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INTEGRATING OSCILLATORY FUNCTIONS IN MATLAB, Il *

L. F. SHAMPINEf

Abstract. In a previous study we developed aaM.AB program for the approximation qff f(x) e® dx

whenw is large. Here we study the more difficult task of approximatfrfgf(a:) e9(®) dz wheng(z) is large

on [a, b]. We propose a fundamentally different approach to the taskekWard error analysis. Other approaches
require users to supply the location and nature of criticahts of g(z) and may requirg/’ (). With this new
approach, the programuadgF merely asks a user to define the problem, i.e., to sugply), g(x), [a, b], and
specify the desired accuracy. Though intended only for niae¢stive accuracygquadgF is very easy to use and
solves effectively a large class of problems. Of some indegenithiterest is a vectorized MLAB function for
evaluating Fresnel sine and cosine integrals.
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1. Introduction. In a previous study][1] we considered the approximation of

b
(1.1) I(f,wx):/ f(z)e™” dx

for real f(z) on a finite, real intervaja, b] when the real parameteris large in magnitude
and presented an effective AVILAB [9] program calledosc for approximating! (f, wx).
Here we investigate the more general problem

b
(1.2) 17.9) = [ f(a) ) da

for real g(z) that is large ora,b]. The integrand of.2) is often called arirregular os-
cillation to distinguish it from theegular oscillation of (L.1). Many authors writgy(x) as
w G(z) so as to facilitate an asymptotic analysis.as> co. We preferg(z) because it leads
to a simpler user interface for a newAvLAB program,quadgF , that we develop here for
integrals of the form1.2).

Regular oscillatory problemsl(1) are difficult for conventional quadrature methods
whenw is large because the exponential factor oscillates rapidlyonventional method
must take many samples of the integrand to resolve this @hahhis is at best expensive.
It is also dangerous because if the samples taken do notsepradequately the behavior
of the integrand, the method might produce a poor approximdhat is not recognized as
being unsatisfactory because the error estimate is also gdé® provide an example of this
in Section5. Filon [5] was the first to propose an effective scheme for such prabldie
approximates (z) on [a, b] by dividing the interval into pieces of equal length and forgn
a continuous spliné'(x) by interpolatingf(x) at the ends and middle of each piece with a
quadratic polynomial. An approximation fd f, wx) is then obtained by evaluatiranalyti-
cally

b
(1.3) Q(f,wx):/ S(z) e™* da.
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The FSER1 program of Chase and Fosdifjkg based on this method. They implement it as
an iterative, non-adaptive scheme that attempts to appairi(.1) to a specified accuracy.
Bakhvalov and Vasil’eval]] suggest high order interpolation at Gaussian nodes. éiesnd
Branders 10] use high order interpolation at Chebyshev nodes in thelgiam AINOS. The
high order and their adaptive implementation of the formmukke this a strong program for
the task. Iserles and Ngrsefi Ehow that smoothe$'(x) have an advantage wheris large.
Theosc [11] program is an adaptive implementation of a formula based smooth cubic
spline.

It is muchharder to deal with irregular oscillations because therg becritical (sta-
tionary) points wherg'(z) = 0. Near such a point the exponential factor in the integrand of
(1.2 is not oscillatory, changing the nature of the task. A caitipoint causes some methods
proposed for irregular oscillations to fail. For instanaeaumber of authors, e.g4,[13], use
the transformation: = g~!(y) to reduce an irregular oscillation to a regular oscillatian
transformation that breaks down at a critical point. Assugrthat momentqab zF et 9(®) dg
are readily available fok = 1,2, ..., Iserles and Ngrset?] and others generalize the Filon
method (.3) to an irregular oscillation as

b
Qf.g) = / S(x) €9 da.

Although applicable to problems with critical points, tigssuch a strong assumption about
g(x) that the approach is unsuitable for general-purpose smtwa& more practical way to
generalize Filon’s method fofl(2) is to approximateg(x) by a splines(x) and then integrate
analytically

b .
(1.4) Qf.q) = / () 5@ dy.

However, even for piecewise polynomiglz), the necessary integrals may not be readily
available. Evansd] suggests approximating boftiz) andg(x) with linear functions. Harris
and Chenf] are primarily interested in integrals involving two indaqalent variables, but in
the case of one independent variable, they also suggeat linections. We have modified
osc to use a linear spline fog(z). Our experience has been good with this modification,
but a higher degree polynomial provides a more plausiblecqapation ofg(x) near critical
points. Evans3] generalizes Filon’s method for regular problems by appnating both
f(x) andg(x) with quadratics. The necessary integrals can be expresdethis of Fresnel
integrals, and he goes on to explain how to evaluate thesgsfinctions. Evans has shown
how to deal with a general quadratic approximatiig), but no one has shown how to deal
with general polynomials of higher degree. Accordingly; new progranguadgF is based
on piecewise-quadratic interpolarfi$x) ands(x) in (1.4). Experiments with the approach
reported by Evans3] and extensive experiments with the softwgreadgF show this to be
a good approach to integrals of the forinZ) when modest accuracy is sufficient.

Previous theoretical work on irregular oscillations hasuased thay(z) has either no
critical points at all, or an end point is a critical point afidwn order. We propose a fun-
damentally different approach to the integration of irdlegwoscillations—backward error
analysis. Just as with solving systems of linear algebmgizgons, this new way of looking
at the task separates difficulties associated with the grolilom difficulties associated with
the numerical method. A very important result is that we ea@wesproblems in a meaningful
way without having to ask users about the location and natiucgtical points. An important
practical matter is that the backward error can be estimatadsimple and reliable manner.
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Furthermore, Evans$] notes that quadratic interpolants that degenerate tafipelynomials
or even to constants present numerical difficulties in tladuation of (L.4). A backward error
analysis provides a simple and reliable way to recognizedaadiwith this issue.

The new program is remarkably easy to ugéf, g) is approximated with default er-
ror tolerance byQ = quadgF(fun,gfun,a,b) . Herefun andgfun are procedures
for evaluatingf(x) and g(x), respectively. It is convenient in both theory and practize
approximate the complex integral and then obtain trigortamantegrals from the real and
imaginary parts of the result,

b b
(1.5) I(f,9) = / f(z) cos(g(z)) dz +i / f() sin(g(x)) dz,

soquadgF always computes the complex integral.

MATLAB does not provide functions for the direct evaluation of thesRel sine and co-
sine integrals that are the foundation of the generalizkxhfnethod we study here. We have
translated a Fortran program for the tadi][to MATLAB and vectorized it. The resulting
program, calledresnel , is of some independent interest.

2. Error analysis and estimation. The idea of backward error analysis is to view the
numerical approximation as the exact solution of a problEsecto the given problem. In this
view the task is to estimate and control the error in appraiing theproblem Generalized
Filon methods for regular oscillations can obviously beméd in this way—the numerical
approximation is the exact integral of the approximatingigbem (L.3). The backward error
is a measure of the difference betwe®fx) and f(x). Most of the investigations of regular
oscillations use (perhaps implicitly) tHe* norm to measure this error. It is well-known that
a good approximation in this sense is furnished by intetpmisat Chebyshev nodes, which
is one reason why Piessens and Brandegkdo this in their program AINOS. However, an
L? norm is equally plausible, and it is also well-known that ag@pproximation is then
furnished by interpolation at Gaussian nodes, as done binBddv and Vasil’eval].

As it happens, the analysis of generalized Filon methoda fegular oscillation is quite
special because a forward error analysis is to hand. A faheaor analysis bounds the error
of the numerical approximation itself. We did this in ouralission of thesc program [L1],
which approximateg (x) with a smooth cubic splin§(z). There are standard results about
|f — S| in L* that we can use to bound the forward error with

b
[(f,wz) = Q(f,wr)| < / |f(z) = S@@)| "] dz < || f = S| |b - al.

We see that when approximating a regular oscillation witker@egalized Filon method, con-
trolling the forward error is essentially the same as cdimigpthe backward error. It is easy
to prove the same for the? norm using the Cauchy-Schwarz inequality.

We have no need of a backward error analysis in the regulat basit is very advanta-
geous in the irregular case. The generalized Filon methedsonsider for1.2) approximate
the integral with the exact integral of the approximatinghpem (L.4). Accordingly, we esti-
mate and control the error of approximatififr) by S(x) andg(x) by s(z). In this way we
avoid entirely the issue of critical points. We prefer &hnorm because it describes better
the behavior of the function and it is easy then to obtain algestimate of the error.

Although any standard quadrature scheme might be useditoagstthe integral norms
of the backward error, we have developed a new formula tdlto the circumstances. The
quadgF program is an adaptive implementation of the generalizémhRnethod that ap-
proximates bothy (z:) andg(x) with interpolating quadratics on subintervids,,, z,,,+1] of
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[a, b]. To estimate the backward error, we must therefore appbeiimtegrals of the form

Tm41

2.1) /MH(F(:E) Q) da :/ H(z) dz,

m Tm

whereF'(z) is eitherf(x) or g(x) andQ(z) is a quadratic that interpolatédx) at both ends
and the midpoint of the interval. We can obtain a good appnation with a small number of
samples by taking into account the qualitative behavidi 0f ), namely that it vanishes along
with its first derivative at both ends of the interval and thielpeint. The new scheme uses
the samples formed in definir@(x) and two additional samples at points that are convenient
for an adaptive implementation. If we B}, = x,,+1 — =, it iS an easy matter to derive a
quadrature formula based on interpolation to value andcesbp,,, , .., + b /2, T+ hy, @and

to value at,,, + h.,, /4, €, + 3Dy, /4. By construction, this quadrature formula has degree of
precision 7. When applied td (x) the formula has a very simple form because of the values
known to be zero, namely

2.2) / T ey de = 25 (ot o) + H o + 3/ 1)

‘m,

It is easy to vectorize the application of this formula to @dtinent subintervals, a matter
explained more fully in Sectiof.. This is a simple and inexpensive way to compute a good
estimate of the backward error.

Dealing with the scale of (z) andg(z) is an important practical aspect of backward
error analysis. The integrall () and the generalized Filon method are linearfix), so
multiplying f(z) by a constant is unimportant to both, but it does affect thg wameasure
backward error. Something similar is truegfr). If we write g(x) = wG(x), the accuracy
of the method depends on how well we approxim@ite:) because the generalized Filon
approach deals analytically with the effects of latge However, the size ofr does play
a role when we ask how wedl(z) approximategj(z). Clearly we need somehow to scale
our definition of the size of the backward error. With tolezam we can do this by testing
whether

(2.3) [1F(x) = Q)| < 7 [[F ()]

for both f(x) andg(z). As explained in SectioB, we use a more conservative test of this kind
in quadgF because it is more convenient for our adaptive implementadf the method.

3. Adaptive quadrature. We provide an overview of our adaptive implementation of
the generalized Filon method in this section and providaildebf the most important al-
gorithms in later sections. Several popular adaptive selsemnd in particular the scheme
implemented irosc, are described inlfl]. Our scheme fogquadgF is more efficient be-
cause more of the scheme is vectorized. As usual with adaptigdrature, the interval, b]
is partitioned into subintervals,,,, z,,+1] and the integrall(.2) is approximated by summing
generalized Filon approximations

Tm41
(3.1) Qm = / S(z) @ dy
Tm
over the subintervals. Our scheme maintains a list of astiNgntervals for which we do not
yet have a sufficiently accurate approximatiory{a) andg(z). osc processes intervals one
at a time, butguadgF processes them simultaneously. Each iteration beginsanitt of
active subintervals and all the function values needed.pfbgram then calculates quadratic
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approximationsS(z) to f(z) ands(z) to g(z) on all of the active intervals and usex%)
to estimate the backward errors. If both approximations sakanterval are sufficiently ac-
curate, the approximate integrd.{) is formed as described in Sectidnl. This value is
added to a running total that approximafég, g) and the subinterval is then of no further
interest. If one of the approximations an,,, x,,1] is not sufficiently accurate, the subin-
terval is replaced in a new active list with the two subinéds\z,,,, 0.5(x,, + zm+1)] @and
[0.5(2m + Tm1), Tm+1]- When all subintervals have been considered, either the oivea
list is empty and we have an accurate approximatiofh(§0 ¢), or we replace the old active
list with the new one. In this we reuse many function values,dome additional function
values are formed to complete preparations for the nextiter. It is worth remark that
in our adaptive schemall the function evaluations made in a callqaadgF are used in
forming the approximation returned fé( f, g) or in the estimate of its backward error.

Key to our implementation is recognizing that an approxiorais accurate enough that
we can form 8.1) and then forget about that subinterval. In the notation ext®n 2, we
require that

32) [ ) - p o < e (L)

m

for both f(x) andg(x). Passing this local test on all subintervals|@fb] implies that the
approximations pass the global te&t3), so this is a somewhat more conservative way to
control the error. For the tes3.@) we can obtain a reasonable estimate of the general size of
F(z) for “free” by applying Simpson’s rule on ea¢h,,,, x.,,11] to approximate

N-1 g1
HMW=Z/ F*(z) dz.
m=1"%m

All the values ofF'(x) needed for this are formed whé(x) is defined. The tesB(2) copes
with the scales of the functions; but, as with any relatigt, t@e must consider the possibility
that a function vanishes. An integrdl.p) with f(x) = 0 would not be the subject of nu-
merical approximation. Accordingly, fuadgF computes an approximation gif fA(z)dx
that is zero, it returns with an error messagéx) vanishes at all X consideredn irregular
oscillation withg(z) = 0 is a conventional integral and so of little interest in thegant
context. As withf(z), quadgF returns with an error message if it appears ;ffaﬁ(x) dx

is zero.

Any quadrature formula that uses only a finite number of sampf the integrand might
fail if the samples are not representative. For this reag@ugF initializes with a relatively
large number of samples and includes the following warnimgs prolog: Any quadrature
program can be deceived if the initial samples do not reviealliehavior of the integrand.
QUADGHitializes with samples of (z), g(z) at 129 equally spaced points|d, B]. If f(z)
or g(x) has sharp peaks or is highly oscillatory, it might be necessawrite the integral as
the sum of integrals over subintervals|df, B] chosen so that the behavior ffx), g(z) is
captured by the initial samples from those subintervals.

Certain programming practices are very important to efficyein MATLAB. Indeed,
vectorization of functions is so important that all the gueidre programs of MTLAB require
the functions for evaluating integrands to be vectorizethis Tneans that the function for
evaluating, say/(x), must be coded so that when called with a row vegtpit returns a
row vectorfx of corresponding function values. Using array operatioms fast built-in
functions, it is often the case that evaluatifigr) at 129 points as in the initialization of
quadgF has a cost comparable to evaluating the function at just gfants when it is not
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vectorized. An important difference between the schemessof andquadgF is that the
latter evaluateg(x) andg(x) at all the necessary points for the entire active list in glsin
call. We need values of the functions not just at the ends dddaint of each subinterval to
form quadratic interpolants, but also at the two additigrahts for estimating the error. For
the error estimate of(2) this means that we have 5 equally spaced points in the susait
When the active list is initialized with 32 subintervals ofuadlength, the subintervals are
contiguous. We use this fact to reduce the number of funetiafuations, leading to a total of
129 evaluations. If the approximation is not sufficientlg@a@te on a subintervat,,,, ., +1],
so that we split the interval in half for the new active listetnature of our formulas means
that we have available 6 of the 10 function values that we fewethe two new subintervals.
That is, all we have to do is form the additional values neddethe two error estimates.

We use a relatively large number of samples in the initisilimaof quadgF for relia-
bility. This also makes the program fast because it is inegjpe to form all these values
at the same time and often this is sufficiently many samplastttere is no need for further
refinement of the mesh. As a consequence, the program mighapgroximatef(z) and
g(x) far better than required by the tolerance specified.

4. Evaluation of integrals. Evans B] explains in detail how he evaluates the basic in-
tegrals 8.1). Our scheme differs in some important respects. He workisenwith real
integrals, and because software for evaluating Fresneksid cosine integrals was not avail-
able, he presented algorithms for the purpose. We work withpdex quantities because this
is more convenient and it is easily done imiM.AB. Evans notes that his scheme breaks
down when a quadratic interpolant degenerates to a linéarpiolant and also when it de-
generates to a constant. He presents algorithms for theedegge cases, but does not explain
how to recognize an interpolant that is degenerate or nsarlyn Sectiort.1we show how
backward error analysis can be used to recognize degenétcglso provide there details
of efficient analytical evaluation of the integrals in thesth cases. MrTLAB does not include
software for Fresnel integrals, so in Sectb@we consider how to evaluate them efficiently
in this computing environment. Thieesnel  function presented there accepts a vector
argumentz and returns corresponding vectors of both the cosine aredrsiegrals.

4.1. Algorithms. Vectorization and array operations are very important figieficy in
MATLAB. ThequadgF program is more efficient in this regard than ttec program for
the regular problem because we process at one time all thevatg wheref (x) and g(z)
can be approximated sufficiently well by quadratic integmds. Although we describe the
algorithms here for a single interval, they are easily véptal. Indeed, this is little more
than replacing a multiplicatiorx § with an array multiplication.(*), an exponentiatior’ (),
with an array exponentiation,”(), and the like. In this we also exploit the fact that all
the standard functions likeexp " are vectorized. The fast built-in functiofiind is used
to identify all active subintervals with a given propertyorFexample, error estimates are
computed for all the subintervals at the same time using/aparations. The subintervals
where the approximations are sufficiently accurate are ighemtified withfind for further
processing.

We now consider in detail how to evaluate the approximati®d) (when S(x) is a
quadratic that interpolates(x) at the ends of the interval and the midpoint,,,» and
s(z) is a quadratic interpolant tg(z) at the same points. We write these interpolants as
s(t) = a1 + ast + azt?> andS(x) = by + bot + bst? fort = v — x,,. With h = 2,11 — 2,
and the notatiorf; = f(z;), the integral is

h
Qm= [ S(t)e™®at.
0
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The coefficients of5 () are

o 4fm+1/2 - 3fm - fm+1
= W ,

b — Qfm - 4f'rn-i—l/2 + 2fm+1
3 — )

bl :f’m; b2 h2

and similarly fors(t).

The backward error approach provides a natural way to rezeglegenerate and near-
degenerate approximations. We first ask if we can use theamurepproximation(t) ~ a;
on [0, h] by testing whether

Is(t) = arll < 107° [|s(2)]]-
The norms here are calculated analytically. The constathtenest is an order of magnitude
smaller than the smallest tolerance allowediradgF . If the test is passed, the integral is
3

28 h , B
Q= '™ Zb7 / = dt = e'n Z b —.
j=1 70 j

—

If s(t) cannot be approximated well by a constant, we ask if it canpipecximated well by
a straight line. Specifically, we test whether

Is(t) = (a1 + azt)|| < 107°[|s(1)]|-

If 50, as is not extremely small and the integral is

3 h 3
Qm, = e““ Z bj / tj_l ezazt dt = e““ Z bj Ij.
j=1 70

Jj=1

Letting 1 = e’@2", the I, are evaluated successively as

1 1
Li=—I[p-1], Ir=—

iag iag

1
[hp—1), Is=-—[h*p—20].
a2
In the typical case, we havdt) = a; + ast + ast®> and we have verified that(t) is
not approximated well by a constant nor by a straight linecakdingly, a5 is not extremely
small. A key step in Evans’ analysis is to complete the square

s(t) = c1 + e3(t + ¢2)? where
2
C1 =ay — 0/72 @2

Cy = — C3 = as.
4&37 26L37

We introduce the variablg = t + ¢, so thats(y) = c; + c3y®. Correspondingly, we rewrite
S(t) asS(y) = dy + day + ds3y?. The change of variable leads to

3 h+ca c2
Qm — ei(zl Zd] / yj—l eic3y2 dy _/ yj—l eicay2 dy .
0 0

j=1

The integrals here have the form

u
(4.2) / y 7t eicay’ dy
0
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for realu, realcs, and positive integej. They can be evaluated by first usifigsnel  to
compute

p=+057/cs|,  woe=pC(lul/p),  vos =pS(|ul/p),
/ €ic3yz dy = Slgr(u) [UOC + 7:Sigr(c3) UOS} :
0

We can then compute
T = eilc3|“2, v1e = 0.53(7) / |wl, v1s = sin(0.5]cs|u?)?/ |es,

u
/ Y eicsy” dy = v1. +isign(cs) vys.
0

And finally
Ve = |ulv1e — 0.5v05/ |cs], vas = (v — 0.5]ul (7)) / |es),
/ y? e dy = sign(u) [va. + i Sign(cs) vas]
0

4.2. Fresnel integrals. With the aid of the symbolic algebra program MuPA®) jve
find that the integrals4( 1) can be evaluated in terms of the incomplete gamma function,

v ol
/ Yt eV dy = sign(u)! / Y dy
J0 0

“stes [ (3) T o))

The MATLAB function for evaluating the incomplete gamma function doatsallow complex
arguments, but the one that is accessed through the syneimglioe does. Though slower, it
is fast enough to be practical and it is easy enough to uséutiision via the gatewasnfun .
Indeed, that function foF (a, ) is vectorized with respect tg which is quite helpful in our
program. Evans3 works in real arithmetic and evaluates the equivalentdof)(in terms
of the Fresnel cosine integrél(xz) and sine integrab(z). Because the functions were not
widely available, he explained how to evaluate them. UsindP¥D we found the expressions
for the integrals in terms of Fresnel integrals that we mevn Sectiont.1. Fresnel integrals
are not available in MTLAB itself, but they are available through the symbolic engifiee
authors ofComputation of Special Functiofi$4] provide Fortran programs for the functions
they discuss. We translated their FCS.FOR program for Eftéstegrals to the MTLAB
languageand vectorized it We have verified that the results of our functidresnel
agree to nearly machine precision with results computetusie symbolic engine of Mr-
LAB. As it happens, it is convenient to evaluate both integrate@same time, so in a call
[C,S] = fresnel(X) , the function accepts a vector argumerand returns correspond-
ing vectorsC'(z) andS(z). This is helpful in the present application because we naéds
of both integrals at the same argument. Udiregnel in MATLAB is faster than using
mfun and the symbolic engine. Just how much faster depends oarigthlofx and whether
you want both integrals, but an order of magnitude is repitasi@e. Accordingly, the func-
tionfresnel is of some independent interest.

5. lllustrative computations. The prolog ofquadgF contains four examples that il-
lustrate aspects of its user interface and capabilitieerRece values for the integrals are
provided along with the exampleguadgF approximates.2) in the sense of backward er-
ror. More precisely, it evaluates analytically an appraaidion (1.4) with piecewise-quadratic
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functionsS(x) ands(z) that approximate th¢(x) andg(x) of (1.2) to a specified relative
accuracy in a least-squares sense. Though a meaningfulfveajving the problem, this is
not the same as computing an approximationlt@)(with given relative error. Nevertheless,
we report here the conventional relative error of the appnakons computed. In computing
an approximatiorQto (1.2), the full call list is

Q = quadgF(fun,gfun,a,b,tol)
Herefun is used to defingf(x) andgfun is used to defing(x). The interval(a,?] is
defined bya andb. The optional argumeribl is the tolerance on the relative error in the
approximation off (z) andg(x). It has the default valugd—3. Any value input fortol that
is smaller tharl0—? will be increased to that value. tfuadgF needs more than 512 active
subintervals to obtain the specified accuracy, it returriks am error message.

As it happens, all the examples of the prolog are approxithaging onlyone array
function evaluation. Because the initial partition pra@sdapproximations t¢(z) andg(x)
that are at least as accurate as the specified tolerancerabeam produces precisely the
same results for tolerancé8—', 1072, ..., 10~° for each of these four examples.

It is difficult to obtain consistent run times in MLAB, especially when the times are
small, as they are for these four examples. We computed aage/eun time by usingc
andtoc to measure the time elapsed in running the example 500 tilffestimes reported
here were computed usingALAB R2012a with 64-bit operating system on a PC with an
Intel i3-2120 CPU @ 3.30 GHz.

As a convenience when approximating a regular oscillatiof),(the user need only
supply the real scalav as the argumergfun . With this and an anonymous function for
f(x), we can approximate

1
(5.1) I:/ cosh(x) 1% gy
0

with default relative error tolerance by
Q = quadgF(@(x) cosh(x),1e5,0,1);
The first example of the prolog displays the result of this patation as
Example 1: Re(l) = 5.51515e-007, Imag(l) = 2.54209e-005.
Re(Q) = 5.51515e-007, Imag(Q) = 2.54209e-005.
The average run time was 0.0011s.

High order formulas and a vigorous use of vectorization ntakeuadgk program of
MATLAB a very effective way to approximate conventional integrételeed, if the oscilla-
tion of (1.1) or (1.2) is not too rapid, this program might be the fastest way to mate an
approximation. However, as noted in Sectigithere is a real chance that a conventional pro-
gram might fail when the oscillation is rapid. Indeed, withw@e relative error tolerance of
10~3 (which is much less demanding than its defawjt)adgk was not able to approximate
(5.0.

The second example of the prolog is an interesting examfwaifs B],

200
/ (14 log(x)) cos(x log(x)) dx.
100
It shows howg(z) is defined for irregular oscillations. AlsguadgF approximates the
complex integral 1.5), so we must apply theeal function to@ to approximate the given
integrand. Like all the quadrature programs oAMAB, quadgF requires that the functions
for evaluatingf(x) andg(x) be vectorized. The program

fun = @(x) 1 + log(x); gfun = @(X) x. * log(X);

Q = quadgF(fun,gfun,100,200); Q = real(Q);
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produces a result with a relative erroriof x 10=°. The average run time was 0.0006s.
The third example of the prolog,

0
(5.2) / e’ sin(50 cosh(z)) d,
2

hasb < a and is to be solved with a toleranceldf—*. There is a first-order critical point at
one end of the interval, bwte do not inform the program of these fact&e use themag
function to get the result for the sine function. The intéggapproximated with

fun = @(x) exp(x); gfun = @(x) 50 * cosh(x);

Q = quadgF(fun,gfun,2,0,1e-4); Q = imag(Q);
The approximation has a relative errorlo$ x 1073, The average run time was 0.0019s. For
this integral the initial partition suffices for tolerancgmwn to10~5, so the approximations
and run times do not depend on the tolerance in this rangde Babshows how the accuracy
and run time depend on smaller tolerances.

TABLE 5.1
Performance ofjuadgF for the integral 6.2).

tolerance | 1.0e-5 1.0e-6 1.0e-7 1.0e-8 1.0e-9
relative error 1.3e-3 6.4e-5 1.2e-6 1l.4e-7 4.8e-9
average runtimeg 1.9e-3 2.5e-3 2.8e-3 3.2e-3 3.9e-3

The last example of the prolog,
/ cos(1000 sin(z) — 3z) d,
0

has a first-order critical point at the interior pointcos(3/1000) ~ 1.5678, butwe do not
supply this information to the prograrithere is no factof (z) in this integrand, buguadgF
requires a vectorized functidon . This example shows how to deal with the matter. The
integral is approximated with

fun = @(x) ones(size(x)); gfun = @(x) 1000 *Sin(x) - 3 *X;

Q = quadgF(fun,gfun,0,pi); Q = real(Q);
The approximation has a relative error$ x 10~3. The average run time was 0.0014s.

We have appliedjuadgF successfully to many test problems from the literature. For

instance, Li et al.§] provide three test problems that we have solved wgitadgF using the
default tolerance. The program used two array functionuatadns to approximate

1
/ e~ tan(x) sec(x) ei 100 tan(z) dx

with relative errorl.9 x 10~%. It used one array evaluation to approximate

1 10z )
/ € P 200(z?+x) dr
o z+0.1

with relative errors.1 x 107°. It used three array evaluations to approximate

2
1 .
/1 |:COS(101’2) + x+01:| el (107+10412)1/2 dr

with relative erro3.7 x 10~4.
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For positive integerg, integrals of the formfo1 e'“*” dx have a critical point of order
p—1atthe left end point. Xiandl[7] contrasts the performance of a method for the gase2
of a first-order critical point with that for a very high ordenitical point withp = 10. The
generalized Filon method is exact for the case 2, so we consider here onty= 10. We
changed the interval so as to have an interior critical pdihis draws attention to methods
which require critical points to be end points. Also, it tests whether aecodn locate and
deal with critical points. It would be natural to ugel, 1], but a critical point at the middle
of the interval might prove to be a special case for an adajgfiiadrature scheme. To make
this less likely, we use as test problem

2/3
/ €15002™ 0~ 0.8437719580 + 0.085177164734.
~1/3

With no information about the location and nature of theicat point, quadgF used only
two array function evaluations to obtain an approximatidgthwelative errorl.2 x 1072,

6. Conclusions. Backward error analysis is an important new tool in both thepty
and practice of approximatinﬁf f(z) e dz wheng(z) is large onfa, b]. Exploiting this
approach, we have written aMLAB program for the task calleguadgF that does not ask
users to supply the location and nature of critical pointg(af), nor does it ask fog’(x). The
program is intended only for modest relative error becatisean adaptive implementation
of a generalized Filon method of modest order, but it is vagydo use and solves effectively
a large class of problems.

MATLAB does not provide functions for the direct evaluation of tmeskel sine and
cosine integrals that are the foundation of the generalizémh method implemented in
quadgF . For this purpose we translated the FCS.FOR progranidftp MATLAB and
vectorized it. The resulting prografresnel  is of some independent interest.

REFERENCES

[1] N. S. BakHvALOV AND L. G. VASIL'EVA, Evaluation of the integrals of oscillating functions byarpola-
tion at nodes of Gaussian quadraturésS.S.R. Comput. Math. Math. Phys., 1 (1968), pp. 241-249.
[2] S. M. CHASE AND L. D. FosDIckK, An algorithm for Filon quadratureComm. ACM, 12 (1969), pp. 453—
457.
[3] G. A. EVANS, Two robust methods for irregular oscillatory integrals oegfinite range Appl. Numer. Math.,
14 (1994), pp. 383-395.
[4] G. A. Evans AND J. R. WEBSTER A comparison of some methods for the evaluation of highljiasry
integrals J. Comput. Appl. Math., 112 (1999), pp. 55-69.
[5] L. N. G. FiLON, On a quadrature formula for trigonometric integraBroc. Roy. Soc. Edinburgh, 49 (1928),
pp. 38-47.
[6] P.J. HarRRIS AND K. CHEN, An efficient method for evaluating the integral of a classighly oscillatory
functions J. Comput. Appl. Math., 230 (2009), pp. 433—-442.
[7] A. 1SERLES ANDS. N@RSETT, Efficient quadrature of highly-oscillatory integrals ugilerivatives Proc.
R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci.A, 461 (2005), 383+1399.
[8] J. LI, X. WANG, T. WANG, AND S. XIA0, An improved Levin quadrature method for highly oscillatory
integrals Appl. Numer. Math., 60 (2010), pp. 833-842.
[9] MATHWORKS, MATLAB 7.13 (R2011b)hree Apple Hill Drive, Natick MA.
[10] R. PEsSsSENS ANDM. BRANDERS, Computation of oscillating integralsd. Comput. Appl. Math., 1 (1975),
pp. 153-164.
[11] L. F. SHAMPINE, Integrating oscillatory functions iMATLAB, Int. J. Comput. Math., 88 (2011), pp. 2348—
2358.
[12] S. XIANG, Efficient quadrature for highly oscillatory integrals inving critical points J. Comput. Appl.
Math., 206 (2007), pp. 688—698.
, On the Filon and Levin methods for highly oscillatory inmk;lﬁ7 fx) e'w9(®) dgz, J. Comput. Appl.
Math., 208 (2007), pp. 434—-439.
[14] S. ZHANG AND J. M. JN, Computation of Special Functiond/iley, New York, 1996.

(13]




