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Pathogens commonly possess naturally

occurring intraspecific variation for traits

associated with pathogenicity or virulence.

Studies of host–pathogen interactions fre-

quently fail to acknowledge this variation,

particularly in studies of necrotrophic

plant pathogens, where the molecular

bases of defense are largely unknown.

Necrotrophic plant pathogens, in contrast

to obligate parasites of living plant cells

known as biotrophs, kill plant cells before

consuming them and may survive in the

absence of living host cells in dormant or

saprophytic states [1–4]. Necrotrophs may

kill host cells using an array of toxins,

although it is also proposed that these

pathogens may activate plant immune

responses designed to work against bio-

trophic pathogens, thus encouraging plant

cells to kill themselves [5–9]. While many

pathogen species cannot be clearly classi-

fied as either biotrophic or necrotrophic,

as they shift lifestyles over the course of

interactions with their hosts, commonly

recognized necrotrophic plant pathogens

include various species of Botrytis and

Alternaria, as well as Sclerotinia sclerotiorum,

Pythium irregulare, and Plectosphaerella cucur-

merina [2,10]. Of these, Botrytis cinerea, a

highly generalist pathogen, and Alternaria

brassicicola, a specialist pathogen of Brassica,

dominate research on molecular mecha-

nisms of plant defense against necro-

trophic pathogens.

Plant immune responses against bio-

trophic pathogens are predominantly me-

diated by specific recognition of the

products of pathogen ‘‘avirulence’’ (avr)

genes directly or indirectly by the products

of plant ‘‘resistance’’ (R) genes; localized

cell death is believed to restrict the growth

of obligate (biotrophic) parasites [11,12].

Intraspecific variation in pathogen avr

genes is common, as these genes are

believed to confer a selective pathogen

advantage in the absence of the corre-

sponding plant R gene [13–15]. Currently,

specific recognition of necrotrophic path-

ogens by similar mechanisms has not been

documented, although similar evolution-

ary dynamics may shape the interplay

between variable plant sensitivity to some

necrotroph-produced toxins (called ‘‘host

selective toxins’’) and variable production

of these toxins by the pathogen [15–17].

This lack of identified specific recognition

has generated a prevailing view in the

plant molecular defense research commu-

nity that as necrotrophic pathogens are

not reported to engage in specific interac-

tions with host plants, all isolates of a

particular necrotrophic pathogen species

are equivalent. This opinion manifests

itself in a lack of use of necrotrophic

diversity in published studies, as well as a

lack of reporting of identifying pathogen

data, despite published evidence that

necrotrophic pathogens show intraspecific

variation affecting pathogenesis- or viru-

lence-related traits [18–24]. We suggest

that the limited use of pathogen diversity

biases our understanding of plant–necro-

troph interactions. The research commu-

nity should enforce detailed reporting of

identifying pathogen data for studies

of plant–necrotroph interactions and en-

courage the use of multiple pathogen

genotypes.

Lack of Diversity

The majority of studies investigating the

molecular bases of plant–necrotroph in-

teractions do not include pathogen varia-

tion. Based on a survey of published

literature from the last 10 years, fewer

than 12% of surveyed studies of plant

defense against Botrytis cinerea, the most

intensively researched plant necrotrophic

pathogen as reflected by publication

frequency, report experimental results for

more than one pathogen isolate (see Text

S1). The diversity of A. brassicicola repre-

sented in the current literature is much

lower, as none of the surveyed studies

reported data from multiple pathogen

isolates and almost half of these studies

used the same isolate, MUCL20297.

While selection of a particular pathogen

isolate as a model or laboratory standard

may facilitate comparison among studies

performed in different laboratories, data

from single isolates are too often repre-

sented as informative for the whole

pathogen species. If the reference isolate

is atypical, misleading conclusions may be

drawn regarding the biology of the plant–

host interaction, and promising lines of

research may be abandoned.

A Cautionary Example:
Resveratrol

The controversial role of phytoalexin

defense compounds in providing actual

plant defense against pathogens illustrates

the importance of including necrotroph

variation in studies of plant defense. One

phytoalexin compound implicated in plant

defense is resveratrol, a stilbenoid phyto-

alexin produced by Vitis vinifera in response

to pathogen attack [25,26]. As the chem-

ical precursors for resveratrol are pro-

duced by all plants, transgenic introduc-

tion of V. vinifera stilbene synthases into

several crop plants provided the capacity

for heterologous production of this anti-

microbial compound [27]. Independent

studies of transgenic tomato, barley, and
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tobacco evaluated resveratrol’s efficacy

against B. cinerea. Intriguingly, the capacity

to produce resveratrol enhanced plant

resistance to B. cinerea in barley and

tobacco, but had no significant effect on

tomato resistance to B. cinerea, despite

plant accumulation of resveratrol at con-

centrations sufficient to inhibit B. cinerea

growth [28].

While inhibition of B. cinerea growth by

resveratrol might depend on the host in

which it is encountered by the pathogen,

the reported capacity of B. cinerea to

degrade stilbenoid phytoalexins by the

action of laccases suggests an alternative

explanation [28,29]. Eight surveyed B.

cinerea isolates varied in their capacity to

degrade resveratrol; this variation was

linked to virulence on grape leaves [29].

The studies of resveratrol-producing to-

bacco and barley do not provide any

information about the B. cinerea isolate(s)

used, and the tomato study reports use of

‘‘a spore suspension of field isolates’’,

possibly representing a mixture of patho-

gen genotypes [30–32]. The observed lack

of increased B. cinerea resistance in resver-

atrol-producing tomato plants might result

from the presence of resveratrol-degrading

B. cinerea isolates, while tests of transgenic

tobacco and barley used isolates with

reduced or no capacity to degrade resver-

atrol. Without documentation and archiv-

ing of B. cinerea isolates used, it is

impossible to retroactively distinguish

whether these conflicting results reflect

pathogen isolate differences or differences

in plant biochemistry and physiology.

Lack of Reporting

A lack of reported information about

necrotrophic pathogen isolates is a less

common, but more troubling, deficiency

in the published literature. Approximately

15%–20% of surveyed publications re-

porting original research on plant defense

against either B. cinerea or A. brassicicola did

not provide any description of the patho-

gen isolate used. Minimally, an isolate

name and explicit details of the isolate’s

source should be provided. In addition,

references to source materials or isolation

methods should include documentation of

how the species identity was confirmed, as

pathogens may be difficult to distinguish

by morphology or collection host. Addi-

tional information, such as collection date,

host, and geography, may add valuable

context for other researchers, especially for

species such as B. cinerea where cryptic

speciation related to host use and geogra-

phy have been proposed [33–36].

Steps Forward

Pathogen diversity presents serious chal-

lenges and opportunities for understand-

ing pathogen interactions with host de-

fenses. Conclusions drawn from studies

employing single, or even multiple, isolates

may not accurately represent the biology

of the species as a whole. Variation in

either the host or the pathogen can alter

these relationships and this should be at

least acknowledged in biological studies.

Further, the lax acknowledgement of

genotypic diversity within necrotrophic

plant pathogens hinders comparison

among studies through both a lack of

overlap among experimental isolates used

by different research groups and a lack of

explicit description of the isolates used.

Use of a standardized panel of pathogen

isolates is impracticable given restrictions

on the import and movement of plant

pathogens, and might provide a false

resolution to this issue, as the rate of

genomic change in these pathogens, par-

ticularly in response to selection for

laboratory growth, is unknown.

A promising strategy would embrace

pathogen diversity to provide a more

detailed picture of how plant and necro-

trophic pathogen species interact, creating

a valuable link between molecular- and

population-level studies. This would re-

quire preliminary evaluation of diversity in

a collection of isolates for a given study

trait, followed by detailed characterization

of a subset of isolates covering the

identified range of trait variation. The

paucity of studies employing this strategy

likely reflects the effort required to obtain

large pathogen collections and the increase

in experimental resources required. Min-

imally, the scientific community and

particularly scientific journals should re-

quire a detailed description of isolates,

including isolate verification and proper

referencing, as a prerequisite for publica-

tion. Cooperation among laboratories to

independently confirm experimental find-

ings should also be encouraged, as this will

improve interpretation of single-isolate

studies and minimize disagreements

caused by pathogen variation.

Supporting Information

Text S1 Literature reviewed. List of

publications reporting original data on

plant interactions with necrotrophic fungal

pathogens retrieved from ISI Web of

Science using the combined topic search

terms ‘‘Botrytis cinerea’’and ‘‘plant defen-

se’’or ‘‘Alternaria brassicicola’’ and ‘‘plant

defense’’.

Found at: doi:10.1371/journal.ppat.

1000759.s001 (0.08 MB DOC)
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