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In this paper, we offer generalized exponentiated gamma distribution. We consider the maximum 
likelihood and Bayesian estimators of unknown parameters and propose Markov chain Monte Carlo 
(MCMC) method to generate samples from the posterior distribution. The mean square error of 
estimations is computed and comparisons are made using Monte Carlo simulation. 
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INTRODUCTION 
 
The exponentiated gamma (EG) distribution has been 
introduced by Gupta et al. (1998) which has a probability 
density function (p.d.f.) and cumulative distribution 
function (c.d.f.) of the form, respectively; 
 

 

𝑓 𝑥 = 𝜃𝑥𝑒−𝑥 1 − 𝑒−𝑥 1 + 𝑥  
𝜃−1

     ;   𝑥 > 0 , 𝜃 > 0              (1.1) 

 

     (1) 
  

𝐹 𝑥 =  1 − 𝑒−𝑥 1 + 𝑥  
𝜃

              ;    𝑥 > 0 , 𝜃 > 0                     (1.2) 

 

   (2) 
 

Where θ is the shape parameter. Bayesian and non-

Bayesian estimations on the EG distribution was 
discussed by Shawky and Bakoban (2008). Also order 
statistics from exponentiated gamma distribution and 
associated inference was discussed by Shawky and 
Bakoban (2009). For more information, Basu and 
Ebrahimi (1991), and Nassar and Eissa (2004) can be 
consulted. 

Ghanizadeh et al. (2011) considered the classical 
estimation of the EG distribution parameters with 
presence of k outliers. Nasiri, and Pazira (2010) 
considered the Bayesian and non-Bayesian estimations 
of generalized exponential distribution in the presence 
outlier. In this paper, we consider generalized exponential 
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distribution. 
The generalized exponentiated gamma (GEG) 

distribution has the following p.d.f. and c.d.f., 
respectively; 
 

 

𝑓 𝑥 = 𝜃𝜆2𝑥𝑒−𝜆𝑥  1 − 𝑒−𝜆𝑥  1 + 𝜆𝑥  
𝜃−1

    ;   𝑥 > 0 , 𝜃 > 0 , 𝜆 > 0      1.3  

 

𝐹 𝑥 =  1 − 𝑒−𝜆𝑥  1 + 𝜆𝑥  
𝜃

              ;    𝑥 > 0 , 𝜃 > 0 , 𝜆 > 0                   1.4  

 

  (3) 
 

 

𝑓 𝑥 = 𝜃𝜆2𝑥𝑒−𝜆𝑥  1 − 𝑒−𝜆𝑥  1 + 𝜆𝑥  
𝜃−1

    ;   𝑥 > 0 , 𝜃 > 0 , 𝜆 > 0      1.3  

 

𝐹 𝑥 =  1 − 𝑒−𝜆𝑥  1 + 𝜆𝑥  
𝜃

              ;    𝑥 > 0 , 𝜃 > 0 , 𝜆 > 0                   1.4  

 

  (4) 
 

Where  and  are scale and shape parameters, 

respectively. When shape parameter is one f(x) is given 
by Gupta et al. (1998).  Classical and Bayesian 
estimators are derived for the shape parameter in the 
case of type – II censored sample.  
 
 

MAXIMUM LIKELIHOOD ESTIMATION 
 

Suppose a type-II censored sample  

where  is i
th
 order statistics. This sample are obtained 

and recorded from  distribution with p.d.f. and 

c.d.f. given by (3) and (4), respectively. The likelihood 
function of the observed data is given by, 
 

 

 

ℓ 𝑥; 𝜆, 𝜃 = 𝜃𝑘𝜆2𝑘𝑒−𝑇 1 − 𝑉𝜃 
𝑛−𝑘

                                                   1  

 

 

                           (5) 
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Where 
  

𝑇 =   𝑥𝑖 − 𝑙𝑛𝑥𝑖 −  𝜃 − 1 𝑙𝑛𝑢𝑖 
𝑘
𝑖=1      ,    𝑢𝑖 = 1 − 𝑒−𝜆𝑥𝑖 1 + 𝜆𝑥𝑖  ,  

 𝑉 = 1 − 𝑒−𝜆𝑥𝑘 1 + 𝜆𝑥𝑘   

 

 
 
To estimation of parameter, we consider of  

as, 
  

𝑙𝑜𝑔ℓ 𝜃 = 𝑘𝑙𝑜𝑔 𝜃 + 2𝑘𝑙𝑜𝑔 𝜆 − 𝑇 +  𝑛 − 𝑘 𝑙𝑜𝑔 1 − 𝑉𝜃    

 
 

 
 

  
𝜕𝑙𝑜𝑔 ℓ 𝜃 

𝜕𝜃
=

𝑘

𝜃
−

𝑑𝑇

𝑑𝜃
+  𝑛 − 𝑘 

𝑑 1−𝑉𝜃 

1−𝑉𝜃    

 

 
 

 

                 =  
𝑘

𝜃
+  𝑙𝑛  1 − 𝑒−𝜆𝑥𝑖 1 + 𝜆𝑥𝑖  

𝑘
𝑖=1 −  𝑛 − 𝑘 

𝑉𝜃 𝑙𝑜𝑔  𝑉 

1−𝑉𝜃    

 

 
 
Hence, 
 
 

𝑘

𝜃
+  𝑙𝑛  1 − 𝑒−𝜆𝑥𝑖 1 + 𝜆𝑥𝑖  

𝑘
𝑖=1 −  𝑛 − 𝑘 

𝑉𝜃 𝑙𝑜𝑔  𝑉 

1−𝑉𝜃 = 0                         (2) 

 

    (6) 
 

For , it is given by Shawky and Bakoban (2008). To 

estimate of  we can solve Equation (2.2) by Newton-

Raphson method. Hence, solution of the equation is, 
 
 

𝜃𝑖+1 = 𝜃𝑖 −
𝑔 𝜃𝑖 

𝑔 ′ 𝜃𝑖 
   

 

 
 
Where, 
 
 

𝑔 𝜃 =
𝑘

𝜃
+  𝑙𝑛  1 − 𝑒−𝜆𝑥𝑖 1 + 𝜆𝑥𝑖  

𝑘
𝑖=1 −  𝑛 − 𝑘 

𝑉𝜃 𝑙𝑜𝑔  𝑉 

1−𝑉𝜃   

 

𝑔′ 𝜃 = −
𝑘

𝜃2 −  𝑛 − 𝑘 
𝑉𝜃 𝑙𝑜𝑔  𝑉 . 1−𝑉𝜃  +𝑉2𝜃 𝑙𝑜𝑔  𝜃 

 1−𝑉𝜃  
2    

 

 
 

 

𝑔 𝜃 =
𝑘

𝜃
+  𝑙𝑛  1 − 𝑒−𝜆𝑥𝑖 1 + 𝜆𝑥𝑖  

𝑘
𝑖=1 −  𝑛 − 𝑘 

𝑉𝜃 𝑙𝑜𝑔  𝑉 

1−𝑉𝜃   

 

𝑔′ 𝜃 = −
𝑘

𝜃2 −  𝑛 − 𝑘 
𝑉𝜃 𝑙𝑜𝑔  𝑉 . 1−𝑉𝜃  +𝑉2𝜃 𝑙𝑜𝑔  𝜃 

 1−𝑉𝜃  
2    

 

 
 
 
BAYESIAN ESTIMATION 
 

Suppose that  has the following gamma prior 

distribution, when  is known, 

 
 

𝜋 𝜃 =
𝛽𝛼

Γ 𝛼 
𝜃𝛼−1𝑒−𝛽𝜃     ;       𝜃 > 0  , 𝛼 > 0  , 𝛽 > 0                           (3.1)  

 

     (7) 
 
Appling Bayesian theorem and using Equation (5) and 

(7), the posterior density of  as, 

 
 
 
 
 

𝜋 𝜃 𝑥 =
ℓ 𝑥;𝜆,𝜃 𝜋 𝜃 

 ℓ 𝑥;𝜆 ,𝜃 𝜋 𝜃 𝑑𝜃
∞

0

  

              =
𝜃𝛼+𝑘−1𝑒−𝛽𝜃  1−𝑉𝜃  

𝑛−𝑘
𝑒−𝑇

 𝜃𝛼+𝑘−1𝑒−𝛽𝜃  1−𝑉𝜃  
𝑛−𝑘

𝑒−𝑇𝑑𝜃
∞

0

  

 

 
 

The Bayes estimate ,  of  under the squared error loss 

function given by, 
  

 𝜃 𝐵 = 𝐸 𝜃𝑟 =
𝐼𝑟

𝐼0
  

 

 
 
Where, 
 

𝐼𝑟 =  𝜃𝛼+𝑘+𝑟−1𝑒−𝛽𝜃  1 − 𝑉𝜃 
𝑛−𝑘

𝑒−𝑇𝑑𝜃
∞

0
  

 

 
 

Since  for  by using the binomial 

series expression we have, 
 
 

𝐼𝑟 =   𝑛−𝑘
𝑡
  −1 𝑡  𝜃𝛼+𝑘+𝑟−1𝑒−𝛽𝜃 𝑉𝑡𝜃𝑒−𝑇𝑑𝜃

∞

0
𝑛−𝑘
𝑡=0   

 

 
 
Let, 
  

𝐵 =   𝑥𝑖 − 𝑙𝑛𝑥𝑖 + 𝑙𝑛𝑢𝑖 
𝑘

𝑖=1
 
  

 
So, 
  

𝑇 = 𝐵 − 𝜃 𝑙𝑛𝑢𝑖
𝑘
𝑖=1   

 

 
 
Hence, 
 

𝐼𝑟 =   𝑛−𝑘
𝑡
  −1 𝑡  𝜃𝛼+𝑘+𝑟−1𝑒−𝛽𝜃𝑉𝑡𝜃𝑒

− 𝐵−𝜃  𝑙𝑛𝑢 𝑖
𝑘
𝑖=1  

𝑑𝜃
∞

0
𝑛−𝑘
𝑡=0   

    =   𝑛−𝑘
𝑡
  −1 𝑡𝑒−𝐵  𝜃𝛼+𝑘+𝑟−1𝑉𝑡𝜃 𝑒−𝜃 𝛽− 𝑙𝑛𝑢 𝑖

𝑘
𝑖=1  𝑑𝜃

∞

0
𝑛−𝑘
𝑡=0   

    =   𝑛−𝑘
𝑡
  −1 𝑡𝑒−𝐵  𝜃𝛼+𝑘+𝑟−1𝑒−𝜃 𝛽−𝑡𝑙𝑛𝑉 − 𝑙𝑛𝑢 𝑖

𝑘
𝑖=1  𝑑𝜃

∞

0
𝑛−𝑘
𝑡=0   

   =   𝑛−𝑘
𝑡
  −1 𝑡𝑒−𝐵 .

Γ 𝛼+𝑘+𝑟 

𝐴𝛼+𝑘+𝑟
𝑛−𝑘
𝑡=0  

  
Where, 
 

𝐴 = 𝛽 − 𝑡𝑙𝑛𝑉 −  𝑙𝑛𝑢𝑖
𝑘
𝑖=1   

 

 
 
 
NUMERICAL COMPARISONS 
 
Here we perform some numerical experiments. Our main 
aim is to compare the MLE and  Bayesian  estimator  and
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Table 1. Simulated values of bias and MSE′s of ,  and . 

 

n 
 

k   

20 

15 
0.41587 1.90387 

2.36491 2.24980 

   

20 
1.32686 0.84301 

2.00649 1.98034 

    

30 

25 
-0.87106 -0.67105 

1.40267 1.02246 

   

30 
0.90247 -0.70681 

1.04912 0.99721 

    

40 

35 
-1.09843 -0.86435 

0.73264 0.23697 

   

40 
-0.61870 0.81375 

0.64801 0.19745 

    

50 

45 
0.73915 1.40256 

0.60015 0.04364 

   

50 
0.13820 -0.80359 

0.24015 0.01697 
 

The first entry is the simulated bias. 

 
 
 
their results work for sample sizes n=20, 30, 40 and 50 

relative to scale parameter =0.75, 1 and 2 respectively. 

We chose prior parameters as 2 and 3 for 

Bayesian estimation. The biases and mean square errors 
(MSE's) are computed for different sample size n and 
censored sizes: k=15, 25, 35 and 45. The computations 
are achieved under complete and censored samples. 
 
 
CONCLUSIONS 
 

In this paper we have introduced a new distribution of the 
exponentiated gamma distribution and we called that 
generalized exponentiated gamma distribution. Also we 
consider classical and Bayesian estimations of the shape 
parameter of the generalized exponentiated gamma 
distribution. We assume the gamma prior on the 
unknown parameter and provided the Bayes estimator 
under the assumption of quadratic loss function. The 
estimations conducted on the basis of complete and type-
II censored samples. 

Our observations about results are stated in the 
following points: 

1. Table 1 and Figure 1, show that the Bayes estimates 
under the squared error loss function have the smallest 
estimated MSE's as compared with the MLE. This is true 
for both complete and censored samples. It is immediate 
to note that MSE's decrease as sample size increases. 
2. Table 2 and Figure 2 show that the Bayes estimates 
under the squared error loss function have the smallest 
estimated MSE's as compared with the MLE when 
sample size is small but when sample size increase the 
MLE's have the smallest estimated MSE's as compared 
with the Bayes estimates. This is true for both complete 
and censored samples. 
3. Table 3 and Figure 3 shows that the MLE's have the 
smallest estimated MSE's as compared with the Bayes 
estimates. This is true for both complete and censored 
samples. It is immediate to note that MSE's decrease as 
sample size increases for Bayes estimates. 

 
From the previous results and observations, we suggest 
the use of small value of the parameter l by Bayes 
approach under squared error loss function for estimating 
shape parameter of GEG distribution, while the MLE's are 
better than Bayes estimates when l increase.  
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Figure 1. MSE of the estimator of ө for λ = 0.75. 

 
 
 

Table 2. Simulated values of bias and MSE′s of ,  and . 

 

n 
 

k   

20 

15 
-0.71540 2.03046 

2.00036 1.83264 

   

20 
2.36187 1.34682 

1.97621 1.67921 

    

30 

25 
1.36484 0.97813 

1.00346 0.97685 

   

30 
-0.15785 -1.32645 

0.97875 0.84316 

    

40 

35 
-1.64975 -1.09785 

0.34982 0.76134 

   

40 
0.06974 0.94652 

0.19032 0.46971 

    

50 

45 
-0.97452 -0.64985 

0.03648 0.16970 

   

50 
0.91254 1.32645 

0.01360 0.09340 
 

The first entry is the simulated bias. 
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Figure 2. MSE of the estimator of ө for λ = 1. 

 
 
 

Table 3. Simulated values of bias and MSE′s of ,  and . 

 

n 
 

k   

20 

15 
3.46985 3.49875 

3.65842 5.68712 

   

20 
2.64814 2.64658 

3.00645 5.00925 

    

30 

25 
-2.34685 3.64584 

2.06975 4.16584 

   

30 
1.97824 -2.34652 

1.43268 3.74692 

    

40 

35 
0.12212 0.34658 

1.00254 3.65824 

   

40 
-1.46857 -2.34658 

0.64985 2.60154 

    

50 

45 
-3.64851 -4.35658 

0.35422 2.03498 

   

50 
1.06497 3.06452 

0.19875 1.63408 
 

The first entry is the simulated bias. 
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Figure 3. MSE of the estimator of ө for λ = 2. 
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