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Abstract
We prove that C1-generically, continuum-wise expansive diffeomorphisms satisfy
both Axiom A and the no-cycle condition. Moreover, (i) if a volume-preserving
diffeomorphism belongs to the C1-interior of the set of all continuum-wise expansive
volume-preserving diffeomorphisms then it is Anosov, and (ii) C1-generically, every
continuum-wise expansive volume-preserving diffeomorphism is transitive Anosov.
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1 Introduction
Let Diff(M) be the space of diffeomorphisms of closed C∞-manifolds M endowed with
the C-topology, and let d denote the distance on M induced from a Riemannian metric
‖ · ‖ on the tangent bundle TM. In dynamical systems, expansivity is a useful notion to
study of the stability. Roughly speaking, if two points stay near for future and past iterates,
then they must be equal. We say that f is expansive if there is e >  such that for any pair
of distinct points x, y ∈M, d(f n(x), f n(y)) > e for some n ∈ Z. The number e >  is called an
expansive constant for f .
For a point x ∈ M, we say that x is a non-wandering point if for any neighborhood U

of x, there is n ∈ Z such that f n(U) ∩U �= ∅. Denote by �(f ) the set of all non-wandering
points of f . It is clear P(f ) ⊂ �(f ), where P(f ) is the set of the periodic points of f , and P(f )
is the closure of P(f ). We say that f satisfies Axiom A if �(f ) = P(f ) is hyperbolic. We say
that f is quasi-Anosov if for any v ∈ TM (v �= ) the set {‖Df n(v)‖ : n ∈ Z} is unbounded. It
follows that f satisfies Axiom A.
For expansivity, in [], Mañé showed that a diffeomorphism belongs to the C-interior

of the set of all expansive diffeomorphisms if and only if f is quasi-Anosov.
In this paper, we study the notion of continuum-wise expansivity which was introduced

by Kato in []. Let � be a closed set of M. A set � is nondegenerate if the set � is not
reduced to one point. We say that � ⊂ M is a subcontinuum if it is a compact connected
nondegenerate subset � ofM. A diffeomorphism f onM is said to be continuum-wise ex-
pansive if there is a constant e >  such that for any nondegenerate subcontinuum A there
is an integer n = n(A) such that diam f n(A) ≥ e, where diamS = sup{d(x, y) : x, y ∈ S} for any
subset S ofM. Such a constant α is called a continuum-wise expansive constant for f . Note
that every expansive homeomorphism is continuum-wise expansive diffeomorphism, but
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its converse is not true (see [, Example .]). For diffeomorphisms, we introduce an ex-
ample. It is well known that S does not admit an expansive diffeomorphism, but it admits
a continuum-wise expansive diffeomorphisms (see []).

2 Continuum-wise diffeomorphisms
Let M be as before, and let f ∈ Diff(M). Denote by E(M) and CWE(M) the set of all ex-
pansive diffeomorphisms and the set of all continuum-wise expansive diffeomorphisms,
respectively. Sakai [] proved that f ∈ CWE(M) if and only if the diffeomorphism is quasi-
Anosov. By Mañé’s result [], we know the following.

Theorem . The C-interior of CWE(M) coincides with the C-interior of E(M).

We say that � is transitive set if there is a point x ∈ � such that ωf (x) = �, where ωf (x)
is the ω-limit set of x. Let � ⊂ M be an f -invariant closed set. We say that � admits a
dominated splitting if the tangent bundle T�M has a continuous Df -invariant splitting
E ⊕ F and there exist constants C >  and  < λ <  such that

∥∥Dxf n|E(x)
∥∥ · ∥∥Dxf –n|F(f n(x))

∥∥ ≤ Cλn

for all x ∈ � and n ≥ . Recently, Lee [] showed that if a transitive set � is C-stably
continuum-wise expansive then it admits a dominated splitting.
A subset R ⊂ Diff(M) is called residual if it contains a countable intersection of open

and dense subsets ofDiff(M). A dynamic property is calledC-generic if it holds in a resid-
ual subset ofDiff(M).We use the terminology for C-generic f to express there is a residual
subset R⊂Diff(M), and f ∈R.
Recently, in [], Arbieto proved that for C-generic f ∈ Diff(M), f is expansive then f is

�-stable, that is, obeys Axiom A and the no-cycle condition. We stated the above fact.

Theorem . For C-generic f , if f is expansive then f satisfies both Axiom A and the
no-cycle condition.

In this spirit, we show that C-generically, every continuum-wise expansive diffeomor-
phism satisfies both Axiom A and the no-cycle condition. This is a generalization of the
remarkable result in [].

Theorem A For C-generic f , if f is continuum-wise expansive then f satisfies both Ax-
iom A and the no-cycle condition.

3 Continuum-wise volume-preserving diffeomorphisms
LetM be a closed C∞ Riemannianmanifold endowed with a volume form ω. Letμ denote
the Lebesgue measure associated to ω, and let d denote the metric induced on M by the
Riemannian structure. Denote by Diffμ(M) the set of diffeomorphisms which preserves
the Lebesgue measure μ endowed with the Whitney C-topology. Note that in volume-
preserving diffeomorphisms, the non-wandering set �(f ) =M by recurrent theorem. We
say that � is hyperbolic if the tangent bundle T�M has a Df -invariant splitting Es ⊕ Eu

and there exist constants C >  and  < λ <  such that

∥∥Dxf n|Esx
∥∥ ≤ Cλn and

∥∥Dxf –n|Eux
∥∥ ≤ Cλn
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for all x ∈ � and n≥ .Moreover, if� =M then f is Anosov. Note that f is Anosov then f is
expansive, and so, f is continuum-wise expansive. In [], Bessa et al. proved that a volume-
preserving diffeomorphism belongs to the C-interior of the set of all expansive volume-
preserving diffeomorphisms if and only if it is Anosov. For the another conservative cases,
that is, geodesic flow and a Hamiltonian system, Bessa et al. have shown in [] that if
a Hamiltonian system belongs to the C-interior of the set of all expansive Hamiltonian
systems then it is Anosov. And Ruggiero [] showed that if a geodesic flow belongs to the
C-interior of the set of all expansive geodesic vector fields then it is Anosov.
Let CWEμ(M) be the set of all continuum-wise expansive volume-preserving diffeomor-

phisms. In this paper, we study the continuum-wise expansive case, and if f belongs to the
C-interior of CWEμ(M), then f is Anosov. Let intCWEμ(M) denote theC-interior of the
set of all continuum-wise expansive volume preserving diffeomorphisms. In this paper, we
prove the following theorem.

Theorem B The set AN μ(M) of Anosov diffeomorphisms in Diffμ(M) coincides with the
C-interior of the set of continuum-wise expansive diffeomorphisms in Diffμ(M); that is,
AN μ(M) = intCWEμ(M).

In diffeomorphisms, Arbieto [] proved that C-generically, if f is expansive then f is
�-stable. It is well known that for a �-stable diffeomorphism, there is a diffeomorphism
such that the diffeomorphism is not expansive. However, for volume-preserving diffeo-
morphisms, the phenomenon cannot happen since�(f ) =M. In dimM = , forC-generic
f , if a C-neighborhood U (f ) of f , there is g ∈ U (f ) such that g has a periodic point pg with
homoclinic tangency qg then f has a periodic point p with homoclinic tangency q. In fact,
it is closely related to the conjecture of Smale (see []). Note that if dimM =  then it does
not exist normally hyperbolic. In this paper, we consider dimM ≥ . Recently, Bessa et al.
[] proved that dimM ≥ , for C-generic f , if f ∈Diffμ(M) is expansive then f is Anosov.
For a Hamiltonian system, Lee [] showed that C-generically, an expansive Hamiltonian
system is Anosov. In this spirit, we study the continuum-wise expansiveness for generic
view point. Then we have the following.

TheoremC For C-generic f , if f is continuum-wise expansive then it is transitive Anosov.

4 Proof of Theorem A
Let dimM ≥  and let f ∈ Diff(M). We prepare several lemmas to arrive at Theorem A.
The Franks lemma [] will play an essential role in our proofs.

Lemma . Let U (f ) be any given C-neighborhood of f . Then there exist ε >  and a C-
neighborhood U(f ) ⊂ U (f ) of f such that for given g ∈ U(f ), a finite set {x,x, . . . ,xN },
a neighborhood U of {x,x, . . . ,xN } and linear maps Li : TxiM → Tg(xi)M satisfying ‖Li –
Dxig‖ ≤ ε for all ≤ i≤N , there exists ĝ ∈ U (f ) such that ĝ(x) = g(x) if x ∈ {x,x, . . . ,xN }∪
(M \U) and Dxi ĝ = Li for all ≤ i≤N .

Let p be a periodic point of f , and let  < δ < .We say p has a δ-weak eigenvalue ifDpf π (p)

has an eigenvalue λ such that ( – δ)π (p) < |λ| < ( + δ)π (p). The following lemma will also
play a crucial role in our proof.
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Lemma . [, Lemma .] There exists a residual set R ⊂ Diff(M) such that for any
f ∈R,
() for any δ > , if for any C-neighborhood U (f ), there is g ∈ U (f ) which has a

hyperbolic pg ∈ P(g) with a δ-weak eigenvalue, then f has a hyperbolic point p ∈ P(f )
with a δ-weak eigenvalue;

() for any δ > , if f has a hyperbolic point q ∈ P(f ) with a δ-weak eigenvalue, then f has
a hyperbolic point p ∈ P(f ) with a δ-weak eigenvalue, whose eigenvalues are all real.

Remark . If f has a normally hyperbolic, then by Hirsh et al. [] and Mañé [], it is
C-robust, that is, for any g C-close to f , g has a normally hyperbolic then f also has a
normally hyperbolic (see also []).

Lemma . There exists a residual set R ⊂ Diff(M) such that for f ∈ R if f is
continuum-wise expansive, then there exists δ >  such that f has no δ-weak eigenvalue.

Proof Let R =R, and let f ∈ R be continuum-wise expansive for f . Suppose, by con-
tradiction, that for any δ >  there is a periodic point p of f such that p has a δ-weak
eigenvalue. Let ε > , and let V(f ) ⊂ U(f ) be a C-neighborhood of f which is given by
Lemma . with respect to U(f ). Then there exist g ∈ U (f ) and a non-hyperbolic periodic
point q of g such that an eigenvalue λ of Dqgπ (q) with |λ| = , and TqM = Ec(q) ⊕ Es(q) ⊕
Eu(q), where Eσ (q), σ = c, s,u, are Dqgπ (q)-invariant subspaces corresponding to eigenval-
ues λ of Dqgπ (q) for |λ| = , |λ| < , and |λ| > , respectively. Let W(f ) ⊂ V(f ) be the C

ε-ball of f . Set C = supx∈M{‖Dxg‖}. For  < ε < ε, we can obtain a linear automorphism
O : TqM → TqM such that

(i) ‖O – id‖ < ε
C ,

(ii) O keeps Eσ invariant, where σ = c, s,u,
(iii) all eigenvalues of O ◦Dqgπ (q), say μj, j = , , . . . , c, are roots of unity.

Let F be the finite set {q, g(q), . . . , gπ (q)–(q)}. Define

Lj =

{
Dgj(q)g, j = , , . . . ,π (q) – ,
O ◦Dgπ (q)–(q)g, j = π (q) – .

Observe that ‖Lπ (q)– – Dgπ (q)–(q)g‖ ≤ ‖O – id‖ · ‖Dgk–(q)g‖ < ε. Thus ‖Lj – Dgj(q)g‖ < ε

for all j = , , . . . ,π (p) – . By Lemma ., we can find a diffeomorphism g ∈ W(f ) and
δ >  such that
(a) Bδ (gi(q))∩ Bδ (q) = ∅,  ≤ i �= j ≤ π (q) – ,
(b) g = g on F ∪ (M –

⋃π (q)–
j= Bδ (gj(q))),

(c) g = expgj+(q) ◦Lj ◦ exp–gj(q) on Bδ (gj(q)),  ≤ j ≤ π (q) – .
Define

L =O ◦Dqgπ (q) =
π (q)–∏
j=

Lj,

where Bδ(p) denotes the δ-neighborhood of p.
Then by (iii) we can find m >  such that Lm|Ec(q) = id|Ec(q). Choose a small δ satisfying

 < δ < δ such that

Lmk(TqM(δ)
) ⊂ TqM(δ),

http://www.journalofinequalitiesandapplications.com/content/2014/1/379
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where TqM(δ) = {v ∈ TqM|‖v‖ ≤ δ}. Then by (c) we have

(
gπ (q)


)m = gmπ (q)
 = expq ◦Gm ◦ exp–q

on expq(TqM(δ)).
We write

TqM(δ) = Ec(q, δ)⊕ Es(q, δ)⊕ Eu(q, δ),

where Eσ (q, δ) = Eσ (q)∩TqM(δ), σ = c, s,u. Then expq(Ec(q, δ)) is (gk )m-invariant. Since
f ∈R, we assume that the eigenvalue λ ∈R.
Put expq(Ec(q, δ)) is an arc Iq centered at q. Observe that (gk )m = id on expq(Ec(q, δ)).

By our construction, (gk )m is the identity on the arc Iq. It is clear that the small arc Iq is
normally hyperbolic for g. By Remark ., for any g C-close to f , if g has a normally
hyperbolic then f has a normally hyperbolic, that is, it is C-robust. Then we know that f
has a small arcJq which centered at qwith f π (q)(Jq) = Jq. Note that if f is continuum-wise
expansive then f k is continuum-wise expansive for any k ∈ Z (see [, Proposition .]).
Denote by l(A) the length of A. Take e = l(Jq). Since Jq is f π (q)-invariant, for all n ∈ Z,

diam
(
f n(Jq)

)
< e.

This is a contradiction. �

We say that f satisfies star condition if there is a C-neighborhood U (f ) such that for
any g ∈ U (f ), every p ∈ P(g) is hyperbolic. We denote byF (M) the set of diffeomorphisms
satisfying star condition.

Lemma . There is a residual set R ⊂ Diff(M) such that for any continuum-wise ex-
pansive map f ∈R, f ∈F (M).

Proof LetR =R, and let f ∈R be continuum-wise expansive. Proof by contradiction,
we may assume that f /∈ F (M). Then by Lemma ., there is g C-close to f and pg ∈ P(g)
such that for any δ > , pg has a δ/-weak eigenvalue. By Lemma ., p ∈ P(f ) has a δ-weak
eigenvalue. This is a contradiction by Lemma .. �

Proof of Theorem A Let f ∈ R be continuum-wise expansive. By Lemma ., f ∈ F (M).
Since f ∈F (M), By Aoki [] and Hayashi [], we know that f satisfies both Axiom A and
the no-cycle condition. Thus it is �-stable. �

5 Proof of Theorem B and Theorem C
Let M and let f ∈ Diffμ(M) be as before. To prove our result, we use the Franks lemma,
which is proved in [, Proposition .].

Lemma . Let f ∈ Diffμ(M), and U be a C-neighborhood of f in Diffμ(M). Then there
exist a C-neighborhood U ⊂ U of f and ε >  such that if g ∈ U, any finite f -invariant
set E = {x, . . . ,xm}, any neighborhood U of E and any volume-preserving linear maps
Lj : TxjM → Tg(xj)M with ‖Lj – Dxjg‖ ≤ ε for all j = , . . . ,m, there is a conservative dif-
feomorphism g ∈ U coinciding with f on E and out of U , and Dxjg = Lj for all j = , . . . ,m.

http://www.journalofinequalitiesandapplications.com/content/2014/1/379
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We denote by Fμ(M) the set of diffeomorphisms f ∈ Diffμ(M) which have a C-
neighborhood U (f ) ⊂ Diffμ(M) such that for any g ∈ U (f ), every periodic point of g is
hyperbolic.
Very recently, Arbieto andCatalan [] proved that every volume-preserving diffeomor-

phism in Fμ(M) is Anosov.

Theorem . [, Theorem .] Every diffeomorphism in Fμ(M) is Anosov.

To prove Theorem B, it is enough to show that a continuum-wise expansive volume-
preserving diffeomorphism f ∈Fμ(M).

Remark . Let f ∈ Diffμ(M). From the Moser theorem (see []), we can find a smooth
conservative change of coordinates ϕx :U(x) → TxM such that ϕx(x) = , where U(x) is a
small neighborhood of x ∈M.

Lemma . If f ∈ intCWEμ(M), then f ∈Fμ(M).

Proof Take f ∈ intCWEμ(M), and U (f ) a C-neighborhood of f . Let ε >  and V(f ) ⊂
U (f ) be corresponding number and C-neighborhood given by Lemma .. To derive a
contradiction, suppose that there is a non-hyperbolic periodic point p ∈ P(g) for some
g ∈ V(f ). To simplify the notation in the proof, we may assume that g(p) = p. Then there
is at least one eigenvalue λ of Dpg such that |λ| = . By making use of Lemma ., we
linearize f at p with respect to Moser’s theorem, that is, by choosing α >  sufficiently
small we construct g C-nearby g such that

g(x) =

{
ϕ–
p ◦Dpg ◦ ϕp(x) if x ∈ Bα(p),

g(x) if x /∈ Bα(p).

Then g(p) = g(p) = p. Thus TpM = Ec ⊕Eσ , where Ec
p associated to λ =  and Eσ

p associated
to eigenvalues less than one and greater than one. Take η = α/. Then we define Ec(η) ∩
ϕp(Bα(p)) = Ec(η).
Case . dimEc

p = .
Since p is non-hyperbolic for g, by our construction, we may assume that there is l > 

such that Dpgl(v) = v for any v ∈ Ec
p(η) ∩ ϕp(Bα(p)). Take v ∈ Ec

p(η) such that ‖v‖ = η/.
Then we can find a small arc Ip = ϕ–

p ({tv : ≤ t ≤ η/}) ⊂ Bα(p) such that
(i) gi(Ip)∩ gj(Ip) = ∅ if  ≤ i �= j ≤ l – ,
(ii) gl(Ip) = Ip, that is, gl|Ip is the identity map,
(iii) Ip is normally hyperbolic.

For simplicity, we assume that gl = g. Take e = η. Then for all n ∈ Z,

diam
(
gn (Ip)

)
< e.

This is a contradiction.
Case . dimEc

p = .
In the proof of the second case, to avoid notational complexity, we consider the case

g(p) = p. By Lemma ., there is α >  and h ∈ U (f ) such that h(p) = g(p) = p and h(x) =
ϕ–
p ◦Dpg ◦ ϕp(x) if x ∈ Bα(p). With a small modification of Dpg , we may assume that there

http://www.journalofinequalitiesandapplications.com/content/2014/1/379
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is l >  such thatDpgl(v) = v for any v ∈ Ec
p(α) by Lemma ..We can choose v ∈ Ec

p(α) such
that ‖v‖ = α/ and we set Dp = ϕ–

p ({tv :  ≤ t ≤ α/}) ⊂ Bα(p). Then the disk Dp satisfies
the following conditions:

(i) hi(Dph )∩ hj(Dph ) = ∅ if  ≤ i �= j ≤ l – ,
(ii) hl(Dph ) =Dph , that is, h

l|Dph
is the identity map,

(iii) Dp is normally hyperbolic.
As in the proof of the dimEc

p = , we can derive a contradiction. �

Proof of Theorem B Suppose that f ∈ intCWEμ(M). By Lemma ., f ∈ Fμ(M). Thus by
Theorem ., f is Anosov. �

Proof of Theorem C The proof of Theorem C is parallel the proof of Theorem A. Indeed,
to prove Theorem A we use previous results - Lemmas ., . and .. Then we have a
volume-preserving diffeomorphism f ∈Fμ(M). Thus f is Anosov. �

In diffeomorphisms, there is an open problem: are Anosov diffeomorphisms transi-
tive? In [] Franks and [] Newhouse proved it for codimension one Anosov diffeo-
morphisms. It was announced in Xia in a talk, Anosov diffeomorphisms are transitive,
an invited talk of the Rocky Mountain Conference on Dynamical Systems, May -,
, that every Anosov diffeomorphism is transitive. It has not been published yet. Nev-
ertheless, in the volume-preserving diffeomorphism, an Anosov diffeomorphism has the
non-wandering set equal to the whole manifoldM by the Poincaré theorem. By the shad-
owing property of the hyperbolic sets the periodic points are dense inM. And by the Smale
spectral decomposition theorem,we have a single piece equal toM, and so, we have transi-
tivity. Thus, the Anosov volume-preserving diffeomorphism is transitive, which is a direct
consequence of classic hyperbolic dynamics. But in volume-preserving diffeomorphisms
Bonatti and Crovisier proved that C-generically, a volume-preserving diffeomorphism is
transitive.

Theorem . [, Theorem .] There is a residual set R ⊂ Diffμ(M) such that for any
f ∈R, f is transitive and M is a unique homoclinic class.

We say that f is transitive if there is a point x ∈M such that ω(x) =M, where ω(x) is the
omega limit set.

Remark . In [, Theorem .], Newhouse showed that C-generic volume-preserving
diffeomorphisms in surfaces are Anosov or else the elliptical points, nonreal eigenvalues
conjugated and of norm one, are dense.

By [] and Theorem A, we have the following.

Corollary . There is a residual set G ⊂ Diffμ(M) such that for any f ∈ G , the following
are equivalents:
(a) f is expansive,
(b) f is transitive Anosov.

Moreover, if dimM ≥  then
(c) f is continuum-wise expansive,

http://www.journalofinequalitiesandapplications.com/content/2014/1/379
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(d) f has the shadowing property,
(e) f has the weak specification property.

Proof Let f ∈ G = R ∩ R is continuum-wise expansive. By Theorem A, f is Anosov.
Since f ∈ R, by Lemma ., f is transitive. Thus if f is continuum-wise expansive, then
f is transitive Anosov. By Bessa et al. [], f is expansive, then f is Anosov, and so, f is
transitive Anosov. If dimM ≥ , then by Bessa et al. [] if f has the shadowing property
and f has the weak specification property, then f is Anosov and since f ∈ R, also f is
transitive. Thus f is transitive Anosov. �
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