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INTEGRATING OSCILLATORY FUNCTIONS IN MATLAB, II ∗

L. F. SHAMPINE†

Abstract. In a previous study we developed a MATLAB program for the approximation of
∫ b

a
f(x) eiωx dx

whenω is large. Here we study the more difficult task of approximating
∫ b

a
f(x) eig(x) dx wheng(x) is large

on [a, b]. We propose a fundamentally different approach to the task— backward error analysis. Other approaches
require users to supply the location and nature of critical points of g(x) and may requireg′(x). With this new
approach, the programquadgF merely asks a user to define the problem, i.e., to supplyf(x), g(x), [a, b], and
specify the desired accuracy. Though intended only for modest relative accuracy,quadgF is very easy to use and
solves effectively a large class of problems. Of some independent interest is a vectorized MATLAB function for
evaluating Fresnel sine and cosine integrals.

Key words. quadrature, oscillatory integrand, regular oscillation,irregular oscillation, backward error analysis,
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1. Introduction. In a previous study [11] we considered the approximation of

(1.1) I(f, ωx) =

∫ b

a

f(x) eiωx dx

for realf(x) on a finite, real interval[a, b] when the real parameterω is large in magnitude
and presented an effective MATLAB [9] program calledosc for approximatingI(f, ωx).
Here we investigate the more general problem

(1.2) I(f, g) =

∫ b

a

f(x) eig(x) dx

for real g(x) that is large on[a, b]. The integrand of (1.2) is often called anirregular os-
cillation to distinguish it from theregular oscillation of (1.1). Many authors writeg(x) as
ωG(x) so as to facilitate an asymptotic analysis asω → ∞. We preferg(x) because it leads
to a simpler user interface for a new MATLAB program,quadgF , that we develop here for
integrals of the form (1.2).

Regular oscillatory problems (1.1) are difficult for conventional quadrature methods
whenω is large because the exponential factor oscillates rapidly. A conventional method
must take many samples of the integrand to resolve this behavior. This is at best expensive.
It is also dangerous because if the samples taken do not represent adequately the behavior
of the integrand, the method might produce a poor approximation that is not recognized as
being unsatisfactory because the error estimate is also poor. We provide an example of this
in Section5. Filon [5] was the first to propose an effective scheme for such problems. He
approximatesf(x) on [a, b] by dividing the interval into pieces of equal length and forming
a continuous splineS(x) by interpolatingf(x) at the ends and middle of each piece with a
quadratic polynomial. An approximation toI(f, ωx) is then obtained by evaluatinganalyti-
cally

(1.3) Q(f, ωx) =

∫ b

a

S(x) eiωx dx.
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The FSER1 program of Chase and Fosdick [2] is based on this method. They implement it as
an iterative, non-adaptive scheme that attempts to approximate (1.1) to a specified accuracy.
Bakhvalov and Vasil’eva [1] suggest high order interpolation at Gaussian nodes. Piessens and
Branders [10] use high order interpolation at Chebyshev nodes in their program AINOS. The
high order and their adaptive implementation of the formulamake this a strong program for
the task. Iserles and Nørsett [7] show that smootherS(x) have an advantage whenω is large.
Theosc [11] program is an adaptive implementation of a formula based ona smooth cubic
spline.

It is muchharder to deal with irregular oscillations because there may be critical (sta-
tionary) points whereg′(x) = 0. Near such a point the exponential factor in the integrand of
(1.2) is not oscillatory, changing the nature of the task. A critical point causes some methods
proposed for irregular oscillations to fail. For instance,a number of authors, e.g., [4, 13], use
the transformationx = g−1(y) to reduce an irregular oscillation to a regular oscillation, a
transformation that breaks down at a critical point. Assuming that moments

∫ b

a
xk ei g(x) dx

are readily available fork = 1, 2, . . ., Iserles and Nørsett [7] and others generalize the Filon
method (1.3) to an irregular oscillation as

Q(f, g) =

∫ b

a

S(x) ei g(x) dx.

Although applicable to problems with critical points, thisis such a strong assumption about
g(x) that the approach is unsuitable for general-purpose software. A more practical way to
generalize Filon’s method for (1.2) is to approximateg(x) by a splines(x) and then integrate
analytically

(1.4) Q(f, g) =

∫ b

a

S(x) ei s(x) dx.

However, even for piecewise polynomials(x), the necessary integrals may not be readily
available. Evans [3] suggests approximating bothf(x) andg(x) with linear functions. Harris
and Chen [6] are primarily interested in integrals involving two independent variables, but in
the case of one independent variable, they also suggest linear functions. We have modified
osc to use a linear spline fors(x). Our experience has been good with this modification,
but a higher degree polynomial provides a more plausible approximation ofg(x) near critical
points. Evans [3] generalizes Filon’s method for regular problems by approximating both
f(x) andg(x) with quadratics. The necessary integrals can be expressed in terms of Fresnel
integrals, and he goes on to explain how to evaluate these special functions. Evans has shown
how to deal with a general quadratic approximatingg(x), but no one has shown how to deal
with general polynomials of higher degree. Accordingly, our new programquadgF is based
on piecewise-quadratic interpolantsS(x) ands(x) in (1.4). Experiments with the approach
reported by Evans [3] and extensive experiments with the softwarequadgF show this to be
a good approach to integrals of the form (1.2) when modest accuracy is sufficient.

Previous theoretical work on irregular oscillations has assumed thatg(x) has either no
critical points at all, or an end point is a critical point of known order. We propose a fun-
damentally different approach to the integration of irregular oscillations—backward error
analysis. Just as with solving systems of linear algebraic equations, this new way of looking
at the task separates difficulties associated with the problem from difficulties associated with
the numerical method. A very important result is that we can solve problems in a meaningful
way without having to ask users about the location and natureof critical points. An important
practical matter is that the backward error can be estimatedin a simple and reliable manner.
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Furthermore, Evans [3] notes that quadratic interpolants that degenerate to linear polynomials
or even to constants present numerical difficulties in the evaluation of (1.4). A backward error
analysis provides a simple and reliable way to recognize anddeal with this issue.

The new program is remarkably easy to use:I(f, g) is approximated with default er-
ror tolerance byQ = quadgF(fun,gfun,a,b) . Here fun andgfun are procedures
for evaluatingf(x) andg(x), respectively. It is convenient in both theory and practiceto
approximate the complex integral and then obtain trigonometric integrals from the real and
imaginary parts of the result,

(1.5) I(f, g) =

∫ b

a

f(x) cos(g(x)) dx+ i

∫ b

a

f(x) sin(g(x)) dx,

soquadgF always computes the complex integral.
MATLAB does not provide functions for the direct evaluation of the Fresnel sine and co-

sine integrals that are the foundation of the generalized Filon method we study here. We have
translated a Fortran program for the task [14] to MATLAB and vectorized it. The resulting
program, calledfresnel , is of some independent interest.

2. Error analysis and estimation. The idea of backward error analysis is to view the
numerical approximation as the exact solution of a problem close to the given problem. In this
view the task is to estimate and control the error in approximating theproblem. Generalized
Filon methods for regular oscillations can obviously be viewed in this way—the numerical
approximation is the exact integral of the approximating problem (1.3). The backward error
is a measure of the difference betweenS(x) andf(x). Most of the investigations of regular
oscillations use (perhaps implicitly) theL∞ norm to measure this error. It is well-known that
a good approximation in this sense is furnished by interpolation at Chebyshev nodes, which
is one reason why Piessens and Branders [10] do this in their program AINOS. However, an
L2 norm is equally plausible, and it is also well-known that a good approximation is then
furnished by interpolation at Gaussian nodes, as done by Bakhvalov and Vasil’eva [1].

As it happens, the analysis of generalized Filon methods fora regular oscillation is quite
special because a forward error analysis is to hand. A forward error analysis bounds the error
of the numerical approximation itself. We did this in our discussion of theosc program [11],
which approximatesf(x) with a smooth cubic splineS(x). There are standard results about
‖f − S‖ in L∞ that we can use to bound the forward error with

|I(f, ωx)−Q(f, ωx)| ≤

∫ b

a

|f(x)− S(x)| |eiωx| dx ≤ ‖f − S‖ |b− a|.

We see that when approximating a regular oscillation with a generalized Filon method, con-
trolling the forward error is essentially the same as controlling the backward error. It is easy
to prove the same for theL2 norm using the Cauchy-Schwarz inequality.

We have no need of a backward error analysis in the regular case, but it is very advanta-
geous in the irregular case. The generalized Filon methods we consider for (1.2) approximate
the integral with the exact integral of the approximating problem (1.4). Accordingly, we esti-
mate and control the error of approximatingf(x) by S(x) andg(x) by s(x). In this way we
avoid entirely the issue of critical points. We prefer anL2 norm because it describes better
the behavior of the function and it is easy then to obtain a good estimate of the error.

Although any standard quadrature scheme might be used to estimate the integral norms
of the backward error, we have developed a new formula tailored to the circumstances. The
quadgF program is an adaptive implementation of the generalized Filon method that ap-
proximates bothf(x) andg(x) with interpolating quadratics on subintervals[xm, xm+1] of
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[a, b]. To estimate the backward error, we must therefore approximate integrals of the form

(2.1)
∫ xm+1

xm

(F (x)−Q(x))2 dx =

∫ xm+1

xm

H(x) dx,

whereF (x) is eitherf(x) or g(x) andQ(x) is a quadratic that interpolatesF (x) at both ends
and the midpoint of the interval. We can obtain a good approximation with a small number of
samples by taking into account the qualitative behavior ofH(x), namely that it vanishes along
with its first derivative at both ends of the interval and the midpoint. The new scheme uses
the samples formed in definingQ(x) and two additional samples at points that are convenient
for an adaptive implementation. If we lethm = xm+1 − xm, it is an easy matter to derive a
quadrature formula based on interpolation to value and slope atxm, xm+hm/2, xm+hm and
to value atxm+hm/4, xm+3hm/4. By construction, this quadrature formula has degree of
precision 7. When applied toH(x) the formula has a very simple form because of the values
known to be zero, namely

(2.2)
∫ xm+hm

xm

H(x) dx ≈
256

945
hm [H(xm + hm/4) +H(xm + 3hm/4)] .

It is easy to vectorize the application of this formula to allpertinent subintervals, a matter
explained more fully in Section3. This is a simple and inexpensive way to compute a good
estimate of the backward error.

Dealing with the scale off(x) andg(x) is an important practical aspect of backward
error analysis. The integral (1.2) and the generalized Filon method are linear inf(x), so
multiplying f(x) by a constant is unimportant to both, but it does affect the way we measure
backward error. Something similar is true ofg(x). If we write g(x) = ωG(x), the accuracy
of the method depends on how well we approximateG(x) because the generalized Filon
approach deals analytically with the effects of largeω. However, the size ofω does play
a role when we ask how wells(x) approximatesg(x). Clearly we need somehow to scale
our definition of the size of the backward error. With tolerance τ we can do this by testing
whether

(2.3) ‖F (x)−Q(x)‖ ≤ τ ‖F (x)‖

for bothf(x) andg(x). As explained in Section3, we use a more conservative test of this kind
in quadgF because it is more convenient for our adaptive implementation of the method.

3. Adaptive quadrature. We provide an overview of our adaptive implementation of
the generalized Filon method in this section and provide details of the most important al-
gorithms in later sections. Several popular adaptive schemes, and in particular the scheme
implemented inosc , are described in [11]. Our scheme forquadgF is more efficient be-
cause more of the scheme is vectorized. As usual with adaptive quadrature, the interval[a, b]
is partitioned into subintervals[xm, xm+1] and the integral (1.2) is approximated by summing
generalized Filon approximations

(3.1) Qm =

∫ xm+1

xm

S(x) eis(x) dx

over the subintervals. Our scheme maintains a list of activesubintervals for which we do not
yet have a sufficiently accurate approximation tof(x) andg(x). osc processes intervals one
at a time, butquadgF processes them simultaneously. Each iteration begins witha list of
active subintervals and all the function values needed. Theprogram then calculates quadratic
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approximationsS(x) to f(x) ands(x) to g(x) on all of the active intervals and uses (2.2)
to estimate the backward errors. If both approximations on asubinterval are sufficiently ac-
curate, the approximate integral (3.1) is formed as described in Section4.1. This value is
added to a running total that approximatesI(f, g) and the subinterval is then of no further
interest. If one of the approximations on[xm, xm+1] is not sufficiently accurate, the subin-
terval is replaced in a new active list with the two subintervals [xm, 0.5(xm + xm+1)] and
[0.5(xm + xm+1), xm+1]. When all subintervals have been considered, either the new active
list is empty and we have an accurate approximation toI(f, g), or we replace the old active
list with the new one. In this we reuse many function values, but some additional function
values are formed to complete preparations for the next iteration. It is worth remark that
in our adaptive scheme,all the function evaluations made in a call toquadgF are used in
forming the approximation returned forI(f, g) or in the estimate of its backward error.

Key to our implementation is recognizing that an approximation is accurate enough that
we can form (3.1) and then forget about that subinterval. In the notation of Section2, we
require that

(3.2)
∫ xm+1

xm

(F (x)−Q(x))2 dx ≤ τ2‖F (x)‖2
(

xm+1 − xm

b− a

)

for both f(x) andg(x). Passing this local test on all subintervals of[a, b] implies that the
approximations pass the global test (2.3), so this is a somewhat more conservative way to
control the error. For the test (3.2) we can obtain a reasonable estimate of the general size of
F (x) for “free” by applying Simpson’s rule on each[xm, xm+1] to approximate

‖F (x)‖2 =

N−1
∑

m=1

∫ xm+1

xm

F 2(x) dx.

All the values ofF (x) needed for this are formed whenQ(x) is defined. The test (3.2) copes
with the scales of the functions; but, as with any relative test, we must consider the possibility
that a function vanishes. An integral (1.2) with f(x) ≡ 0 would not be the subject of nu-
merical approximation. Accordingly, ifquadgF computes an approximation of

∫ b

a
f2(x) dx

that is zero, it returns with an error message:F(X) vanishes at all X considered. An irregular
oscillation withg(x) ≡ 0 is a conventional integral and so of little interest in the present
context. As withf(x), quadgF returns with an error message if it appears that

∫ b

a
g2(x) dx

is zero.
Any quadrature formula that uses only a finite number of samples of the integrand might

fail if the samples are not representative. For this reasonquadgF initializes with a relatively
large number of samples and includes the following warning in its prolog: Any quadrature
program can be deceived if the initial samples do not reveal the behavior of the integrand.
QUADGFinitializes with samples off(x), g(x) at 129 equally spaced points in[A,B]. If f(x)
or g(x) has sharp peaks or is highly oscillatory, it might be necessary to write the integral as
the sum of integrals over subintervals of[A,B] chosen so that the behavior off(x), g(x) is
captured by the initial samples from those subintervals.

Certain programming practices are very important to efficiency in MATLAB . Indeed,
vectorization of functions is so important that all the quadrature programs of MATLAB require
the functions for evaluating integrands to be vectorized. This means that the function for
evaluating, say,f(x), must be coded so that when called with a row vectorx , it returns a
row vector fx of corresponding function values. Using array operations and fast built-in
functions, it is often the case that evaluatingf(x) at 129 points as in the initialization of
quadgF has a cost comparable to evaluating the function at just a fewpoints when it is not
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vectorized. An important difference between the schemes ofosc andquadgF is that the
latter evaluatesf(x) andg(x) at all the necessary points for the entire active list in a single
call. We need values of the functions not just at the ends and midpoint of each subinterval to
form quadratic interpolants, but also at the two additionalpoints for estimating the error. For
the error estimate of (2.2) this means that we have 5 equally spaced points in the subinterval.
When the active list is initialized with 32 subintervals of equal length, the subintervals are
contiguous. We use this fact to reduce the number of functionevaluations, leading to a total of
129 evaluations. If the approximation is not sufficiently accurate on a subinterval[xm, xm+1],
so that we split the interval in half for the new active list, the nature of our formulas means
that we have available 6 of the 10 function values that we needfor the two new subintervals.
That is, all we have to do is form the additional values neededfor the two error estimates.

We use a relatively large number of samples in the initialization of quadgF for relia-
bility. This also makes the program fast because it is inexpensive to form all these values
at the same time and often this is sufficiently many samples that there is no need for further
refinement of the mesh. As a consequence, the program might well approximatef(x) and
g(x) far better than required by the tolerance specified.

4. Evaluation of integrals. Evans [3] explains in detail how he evaluates the basic in-
tegrals (3.1). Our scheme differs in some important respects. He works entirely with real
integrals, and because software for evaluating Fresnel sine and cosine integrals was not avail-
able, he presented algorithms for the purpose. We work with complex quantities because this
is more convenient and it is easily done in MATLAB . Evans notes that his scheme breaks
down when a quadratic interpolant degenerates to a linear interpolant and also when it de-
generates to a constant. He presents algorithms for the degenerate cases, but does not explain
how to recognize an interpolant that is degenerate or nearlyso. In Section4.1we show how
backward error analysis can be used to recognize degeneracy. We also provide there details
of efficient analytical evaluation of the integrals in the three cases. MATLAB does not include
software for Fresnel integrals, so in Section4.2we consider how to evaluate them efficiently
in this computing environment. Thefresnel function presented there accepts a vector
argumentx and returns corresponding vectors of both the cosine and sine integrals.

4.1. Algorithms. Vectorization and array operations are very important to efficiency in
MATLAB . ThequadgF program is more efficient in this regard than theosc program for
the regular problem because we process at one time all the intervals wheref(x) andg(x)
can be approximated sufficiently well by quadratic interpolants. Although we describe the
algorithms here for a single interval, they are easily vectorized. Indeed, this is little more
than replacing a multiplication (* ) with an array multiplication (. * ), an exponentiation (ˆ ),
with an array exponentiation, (.ˆ ), and the like. In this we also exploit the fact that all
the standard functions like “exp ” are vectorized. The fast built-in functionfind is used
to identify all active subintervals with a given property. For example, error estimates are
computed for all the subintervals at the same time using array operations. The subintervals
where the approximations are sufficiently accurate are thenidentified withfind for further
processing.

We now consider in detail how to evaluate the approximation (3.1) when S(x) is a
quadratic that interpolatesf(x) at the ends of the interval and the midpointxm+1/2 and
s(x) is a quadratic interpolant tog(x) at the same points. We write these interpolants as
s(t) = a1 + a2t+ a3t

2 andS(x) = b1 + b2t+ b3t
2 for t = x− xm. With h = xm+1 − xm

and the notationfj = f(xj), the integral is

Qm =

∫ h

0

S(t) eis(t) dt.
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The coefficients ofS(t) are

b1 = fm, b2 =
4fm+1/2 − 3fm − fm+1

h
, b3 =

2fm − 4fm+1/2 + 2fm+1

h2
,

and similarly fors(t).
The backward error approach provides a natural way to recognize degenerate and near-

degenerate approximations. We first ask if we can use the constant approximations(t) ≈ a1
on [0, h] by testing whether

‖s(t)− a1‖ ≤ 10−6 ‖s(t)‖.

The norms here are calculated analytically. The constant inthe test is an order of magnitude
smaller than the smallest tolerance allowed inquadgF . If the test is passed, the integral is

Qm = eia1

3
∑

j=1

bj

∫ h

0

tj−1 dt = eia1

3
∑

j=1

bj
hj

j
.

If s(t) cannot be approximated well by a constant, we ask if it can be approximated well by
a straight line. Specifically, we test whether

‖s(t)− (a1 + a2t)‖ ≤ 10−6 ‖s(t)‖.

If so, a2 is not extremely small and the integral is

Qm = eia1

3
∑

j=1

bj

∫ h

0

tj−1 eia2t dt = eia1

3
∑

j=1

bj Ij .

Lettingµ = eia2h, theIj are evaluated successively as

I1 =
1

ia2
[µ− 1] , I2 =

1

ia2
[hµ− I1] , I3 =

1

ia2

[

h2 µ− 2I2
]

.

In the typical case, we haves(t) = a1 + a2t + a3t
2 and we have verified thats(t) is

not approximated well by a constant nor by a straight line. Accordingly,a3 is not extremely
small. A key step in Evans’ analysis is to complete the square,

s(t) = c1 + c3(t+ c2)
2 where

c1 = a1 −
a22
4a3

, c2 =
a2
2a3

, c3 = a3.

We introduce the variabley = t+ c2 so thats(y) = c1 + c3y
2. Correspondingly, we rewrite

S(t) asS(y) = d1 + d2y + d3y
2. The change of variable leads to

Qm = eic1
3

∑

j=1

dj

[

∫ h+c2

0

yj−1 eic3y
2

dy −

∫ c2

0

yj−1 eic3y
2

dy

]

.

The integrals here have the form

(4.1)
∫ u

0

yj−1 ei c3y
2

dy
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for realu, realc3, and positive integerj. They can be evaluated by first usingfresnel to
compute

ρ =
√

0.5π/ |c3|, v0c = ρC(|u|/ ρ), v0s = ρS(|u|/ ρ),
∫ u

0

eic3y
2

dy = sign(u) [v0c + i sign(c3) v0s] .

We can then compute

τ = ei|c3|u
2

, v1c = 0.5ℑ(τ) / |w|, v1s = sin(0.5|c3|u
2)2/ |c3|,

∫ u

0

y eic3y
2

dy = v1c + i sign(c3) v1s.

And finally

v2c = |u| v1c − 0.5v0s/ |c3|, v2s = (v0c − 0.5|u| ℜ(τ)) / |c3|,
∫ u

0

y2 eic3y
2

dy = sign(u) [v2c + i sign(c3) v2s] .

4.2. Fresnel integrals.With the aid of the symbolic algebra program MuPAD [9] we
find that the integrals (4.1) can be evaluated in terms of the incomplete gamma function,

∫ u

0

yj−1 eic3y
2

dy = sign(u)j
∫ |u|

0

yj−1 eic3y
2

dy

=
sign(u)j

2(−ic3)j/2

[

Γ

(

j

2

)

− Γ

(

j

2
,−ic3u

2

)]

.

The MATLAB function for evaluating the incomplete gamma function doesnot allow complex
arguments, but the one that is accessed through the symbolicengine does. Though slower, it
is fast enough to be practical and it is easy enough to use thisfunction via the gatewaymfun .
Indeed, that function forΓ(a, z) is vectorized with respect toz, which is quite helpful in our
program. Evans [3] works in real arithmetic and evaluates the equivalent of (4.1) in terms
of the Fresnel cosine integralC(x) and sine integralS(x). Because the functions were not
widely available, he explained how to evaluate them. Using MuPAD we found the expressions
for the integrals in terms of Fresnel integrals that we provide in Section4.1. Fresnel integrals
are not available in MATLAB itself, but they are available through the symbolic engine.The
authors ofComputation of Special Functions[14] provide Fortran programs for the functions
they discuss. We translated their FCS.FOR program for Fresnel integrals to the MATLAB

languageand vectorized it. We have verified that the results of our function,fresnel ,
agree to nearly machine precision with results computed using the symbolic engine of MAT-
LAB . As it happens, it is convenient to evaluate both integrals at the same time, so in a call
[C,S] = fresnel(x) , the function accepts a vector argumentx and returns correspond-
ing vectorsC(x) andS(x). This is helpful in the present application because we need values
of both integrals at the same argument. Usingfresnel in MATLAB is faster than using
mfun and the symbolic engine. Just how much faster depends on the length ofx and whether
you want both integrals, but an order of magnitude is representative. Accordingly, the func-
tion fresnel is of some independent interest.

5. Illustrative computations. The prolog ofquadgF contains four examples that il-
lustrate aspects of its user interface and capabilities. Reference values for the integrals are
provided along with the examples.quadgF approximates (1.2) in the sense of backward er-
ror. More precisely, it evaluates analytically an approximation (1.4) with piecewise-quadratic
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functionsS(x) ands(x) that approximate thef(x) andg(x) of (1.2) to a specified relative
accuracy in a least-squares sense. Though a meaningful way of solving the problem, this is
not the same as computing an approximation to (1.2) with given relative error. Nevertheless,
we report here the conventional relative error of the approximations computed. In computing
an approximationQto (1.2), the full call list is

Q = quadgF(fun,gfun,a,b,tol)
Here fun is used to definef(x) and gfun is used to defineg(x). The interval[a, b] is
defined bya andb. The optional argumenttol is the tolerance on the relative error in the
approximation off(x) andg(x). It has the default value10−3. Any value input fortol that
is smaller than10−9 will be increased to that value. IfquadgF needs more than 512 active
subintervals to obtain the specified accuracy, it returns with an error message.

As it happens, all the examples of the prolog are approximated using onlyone array
function evaluation. Because the initial partition provides approximations tof(x) andg(x)
that are at least as accurate as the specified tolerance, the program produces precisely the
same results for tolerances10−1, 10−2, . . . , 10−5 for each of these four examples.

It is difficult to obtain consistent run times in MATLAB , especially when the times are
small, as they are for these four examples. We computed an average run time by usingtic
andtoc to measure the time elapsed in running the example 500 times.The times reported
here were computed using MATLAB R2012a with 64-bit operating system on a PC with an
Intel i3-2120 CPU @ 3.30 GHz.

As a convenience when approximating a regular oscillation (1.1), the user need only
supply the real scalarω as the argumentgfun . With this and an anonymous function for
f(x), we can approximate

(5.1) I =

∫ 1

0

cosh(x) ei 10
5x dx

with default relative error tolerance by
Q = quadgF(@(x) cosh(x),1e5,0,1);

The first example of the prolog displays the result of this computation as
Example 1: Re(I) = 5.51515e-007, Imag(I) = 2.54209e-005.

Re(Q) = 5.51515e-007, Imag(Q) = 2.54209e-005.
The average run time was 0.0011s.

High order formulas and a vigorous use of vectorization makethequadgk program of
MATLAB a very effective way to approximate conventional integrals. Indeed, if the oscilla-
tion of (1.1) or (1.2) is not too rapid, this program might be the fastest way to compute an
approximation. However, as noted in Section1, there is a real chance that a conventional pro-
gram might fail when the oscillation is rapid. Indeed, with apure relative error tolerance of
10−3 (which is much less demanding than its default),quadgk was not able to approximate
(5.1).

The second example of the prolog is an interesting example ofEvans [3],
∫ 200

100

(1 + log(x)) cos(x log(x)) dx.

It shows howg(x) is defined for irregular oscillations. Also,quadgF approximates the
complex integral (1.5), so we must apply thereal function toQ to approximate the given
integrand. Like all the quadrature programs of MATLAB , quadgF requires that the functions
for evaluatingf(x) andg(x) be vectorized. The program

fun = @(x) 1 + log(x); gfun = @(x) x. * log(x);
Q = quadgF(fun,gfun,100,200); Q = real(Q);
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produces a result with a relative error of1.1× 10−5. The average run time was 0.0006s.
The third example of the prolog,

(5.2)
∫ 0

2

ex sin(50 cosh(x)) dx,

hasb < a and is to be solved with a tolerance of10−4. There is a first-order critical point at
one end of the interval, butwe do not inform the program of these facts. We use theimag
function to get the result for the sine function. The integral is approximated with

fun = @(x) exp(x); gfun = @(x) 50 * cosh(x);
Q = quadgF(fun,gfun,2,0,1e-4); Q = imag(Q);

The approximation has a relative error of1.3× 10−3. The average run time was 0.0019s. For
this integral the initial partition suffices for tolerancesdown to10−5, so the approximations
and run times do not depend on the tolerance in this range. Table 5.1shows how the accuracy
and run time depend on smaller tolerances.

TABLE 5.1
Performance ofquadgF for the integral (5.2).

tolerance 1.0e-5 1.0e-6 1.0e-7 1.0e-8 1.0e-9
relative error 1.3e-3 6.4e-5 1.2e-6 1.4e-7 4.8e-9
average run time 1.9e-3 2.5e-3 2.8e-3 3.2e-3 3.9e-3

The last example of the prolog,
∫ π

0

cos(1000 sin(x)− 3x) dx,

has a first-order critical point at the interior pointarccos(3/1000) ≈ 1.5678, but we do not
supply this information to the program. There is no factorf(x) in this integrand, butquadgF
requires a vectorized functionfun . This example shows how to deal with the matter. The
integral is approximated with

fun = @(x) ones(size(x)); gfun = @(x) 1000 * sin(x) - 3 * x;
Q = quadgF(fun,gfun,0,pi); Q = real(Q);

The approximation has a relative error of2.9× 10−3. The average run time was 0.0014s.
We have appliedquadgF successfully to many test problems from the literature. For

instance, Li et al. [8] provide three test problems that we have solved withquadgF using the
default tolerance. The program used two array function evaluations to approximate

∫ 1

0

e− tan(x) sec(x)

x+ 0.1
ei 100 tan(x) dx

with relative error1.9× 10−4. It used one array evaluation to approximate

∫ 1

0

e10x

x+ 0.1
ei 200(x

2+x) dx

with relative error5.1× 10−5. It used three array evaluations to approximate

∫ 2

1

[

cos(10x2) +
1

x+ 0.1

]

ei (10
7+104x2)1/2 dx

with relative error3.7× 10−4.



ETNA
Kent State University 

http://etna.math.kent.edu

INTEGRATING OSCILLATORY FUNCTIONS 413

For positive integersp, integrals of the form
∫ 1

0
ei ωxp

dx have a critical point of order
p−1 at the left end point. Xiang [12] contrasts the performance of a method for the casep = 2
of a first-order critical point with that for a very high ordercritical point withp = 10. The
generalized Filon method is exact for the casep = 2, so we consider here onlyp = 10. We
changed the interval so as to have an interior critical point. This draws attention to methods
which require critical points to be end points. Also, it tests whether a code can locate and
deal with critical points. It would be natural to use[−1, 1], but a critical point at the middle
of the interval might prove to be a special case for an adaptive quadrature scheme. To make
this less likely, we use as test problem

∫ 2/3

−1/3

ei 500 x10

dx ≈ 0.8437719580 + 0.08517716473i.

With no information about the location and nature of the critical point, quadgF used only
two array function evaluations to obtain an approximation with relative error1.2× 10−5.

6. Conclusions. Backward error analysis is an important new tool in both the theory
and practice of approximating

∫ b

a
f(x) eig(x) dx wheng(x) is large on[a, b]. Exploiting this

approach, we have written a MATLAB program for the task calledquadgF that does not ask
users to supply the location and nature of critical points ofg(x), nor does it ask forg′(x). The
program is intended only for modest relative error because it is an adaptive implementation
of a generalized Filon method of modest order, but it is very easy to use and solves effectively
a large class of problems.

MATLAB does not provide functions for the direct evaluation of the Fresnel sine and
cosine integrals that are the foundation of the generalizedFilon method implemented in
quadgF . For this purpose we translated the FCS.FOR program of [14] to MATLAB and
vectorized it. The resulting programfresnel is of some independent interest.
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