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In this paper, we introduce and study some new subclasses of analytic functions defined in the open
unit disc using the convolution technique. Inclusion results, radius problems and several other

properties of these classes are discussed.
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INTRODUCTION

Let A denote the class of functions f (z) given by:

f(z)=2+) a,z", 1)
m=2

which are analytic in the open unit disc E ={z :|z| < 1}.
Let P, () be the class of functions p(z) defined in E,
satisfying the properties p(O) =1 and

2
Rep(z)-
0 1- 4
where z=re”, k=2 and 0 < ¥ <1. When y=0,
we obtain the class B, defined in Pinchuk (1971) and for

k=2, y=0, we have the class P of functions with
positive real part. We can write Equation 2 as:

p(z)=5 du(t),

12714 (1-2%) ze™
1]

1_ Ze—it

where ,u(t) is a function with bounded variation on

[O, 271'] such that;

Td,u(t) =2, T\dy(r)\gk.

From Equation 2, we can write, for pe Pk (7),

2K =G+—ljpl(z} {I—C—l}ﬂz(z)’ ARERN=AD.

2 4 2

where P(y) is the class of functions with positive real
part greater than %.

By S, K,S* and C, we denote the subclasses of A,

which consist of univalent, close-to-convex, starlike and

convex functions in E, respectively. The class A is
closed under the convolution * (or Hadamard product).

(f*g)(z)=iambmzm“, f,geA



where f(Z):ZamZWL+1, g(Z):meZm+l.

m=0 m=0

_
(I_Z)lﬁ-l ’

suitable branch so that f, € A.

A>0, we have chosen a

For f,(z)=

Let f € Abe given by Equation 1, with the properties

1
that a,, #0 for all m and lim,__|a,|[» =1. Then we

m-—oo
can define f,"" as the unique and well-defined function
in A such that

(fz*fﬂ(_l))(Z):E, ze E. (4)

We define
)

L2 =" #f)(2)= (l_i)ﬂﬂ #f(2), 220

Remark

We can use hypergeometric functions to define I, f as

follows. Since (1-z) " =2Fl(1,1;a;z), where 2171 is the

hyper geometric function, we have, for a>1,
| (-1) [ ( 1 ) 1)

— = Fl,;a;z] .

(-] L
Therefore ,
LA HAA | 413 = (LA L3
Using Equation 4 and 5, we can easily derive,
(2’+1)Iﬁf(z)_ﬂ’lﬁ+1f(z):Z(I}H-lf(z)) (6)
Definition
Let feA and let for

< <

(M}m, [lm—f(z)}eo, 2€ E,

Noor 4451

1, A I A
”za(“z)L J;((?rﬂﬂ*“‘“)(“”h ff((zz)mJ'

7
Then  feM/ (o, A, y) it and only if

J(a, A, f)e P(y), for k22,0<y<1 and z€ E.
As special cases, we note the following:

1, M;(0,0,0)=C, M,(0,1,0)=S5",and

M;(a, 1, y)cM,cS, where M is the class of
alpha-starlike functions (Goodman, 1983).

2. M (0,1, )=V, (y)cV,, where V, is the well-
known class of analytic functions with bounded boundary
rotation and M, (0, 0, 0) = R,, consists of the functions
with bounded radius rotation (Goodman, 1983).

3. M, (a, 0, 0) =M, (a), represents the class of

functions with bounded Mocanu variation (Goodman,
1983).

For different values of parameters k, @ and A, we

obtain several other subclasses of analytic functions
(Noor, 1995, 1999, 2007; Noor and Noor., 2003).

PRELIMINARY RESULTS

Lemma 1

Let u=u,+iu, , v=v+iv, and y(u,v) be a

complex-valued function satisfying the conditions (Miller,
1975):

1. y/(u,v) is continuous in a domain D < C°,
2. (1,0)6 D and 1/1(1,0) >0,

3. Rewy(iu,,v)<0 whenever (iu,,v,)e D, and

v, < —%(1+u22)

If h(z):1+2cmzm is a function, analytic in E such

m=1

that (h(z),2h'(z))e D and

Re{l//(h(z),zh'(z))}>0 for
Reh(z)>0in E.

ze E, then
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Lemma 2

Llet £>0,8+5>0 and YE[V,.1), (Miler et al,
B—S6-n 5} ;

2000) where Vo= Max{ , .
2p B

nzp'(z)
e g e r). )
then pe P(y), where
- (B+9) 5
{5(25(1—7);1;’8+:+1;;j}ﬁ p

The value of 7, is best possible.

Lemma 3

Let i(z) be analytic function in E with h(0)=1 and

Reh(z) > 0in E. Then, for |Z| =r,ze &,

I-r I+r
——<Reh(z)<|h <—
1. <Re () <|n(2)) -
, 2Reh(z
2 (o) s

This result is well-known (Goodman, 1983).

Lemma 4

Let /1(z) be an analytic function in E with ~(0)=1 and

Reh(z)>0inE. Then, for s>0 and
h/
v #—1(complex),  Re h(z)+sZ—(Z) >0  for
h(z)+v

‘Z‘ <71, where r; is given by:
v+]

T

\/A+(A2+|V2—1|2)2

and this result is best possible (Ruscheweyh and Singh,
1976).

r, = A=2(s+1) +pf -1, @)

Lemma5

f(2) ()

<
univalent (Bazilevic) in E if and only if, for
0<6 <6,<27 and 0<r<l1, wehave

Let f € A with #0inE. Then f(z) is

T M C BN €] G €9 ) P
!{Re{l+ ) +(B 1)f(z)} alm f(z)}da : B>0

and « is real (Shiel-Small, 1972).

Lemma6

If ¢ is prestarlike of order ,B <1, g€ S*, then for

*h —
each analytic function #, ¢¢—g(E) c C,h(E), where

*g
C,h(E) denotes the closed convex hull of /(E)
(Ruscheweyh, 1982).

MAIN RESULTS

Theorem
For

a@>0,0<y<1, A>0,k>2, 7=max[1_/;_a,—/1},

M (gAY =M (04 %)=R.( 1 %),

where

(1+ 1)

}/1:
2 I+a+A 1
F| 2=yl

-Al. ©)

The value of %, is best possible.

Proof

Let J* (e, A, f) be defined by Equation 7. Then, using
the identity of Equation 6, we have:

Z(I/mf(z))/

Z(Iﬂf(z))/
I/mf(z) '

I/lf(z)
(10)

J(a, A, f)=a +(1-a)



Set

(Lr() . (k1 o .
Zlﬂf—(Z)_H(Z)_(Z-FEJH‘(Z) (Z_EJHZ(Z)‘ (11)
We note that H (z) is analyticin E and H (0)=1. We

want to show that H e P,(%,) in E. Now, from Equations
6 and 10, we have:

H'(2)
J' (e, A, =H(z)+« (12)
Define
Z Z
o 2)=a +(l-« (13)
¢l() (I_Z)lﬂ ( )(1_ A+l
Using convolution techniques, it follows that

(H*¢‘;‘](z)=H(z)+a$,

and so, from Equations 11 and 13 we have:

(oA £(2))=H () + a2 ) (14)

Since  feM/(a, A, %), it follows that
ZH!(2) _
H,(z)+a——-""-|e P(y),i=12, ze E.

[ (2) Hi(zw}e (7).i=1.2. ze

Thus, from Lemma 2, it follows that H,€ P(%;) and

consequently H e P,(y,)in E where %, is given by
Equation 9. This completes the proof.

Theorem 2

feM (a 4 7).

2(ax—y+1
ksw,(no,os;«l.
-v

Then I,f is univalent, if

Proof

Since feM(a, A, 7), it follows  that
J' (A, f)e B(y).z€ E.

, k=2

Therefore, with

z—re

Noor 4453

2z

j ReJ (a’ﬂ"f)_y
0 _7
and these together imply

jReJ (e, 2, f)dO >~ {%

d@<kr, Zf

0

J (A f)=r
-y

Re dé=2r,

}ﬂ', 0<6,<6,<27x, 0<y<l.

Th|s is equivalent to

el g -2

now, the required result follows by using Lemma 5.

Theorem 3
Let -1< A4 <4, Then
M. (a, ,,0)c M, (a, 4,0).
Proof
Define
+1)(4 +2 +m—1
_Z+z /1/121+1 i+2)) ((i+m—1))zm’ e b

Then ¢€ A and, for z€ E,

WM(Z):W( <A <) (15)

This implies W*ﬂz)es*[%)cc*(%),

1—/12) Now
2
let feM (e, 4,0),z€ E. Writing

H(z)=(§+lel(z) (ﬁ-lez(z),wehave

2 4 2

and therefore, ¢(z) is prestarlike of order (

CYNIE {

1
+

4
[k

4 2
HI(O) 1 and H, is analytic in E for

8 (Z)
5 (2)

} T (a4, f(z
3 J
1][¢ ] HeP, i=12 zeE.

Since H, e P

i=1,2, there exist 5,€ S * suchthat H,(z)=

Therefore,
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_gxHys

P*s,
Using Lemma 6, we note that (¢*H,)e P, and this
a. A, f)=1"(a. 4, f)e B, for
feM,;(a, 4,0)in E.This

, s, 8%

implies that ¢ J" (

ze E, and therefore

completes the proof.

Theorem 4
Let feM, (0, A,y)forzeE. Then,
feM/ (e, /1,7)f0r|z|<r0, where 7, is given by
Equation 8 with
+
AT % ndas= 2(s+1)"+[ -1, and
- Y 1 v

this radius is exact.

Proof

Let H (z)be an analytic function as defined by Equation
11.  Since  feM, (0, 4,7), it
H e P(y).i=12.
H,(z)=(1-y)h(z)+7, he P,i=12, we have for
Ze E,

follows that

Therefore, with

* (k1 azh(2)
g[f (a. ’1’f)_ﬂ‘(Tij{h'(z)+(1—7)fa(Z)+/1+7J

k azh) (z)
‘(Z‘E)[W*(1—y)hz<z>+z+yJ
Now using

At (7¢ 1), S—i>0 we can see that

—

Lemma2.4 with

?

V=

hi+az—lzi epP, i=12, for |z|<r0 and
(1_7)hi+ﬂ+7
consequently fe M, (a, A, 7/), for |z| <1, where 7, is

given by Equation 8.

As a special case, we note that with
a=1, y=0 and A=0, we have fe€ R,. Then, from

Theorem 4, it follows that fev, for

1
7|< ¥ =—F/—7—
| | ' V7 ++/48

choose k =2,it gives us the radius of convexity for
starlike functions.

~0268~2-+/3. When we

Theorem 5
For OS% <& M*(O{’ /L” CM*(C;, ﬂ,}’) '

Proof

For «, =0, the proof is immediate from Theorem 1.

Therefore we let @, >0and feM," (¢, 4,7). Then

we can write,

Z(I/if(z))’

T (@, A, f,(2)) = Lf(z)
Qe

% (e, A f(z))+[1-‘;’2]

1

:%H(Z)J{I—ZZJP(Z)’

al 1

where He P,(y), since

pe P.(7), by Theorem 1.

feM; (e, A,7)and

It is known (Noor, 1992), that P, (7/) is a convex set
and this implies that J*(a'z, A, f(z)) P.(7),z€ E.

This completes the proof.

Theorem 6

M, (0,n,0)cM,(0,n+1,0), ne N,={0,1,2,--}
and O is given as:

2

626"2(2n+1)+«/4n2+4n+9' 1o

Proof

Set Z(Iln,:jf((d))’ (Z)z(];*;j{“ oh(z)+o}  (17)
e



where h(z) is analytic in E and h(0)=1. From

Equation 17 and identity of Equation 6 with A =n, we
have:

: _1 Z Z
with ¢n(z)_2|:(1_Z)n+1+(1_z)n+2

convolution technique, we note that

}, and using

(1)) =(a)+

Z

Therefore, from Equations 17 and 18, it follows that,

[(1—0)@(1)% (1-(10_)2)5):(2% eP, i=12, zeL

We form the functional W (u,v) by choosing

uzhi(z),v=zhi’(z). Thus,
(1-o)v

viuv)=(1-c)u+o+ )
( ) ( ) (1—0‘)u+(6+n)

The first two conditions of Lemma 1 are clearly
satisfied. We verify the condition 3 as follows:

Rey(iu,,v) =0+ (1=o)(o+n)

(O'+n)2—+-(1—0')2u22
B (1—0‘)(O'+n)(1+u22) ,
2 (o+n) +(1-0) u;’ |

_A +Bl”22
2c

v g_%(m,;)

where

A =20(c+n) -(1-0)(c+n),

B =206(1-0) ~(1-0)(c+n),
C=(O'+n)2+(1—0')2u22>0.

We note that Re ¥ (iu,,v,) <0 if and only if A <0 and
B, <0. From A <0, we obtain 0=0, as given by

Equation 16 and B, <0 gives us 0<o,K <1. Thus,

applying Lemma 1, we have h e P for ze E, and

Noor 4455

consequently he P, (o) in E where o is given by

Equation 16. This completes the proof.
For n=0, we have a result proved in Noor et al.

1).
(2009) that feV, = feR, (Ejm E. The case,
n=0, and k=2, gives us a well-known result that

1
every convex function is starlike function of order 5

Theorem 7

Let peC and
feM, (0, 4,%).Then (¢* f)e M, (0, A, %) for z€ E.

Proof

Since 1, (¢* f)=¢*(1,f), we have,

’

, i *Z(sz)
nn] _ovanry ¢ nr
[1/1 (¢*f)] ¢x(1,f) ¢x(1,f)
= %&f;) FeP(y), zeE
We use Lemma 6 to obtain ZME P(y) in
[2,(¢% )]
E and this implies that

(¢ f)e M," (0, 1,7), z€ E.

We give some applications of Theorem 7 as follows:

Corollary 1: The classes M, (0, A,¥) are invariant
under the following integral operators:

0 ﬁ(z);@d, 0 ﬁ(z){fﬂt)d, (L rter)

(i) J§(3=Zjﬂt)t:§x)d,#ﬂx¢l <iv>]z(z)=%fsz*ﬂr)d,l%c>0

Proof

Let,
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2[Z+10g(1—z)]

¢1(Z)=_103(1_Z)’ ¢2(Z)=_ Z
¢3(z)=ﬁlog(11__—x;j, ¢4(z)=§%z”’, Rec>0.

It can easily be verified that ¢@ is convex for each
i=1,2,3,4. Now the proof follows immediately since we
canwrite f,=f*¢,i=12,3,4.

Definition for ne Ny,

n+1

n -1

> +1
=(z+ AT j*f
—n+m+l1

(zF(1n+1n+2z ) £ (2 (19)

21

)7
el

= £,(2)*(fou(2) "

This shows that,

From Equations 19 and 20, we have the Theorem 8.

Theorem 8

Let
feM,(a,n+l,y),ne N.Then L, (f)e M, (&, n,y) for z€ E.

We now prove the following radius problems as Theorem
9.

Theorem 9

Let feM, (0,n+1,0), ne N,. Then
feM, (0,n,0), for |z| <r,,where,

S e

2++/n*+3

This result is sharp.

Proof
I..flz ’
Let zwzH(z).Then He P, in E. Using
In+1f(Z)
identity of Equation 6 with 4 = n, we have:
1
(n+1)L(Z)=H(z)+n (22)
In+1f(Z)
Differentiating Equation 22 logarithmically and writing
k1 k1
H(z)=|=-+—|H —|=——|H ,we have:
(2)=( &5 ()53m0
(1.f(2) H'(2)
=H il
T B AT
' (23)
:(L,lj HI(Z)J,L(Z)
4 2 H (z)+n

ko1 ZH)(z2)

Z_ | H R VA

(4 2}[ Z(Z)+H2(z)+nJ
Fori=12 and H, € P in E, we have:

<H/(2)
H,(2)+n

2r 1
1-r*"1=r

1+r

=ReHi(Z){(1+n)—4r+(l—n)r2}’

(1—r)2+n(1—r2)

Re{H,.(z)-i— }ZReH,(z) 1- (24)

where we have used Lemma 3. The right hand side of
Equation 24 is positive for |z|< r,, and r, is given by

1+
Equation 21. By taking H, (z) =1—Z, we see that value

of r, is exact. Hence, from Equation 23 and 24, it follows

(1,1 (2))
1,f(z)

the proof.

that z € B for |z|<rn and this completes

Conclusion

In this paper, we have used the convolution technique to
introduce some new subclasses of analytic functions in
the unit disc. We have obtained several results such as
inclusions results and radius problems for these classes



of analytic functions. We have also discussed some
special cases of our results. These results may stimulate
further research in this field.
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