Ritz-like 
method and leads  to  a  very  rapid  convergence  of  the 
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solution, and can be easily extended to other nonlinear 
oscillations. In short, this method yields extended scope 
of applicability, simplicity, flexibility in application, and 
avoidance of complicated numerical and analytical 
integration as compared to others among the previous 
approaches, such as, the perturbation methods, and so 
could widely applicable in engineering and science. 

To show the efficiency and accuracy of the methods 
some comparisons have done with the results obtained 
by the EBM and Runge-kutta. The EBM has an excellent 
agreement with the Runge-kutta and they are valid for 
whole domain.  
 
 
Mathematical formulation 
 
A conservative nonlinear single degree of freedom is shown in 
Figure 1. The governing equation of the oscillation is as follow 
(Nayfeh, 1993); 
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With the boundary condition of: 



 
 
 
 

 
 
Figure 1. A conservative nonlinear single 

degree of freedom. 
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Basic idea of energy balance method (EBM) 

 
In the present paper, we consider a general nonlinear oscillator in 
the form (He, 2002); 
 

(  ( )) 0,u f u t′′ + =
                              (3)

 

 
where, u and t are generalized dimensionless displacement and 

time variables, respectively, and (  ,  ,  )f f u u t′= .  

Its variational principle can be easily obtained: 
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where  
2

T
π

ω
=   is period of the nonlinear oscillator, 

( ) ( ) .F u f u du= ∫  

Its Hamiltonian, therefore, can be written in the form: 
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21

( ) ( ) ( ) 0,
2

R t u F u F A′= + − =             (6) 

                                         
Oscillatory systems contain two important physical parameters, that 
is, the frequency ω and the amplitude of oscillation, A. So let us 
consider such initial conditions: 
 

(0)   ,   (0) 0,u A u ′= =
    

                               (7)
 

 
We use the following trial function to determine the angular 
frequency, ω: 
 

 cos  (  ),u A tω=
                                            (8)

 

 
Substituting Equation 18 into Equation 16, we obtain the following 
residual equation: 
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If, by chance, the exact solution had been chosen as the trial 
function, then it would be possible to make R zero for all values of 

t  by appropriate choice of ω. Since Equation 9, is only an 

approximation to the exact solution, R, cannot be made zero 

everywhere. Collocation at  / 4tω π=  gives: 
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Its period can be written in the form: 
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Application of energy balance method 

 
Its variational and Hamiltonian formulations of the Equation 1 can 
be readily obtained as: 
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Table 1. Comparison of frequency corresponding to various parameters of system. 

 

A m1 m2 l g K 
EBM

ωωωω  NM
ωωωω  Error (%) 

0.1 3 1 2 10 5 1.82579 1.79142 1.918 

0.5 3 1 2 10 5 1.82702 1.79215 1.946 

1 2 4 4 10 5 2.67577 2.59911 2.949 

2 2 4 4 10 5 2.50239 2.43833 2.628 

3 2 2 5 10 5 1.99328 1.95544 1.935 

4 2 2 5 10 5 1.89981 1.86917 1.639 

5 1 4 5 10 5 2.35063 2.29569 2.393 

10 1 4 10 10 5 1.80631 1.77553 1.733 

15 4 1 20 10 5 1.13556 1.12403 1.026 

20 4 1 20 10 5 1.13263 1.12078 1.057 
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Figure 2. Comparison of analytical solution of ( )u t based 

on time with the numerical solution for m1 = 3, m2 = 1, l = 2, 
g = 10, k = 5, A = 0.5. 
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Choosing the trial function ( ) cos ( )u t A tω= , we obtain the 

following residual equation: which trigger the following results: 
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If we collocate at 

4

π
ω = , we obtain the following result: 
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Its period can be written in the form: 
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We can obtain the following approximate solution: 
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RESULTS AND DISCUSSION 
 

To illustrate the accuracy of the accuracy of the EBM, the 
procedures explained in previous sections are applied to 
obtain natural frequency and corresponding displacement 
of a high nonlinear single degree of freedom. 
Comparisons of angular frequencies for different 
parameters via numerical is presented in Table 1. The 
maximum relative error between the EBM results and 
numerical results is 2.949%.To further illustrate and verify 
the accuracy of the present analytical approach, 
comparison of EBM and numerical solution are presented  
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Figure 3. Comparison of analytical solution of du dt based on 

time with the numerical solution for m1 = 3, m2 = 1, l = 2, g = 10, k = 
5, and A = 0.5.  
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Figure 4. The phase plane, m1 = 2, m2 = 2, A=1, g = 10, k = 5.  

 
 

 
 
 

in Figures 2 and 3, for ( )u t and ( )u t&  at different 

parameters of the systems. Figure 4 represents the 
phase plane of the problem for m1 = 2, m2 = 2, A = 1, g 
=10.  
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Figure 5. Variation of frequency with respect to various 

parameters of amplitude (A) for m1 = 2, m2 = 2, l = 10, and g 
= 10.   
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Figure 6. Variation of frequency respect to various parameters of 
(l) for m1 = 2, m2 = 2, l = 10. 

 
 
 
 
Comparison of frequency corresponding to various 
parameters of amplitude (A) and length (L) is shown in 
the Figures 5 to 7. 

As shown in Figures 2 to 7 and Table 1, it is apparent 
that   the   EBM   has   an  excellent  agreement  with  the 
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Figure 7. Sensitivity analysis of frequency for m1 = 2, m2 
= 2, g = 10, k = 5.

 
 

 
 
 
numerical solution using Rung-Kutta and these 
expressions are valid for a wide range. 
 
 
Conclusion 
 
In this study, the He’s Energy Balance method was 
successfully applied to solve the governing equation of a 
system of nonlinear conservative oscillation. The accu-
racy of the method was investigated by a comparison 
which was made between Runge-Kutta algorithms. The 
excellent agreement of the EBM solutions and the 
Runge-Kutta solutions shows the reliability and the 
efficiency of the method. This new method accelerated 
the convergence to the solutions. The EBM provides 
efficient alternative tools in solving nonlinear equations. 
The method is useful to obtain analytical solution for all 
oscillators and vibration problems. The EBM is a well-
established method for analyzing nonlinear systems 
which can be easily extended to any nonlinear equation. 
 
 

Nomenclature: u , Displacement; l , Distance between two 

mass;
 1

m
,
 first mass of system;

 
g

,
 gravity;

 2
m

,
 Second 

mass of system; A , amplitude; K , spring Stiffness; ω , 

system frequency. 
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