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Vladimir Slesar1, Bayram Şahin2 and Gabriel-Eduard Vîlcu3,4*

*Correspondence:
gvilcu@upg-ploiesti.ro;
gvilcu@gta.math.unibuc.ro
3Department of Mathematical
Modelling, Economic Analysis and
Statistics, Petroleum-Gas University
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Abstract
In this paper we prove two sharp inequalities that relate the normalized scalar
curvature with the Casorati curvature for a slant submanifold in a quaternionic space
form. Moreover, we show that in both cases, the equality at all points characterizes
the invariantly quasi-umbilical submanifolds.
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1 Introduction
In a seminal paper published in the early s, Chen [] established a sharp inequality for
a submanifold in a real space form using the scalar curvature and the sectional curvature,
both being intrinsic invariants, and squared mean curvature, the main extrinsic invari-
ant, initiating the theory of δ-invariants or the so-called Chen invariants; this turned out
to be one of the most interesting modern research topic in differential geometry of sub-
manifolds. These inequalities were further extended to many classes of submanifolds in
different ambient spaces (for an extensive and comprehensive survey on this topic see []).
For example, in a quaternionic Kähler setting, Chen-like inequalities were proved in [–
] and a set of open problems in the field was proposed recently in []. Moreover, new
optimal inequalities involving δ-invariants were recently proved in [–]. We also note
that some interesting inequalities for the length of the second fundamental form of the
warped product submanifolds were obtained recently in [–].
On the other hand, the Casorati curvature of a submanifold in a Riemannian manifold

is an extrinsic invariant defined as the normalized square of the length of the second fun-
damental form. It is well known that this notion extends the concept of the principal
direction of a hypersurface of a Riemannian manifold to submanifolds of a Riemannian
manifold and it was preferred by Casorati over the traditional Gauss curvature because
corresponds better with the common intuition of curvature [] (see also [–] for the
geometrical meaning and the importance of the Casorati curvatures). Therefore it is of
great interest to obtain optimal inequalities for the Casorati curvatures of submanifolds
in different ambient spaces. We note that in [], Decu, Haesen and Verstraelen obtained
some optimal inequalities involving the scalar curvature and the Casorati curvature of a
Riemannian submanifold in a real space form and the holomorphic sectional curvature
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and the Casorati curvature of a Kähler hypersurface in a complex space form. Moreover,
the same authors proved in [] an inequality in which the scalar curvature is estimated
from above by the normalized Casorati curvatures, while Ghişoiu obtained in [] some
inequalities for the Casorati curvatures of slant submanifolds in complex space forms.
In this paper we generalize these inequalities in a quaternionic setting, proving the fol-

lowing result which also solves the Problem . from [].

Theorem . Let Mn be a θ -slant proper submanifold of a quaternionic space form
Mm(c). Then:

(i) The normalized δ-Casorati curvature δc(n – ) satisfies

ρ ≤ δc(n – ) +
c


(
 +


n – 

cos θ

)
. ()

Moreover, the equality sign holds if and only ifMn is an invariantly
quasi-umbilical submanifold with trivial normal connection inMm(c), such that
with respect to suitable orthonormal tangent frame {ξ, . . . , ξn} and normal
orthonormal frame {ξn+, . . . , ξm}, the shape operators Ar ≡ Aξr , r ∈ {n + , . . . , m},
take the following forms:

An+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a   · · ·  
 a  · · ·  
  a · · ·  
...

...
...

. . .
...

...
   · · · a 
   · · ·  a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, An+ = · · · = Am = . ()

(ii) The normalized δ-Casorati curvature δ̂c(n – ) satisfies

ρ ≤ δ̂c(n – ) +
c


(
 +


n – 

cos θ

)
. ()

Moreover, the equality sign holds if and only ifMn is an invariantly
quasi-umbilical submanifold with trivial normal connection inMm(c), such that
with respect to suitable orthonormal tangent frame {ξ, . . . , ξn} and normal
orthonormal frame {ξn+, . . . , ξm}, the shape operators Ar ≡ Aξr , r ∈ {n + , . . . , m},
take the following forms:

An+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a   · · ·  
 a  · · ·  
  a · · ·  
...

...
...

. . .
...

...
   · · · a 
   · · ·  a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, An+ = · · · = Am = . ()
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2 Preliminaries
2.1 Riemannian invariants
In this subsection we recall some basic concepts in Riemannian geometry, using mainly
[].
Let (M, g) be an m-dimensional Riemannian manifold. For an n-dimensional Rieman-

nian submanifoldM of (M, g), we denote by g the metric tensor induced onM. If ∇ is the
Levi-Civita connection on M and ∇ is the covariant differentiation induced on M, then
the Gauss and Weingarten formulas are given by

∇XY =∇XY + h(X,Y ), ∀X,Y ∈ �(TM)

and

∇XN = –ANX +∇⊥
X N , ∀X ∈ �(TM),∀N ∈ �

(
TM⊥)

,

where h is the second fundamental form ofM,∇⊥ is the connection on the normal bundle
and AN is the shape operator ofM with respect to N . The shape operator AN is related to
h by

g(ANX,Y ) = g
(
h(X,Y ),N

)

for all X,Y ∈ �(TM) and N ∈ �(TM⊥).
If we denote by R and R the curvature tensor fields of ∇ and ∇ , then we have the Gauss

equation:

R(X,Y ,Z,W ) = R(X,Y ,Z,W ) + g
(
h(X,W ),h(Y ,Z)

)
– g

(
h(X,Z),h(Y ,W )

)
()

for all X,Y ,Z,W ∈ �(TM).
We denote by K (π ) the sectional curvature of M associated with a plane section

π ⊂ TpM, p ∈ M. If {e, . . . , en} is an orthonormal basis of the tangent space TpM and
{en+, . . . , em} is an orthonormal basis of the normal space T⊥

p M, then the scalar curvature
τ at p is given by

τ (p) =
∑

≤i<j≤n

K (ei ∧ ej)

and the normalized scalar curvature ρ ofM is defined as

ρ =
τ

n(n – )
.

We denote by H the mean curvature vector, that is,

H(p) =

n

n∑
i=

h(ei, ei)

http://www.journalofinequalitiesandapplications.com/content/2014/1/123


Slesar et al. Journal of Inequalities and Applications 2014, 2014:123 Page 4 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/123

and we also set

hα
ij = g

(
h(ei, ej), eα

)
, i, j ∈ {, . . . ,n},α ∈ {n + , . . . ,m}.

Then the squared mean curvature of the submanifoldM inM is defined by

‖H‖ = 
n

m∑
α=n+

( n∑
i=

hα
ii

)

and the squared norm of h over dimension n is denoted by C and is called the Casorati
curvature of the submanifoldM. Therefore we have

C =

n

m∑
α=n+

n∑
i,j=

(
hα
ij
).

The submanifold M is called totally geodesic if the second fundamental form vanishes
identically and totally umbilical if there is a real number λ such that h(X,Y ) = λg(X,Y )H
for any tangent vectors X, Y onM. IfH = , then the submanifoldM is said to beminimal.
The submanifoldM is called invariantly quasi-umbilical if there existm–nmutually or-

thogonal unit normal vectors ξn+, . . . , ξm such that the shape operators with respect to all
directions ξα have an eigenvalue of multiplicity n– and that for each ξα the distinguished
eigendirection is the same [].
Suppose now that L is an r-dimensional subspace of TpM, r ≥  and let {e, . . . , er} be an

orthonormal basis of L. Then the scalar curvature τ (L) of the r-plane section L is given by

τ (L) =
∑

≤α<β≤r

K (eα ∧ eβ )

and the Casorati curvature C(L) of the subspace L is defined as

C(L) = 
r

m∑
α=n+

r∑
i,j=

(
hα
ij
).

The normalized δ-Casorati curvature δc(n – ) and δ̂c(n – ) are given by

[
δc(n – )

]
p =



Cp +

n + 
n(n – )

inf
{
C(L)|L a hyperplane of TpM

}

and

[
δ̂c(n – )

]
p = Cp –

n – 
n

sup
{
C(L)|L a hyperplane of TpM

}
.

2.2 Quaternionic Kähler manifolds
We give in this subsection a quick review of basic definitions and properties of manifolds
endowed with quaternionic Kähler structures, using mainly [].
Let M be a differentiable manifold and assume that there is a rank -subbundle σ of

End(TM) such that a local basis {J, J, J} exists on sections of σ satisfying for all α ∈

http://www.journalofinequalitiesandapplications.com/content/2014/1/123
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{, , }:

Jα = – Id, JαJα+ = –Jα+Jα = Jα+,

where Id denotes the identity tensor field of type (, ) on M and the indices are taken
from {, , } modulo . Then the bundle σ is called an almost quaternionic structure on
M and {J, J, J} is called a canonical local basis of σ . Moreover, (M,σ ) is said to be an
almost quaternionic manifold. It is easy to see that any almost quaternionic manifold is of
dimension m,m ≥ .
A Riemannian metric g onM is said to be adapted to the almost quaternionic structure

σ if it satisfies

g(JαX, JαY ) = g(X,Y ), ∀α ∈ {, , }

for all vector fields X, Y on M and any canonical local basis {J, J, J} of σ . Moreover,
(M,σ , g) is said to be an almost quaternionic Hermitian manifold.
If the bundle σ is parallel with respect to the Levi-Civita connection∇ of g, then (M,σ , g)

is said to be a quaternionic Kähler manifold. Equivalently, locally defined -forms ω, ω,
ω exist such that we have for all α ∈ {, , }:

∇XJα = ωα+(X)Jα+ –ωα+(X)Jα+

for any vector field X onM, where the indices are taken from {, , } modulo .
We remark that any quaternionic Kählermanifold is an Einsteinmanifold, provided that

dimM > .
Let (M,σ , g) be a quaternionic Kählermanifold and letX be a non-null vector field onM.

Then the -plane spanned by {X, JX, JX, JX}, denoted by Q(X), is called a quaternionic
-plane. Any -plane in Q(X) is called a quaternionic plane. The sectional curvature of
a quaternionic plane is called a quaternionic sectional curvature. A quaternionic Kähler
manifold is a quaternionic space form if its quaternionic sectional curvatures are equal
to a constant, say c. It is well known that a quaternionic Kähler manifold (M,σ , g) is a
quaternionic space form, denotedM(c), if and only if its curvature tensor is given by

R(X,Y )Z =
c


{
g(Z,Y )X – g(X,Z)Y +

∑
α=

[
g(Z, JαY )JαX –

– g(Z, JαX)JαY + g(X, JαY )JαZ
]}

()

for all vector fields X, Y , Z onM and any local basis {J, J, J} of σ .
A submanifold M in a quaternionic Kähler manifold (M,σ , g) is called a quaternionic

submanifold [] (resp. a totally real submanifold []) if each tangent space of M is car-
ried into itself (resp. into the normal space) by each section in σ . In [], the author in-
troduced the concept of slant submanifolds as a natural generalization of both quater-
nionic and totally real submanifolds. A submanifoldM of a quaternionic Kähler manifold
(M,σ , g) is said to be a slant submanifold if for each non-zero vector X tangent to M at

http://www.journalofinequalitiesandapplications.com/content/2014/1/123
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p, the angle θ (X) between Jα(X) and TpM, α ∈ {, , } is constant, i.e. it does not depend
on the choice of p ∈ M and X ∈ TpM. We can easily see that quaternionic submanifolds
are slant submanifolds with θ =  and totally real submanifolds are slant submanifolds
with θ = π

 . A slant submanifold of a quaternionic Käler manifold is said to be proper
(or θ -slant proper) if it is neither quaternionic nor totally real. We note that another nat-
ural generalization of both quaternionic and totally real submanifolds in a quaternionic
Kähler manifold is given by quaternionic CR-submanifolds. A submanifoldM of a quater-
nion Kähler manifold (M,σ , g) is said to be a quaternionic CR-submanifold if there exist
two orthogonal complementary distributions D and D⊥ on M such that D is invariant
under quaternionic structure and D⊥ is totally real (see []). It is clear that, although
quaternionic CR-submanifolds are also the generalization of both quaternionic and to-
tally real submanifolds, there exists no inclusion between the two classes of quaternionic
CR-submanifolds and slant submanifolds.
We also note that we have the next characterization of slant submanifolds in quater-

nionic Kähler manifolds.

Theorem . [] Let M be a submanifold of a quaternionic Kähler manifold M. Then M
is slant if and only if there exists a constant λ ∈ [–, ] such that

PβPαX = λX, ∀X ∈ �(TM),α,β ∈ {, , }, ()

where PαX denote the tangential component of JαX. Furthermore, in such a case, if θ is the
slant angle of M, then it satisfies λ = – cos θ .

From the above theorem it follows easily that

g(PαX,PβY ) = cos θg(X,Y ) ()

for X,Y ∈ �(TM) and α,β ∈ {, , }.
Moreover, every proper slant submanifold of a quaternionic Kähler manifold is of even

dimension n = s ≥  and we can choose a canonical orthonormal local frame, called an
adapted slant frame, as follows: {e, e = sec θPαe, . . . , es–, es = sec θPαes–}, where α is
,  or  (see []).

3 Proof of Theorem 1.1
(i) Since Mm(c) is a quaternionic space form, from () and Gauss equation () we can
easily obtain:

n‖H‖ = τ (p) + ‖h‖ – n(n – )c


–
c


∑
β=

n∑
i,j=

g(Pβei, ej). ()

Choosing now an adapted slant basis

{e, e = sec θPαe, . . . , es–, es = sec θPαes–}

of TpM, p ∈M, where s = n and making use of () and (), we derive

g(Pβei, ei+) = g(Pβei+, ei) = cos θ for i = , , . . . , s –  ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/123
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and

g(Pβei, ej) =  for (i, j) /∈ {
(l – , l), (l, l – )|l ∈ {, , . . . , s}}. ()

From (), (), and () we deduce that

τ (p) = n‖H‖ – nC +
c


[
n(n – ) + n cos θ

]
. ()

We define now the following function, denoted by P , which is a quadratic polynomial
in the components of the second fundamental form:

P =


n(n – )C +



(n + )C(L) – τ (p) +

c


[
n(n – ) + n cos θ

]
,

where L is a hyperplane ofTpM.We can assumewithout loss of generality that L is spanned
by e, . . . , en–. Then we have

P =
n – 


m∑
α=n+

n∑
i,j=

(
hα
ij
) + n + 

(n – )

m∑
α=n+

n–∑
i,j=

(
hα
ij
)

– τ (p) +
c


[
n(n – ) + n cos θ

]
. ()

From () and (), we derive

P =
n + 


m∑
α=n+

n∑
i,j=

(
hα
ij
)

+
n + 

(n – )

m∑
α=n+

n–∑
i,j=

(
hα
ij
) – m∑

α=n+

( n∑
i=

hα
ii

)

and now we obtain easily that

P =
m∑

α=n+

n–∑
i=

[
n – n + 
(n – )

(
hα
ii
) + (n + )

(
hα
in
)]

+
m∑

α=n+

[
n(n + )
n – 

n–∑
i<j=

(
hα
ij
) – 

n∑
i<j=

hα
iih

α
jj +

n – 


(
hα
nn

)]. ()

From () it follows that the critical points

hc =
(
hn+ ,hn+ , . . . ,hn+nn , . . . ,hm ,hm , . . . ,h

m
nn

)
of P are the solutions of the following system of linear homogeneous equations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂P
∂hα

ii
= n(n+)

n– hα
ii – 

∑n
k= hα

kk = ,
∂P
∂hα

nn
= (n – )hα

nn – 
∑n–

k= hα
kk = ,

∂P
∂hα

ij
= n(n+)

n– hα
ij = ,

∂P
∂hα

in
= (n + )hα

in = ,

()

with i, j ∈ {, . . . ,n – }, i �= j, and α ∈ {n + , . . . , m}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/123


Slesar et al. Journal of Inequalities and Applications 2014, 2014:123 Page 8 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/123

From () it follows that every solutions hc has hα
ij =  for i �= j and the determinant

which corresponds to the first two sets of equations of the above system is zero (there
exist solutions for non-totally geodesic submanifolds). Moreover, the Hessian matrix of P
has the eigenvalues

λ = , λ =
n – n + 

n – 
, λ = · · · = λnn =

n(n + )
n – 

,

λij =
n(n + )
n – 

, λin = (n + ), ∀i, j ∈ {, . . . ,n – }, i �= j.

Thus, it follows thatP is parabolic and reaches a minimumP(hc) for each solution hc of
the system (). But inserting () in () we obtain P(hc) = . So P ≥ , and this implies

τ (p) ≤ 

n(n – )C +



(n + )C(L) + c


[
n(n – ) + n cos θ

]
.

Hence we deduce that

ρ ≤ 

C +

n + 
n(n – )

C(L) + c


[
 +


n – 

cos θ

]

for every tangent hyperplane L ofM. Taking now the infimum over all tangent hyperplane
L we obtain ().
Moreover, we can easily see now that the equality sign holds in the inequality () if and

only if

hα
ij = , ∀i, j ∈ {, . . . ,n}, i �= j and α ∈ {n + , . . . , m} ()

and

hα
nn = hα

 = hα
 = · · · = hα

n–,n–, ∀α ∈ {n + , . . . , m}. ()

From () and () we conclude that the equality sign holds in the inequality () if and
only if the submanifold M is invariantly quasi-umbilical with trivial normal connection
in M, such that with respect to suitable orthonormal tangent and normal orthonormal
frames, the shape operators take the forms ().
(ii) can be proved in a similar way, considering the following quadratic polynomial in

the components of the second fundamental form:

Q = n(n – )C –


(
n – (n – )

)
C(L) – τ (p) +

c


[
n(n – ) + n cos θ

]
,

where L is a hyperplane of TpM.
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