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Abstract

We consider functionals due to the difference in Petrović and related inequalities
and prove the log-convexity and exponential convexity of these functionals by using
different families of functions. We construct positive semi-definite matrices generated
by these functionals and give some related results. At the end, we give some
examples.
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1 Introduction
First time exponentially convex functions are introduced by Bernstein [1]. Indepen-

dently of Bernstein, but some what later Widder [2] introduced these functions, as a

sub-class of convex functions in a given interval (a, b), and denoted this class by Wa,b.

After the initial development, there is a big gap in time before applications and exam-

ples of interest were constructed. One of the reasons is that, aside from absolutely

monotone functions and completely monotone functions, as special classes of expo-

nentially convex functions, there is no operative criteria to recognize exponential con-

vexity of functions.

Definition 1. [[3], p. 373] A function f : (a, b) ® ℝ is exponentially convex if it is

continuous and

n∑
i,j=1

ξiξjf (xi + xj) ≥ 0 (1)

for all n Î N and all choices ξi Î ℝ and xi + xj Î (a, b), 1 ≤ i, j ≤ n.

Proposition 1.1. Let f : (a, b) ® ℝ. The following propositions are equivalent.

(i) f is exponentially convex.

(ii) f is continuous and

n∑
i,j=1

ξiξjf
(xi + xj

2

)
≥ 0

for every ξi Î ℝ and every xi Î (a, b), 1 ≤ i ≤ n.
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Proposition 1.2. If f is exponentially convex, then the matrix[
f
(xi + xj

2

)]n
i,j=1

is positive semi-definite. In particular,

det
[
f
(xi + xj

2

)]n
i,j=1

≥ 0

for every n Î N, xi Î (a, b), i = 1, ..., n.

Proposition 1.3. If f : (a, b) ® (0, ∞) is an exponentially convex function, then f is

log-convex which means that for every x, y Î (a, b) and all l Î(0, 1)

f (λx + (1 − λ)y) ≤ f (x)λf (y)1−λ.

We consider functionals due to the differences in the Petrović and related inequal-

ities. These inequalities are given in the following theorems [[4], pp. 152-159].

Theorem 1.4. Let I = (0, a] ⊆ ℝ be an interval, (x1, ..., xn) Î In, and (p1, ..., pn) be a

non-negative n-tuple such that

n∑
i=1

pixi ∈ I and
n∑
i=1

pixi ≥ xj for j = 1, . . . ,n. (2)

If f : I ® ℝ be a function such that f (x)/x is an increasing for x Î I, then

f

(
n∑
i=1

pixi

)
≥

n∑
i=1

pif (xi). (3)

Remark 1.5. Let us note that if f(x)/x is a strictly increasing function for x Î I, then

equality in (3) is valid if we have equalities in (2) instead of the inequalities, that is, x1
= ... = xn and

∑n
i=1 pi = 1.

Theorem 1.6. Let I = (0, a] ⊆ ℝ be an interval, (x1, ..., xn) Î In, such that 0 < x1 ≤ ...

≤ xn, (p1, ..., pn) be a non-negative n-tuple and f : I ® ℝ be a function such that f(x)/x

is an increasing for x Î I.

(i) If there exists an m(≤ n) such that

0 ≤ P̄1 ≤ P̄2 ≤ · · · ≤ P̄m ≤ 1, P̄m+1 = · · · = P̄n = 0, (4)

where Pk =
∑k

i=1 pi, P̄k = Pn − Pk−1 (k = 2, . . . ,n)and P̄1 = Pn, then (3) holds.

(ii) If there exists an m(≤ n) such that

P̄1 ≥ P̄2 ≥ · · · ≥ P̄m ≥ 1, P̄m+1 = · · · = P̄n = 0, (5)

then the reverse of inequality in (3) holds.

Theorem 1.7. Let I = (0, a] ⊆ ℝ be an interval, (x1, ..., xn) Î In, and x1 - x2 - ... - xn
Î I. Also let f : I ® ℝ be a function such that f(x)/x is an increasing for x Î I. Then
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f

(
x1 −

n∑
i=2

xi

)
≤ f (x1) −

n∑
i=2

f (xi). (6)

Remark 1.8. If f(x)/x is a strictly increasing function for x Î I, then strict inequality

holds in (6).

Theorem 1.9. Let I = (0, a] ⊆ ℝ be an interval, (x1, ..., xn) Î In, (p1, ..., pn) and (q1,

..., qn) be non-negative n-tuples such that (2) holds. If f : I ® ℝ be an increasing func-

tion, then

n∑
i=1

qif

(
n∑
i=1

pixi

)
≥

n∑
i=1

qif (xi). (7)

Remark 1.10. If f is a strictly increasing function on I and all xi’s are not equal, then

we obtain strict inequality in (7).

Theorem 1.11. Let I = [0, a] ⊆ ℝ be an interval, (x1, ..., xn) Î In, and (p1, ..., pn) be a

non-negative n-tuple such that (2) holds.

If f is a convex function on I, then

f

(
n∑
i=1

pixi

)
≥

n∑
i=1

pif (xi) +

(
1 −

n∑
i=1

pi

)
f (0). (8)

Remark 1.12. In the above theorem, if f is a strictly convex, then inequality in (8) is

strict, if all xi’s are not equal or
∑n

i=1
pi �= 1.

Theorem 1.13. Let I ⊆ ℝ be an interval, 0 Î I, f be a convex function on I, h : [a.b]

® I be continuous and monotonic with h(t0) = 0, t0 Î [a, b] be fixed, g be a function of

bounded variation and

G(t) :=

t∫
a

dg(x), G(t) :=

b∫
t

dg(x).

(a) If
∫ b
a h(t)dg(t) ∈ Iand

0 ≤ G(t) ≤ 1 for a ≤ t ≤ t0, 0 ≤ G(t) ≤ 1 for t0 < t ≤ b, (9)

then we have

b∫
a

f (h(t))dg(t) ≥ f

⎛
⎝ b∫

a

h(t)dg(t)

⎞
⎠ +

⎛
⎝ b∫

a

dg(t) − 1

⎞
⎠ f (0). (10)

(b) If
∫ b

a
h(t)dg(t) ∈ Iand either
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there exists an s ≤ t0 such that G(t) ≤ 0 for t <s,

G(t) ≥ 1 for s ≤ t ≤ t0 and G(t) ≤ 0 for t > t0 (11)

or

there exists an s ≥ t0 such that G(t) ≤ 0 for t <t0,

G(t) ≥ 1 for t0 < t < s, and G(t) ≤ 0 for t ≥ s, (12)

then the reverse of the inequality in (10) holds.

In this paper, we consider certain families of functions to prove log-convexity and

exponential convexity of functionals due to the differences in inequalities given in The-

orems 1.4-1.13. We construct positive semi-definite matrices generated by these func-

tionals. Also by using log-convexity of these functionals, we prove monotonicity of the

expressions introduced by these functionals. At the end, we give some examples.

2 Main results
Let I ⊆ ℝ be an interval and f : I ® ℝ be a function. Then for distinct points ui Î I, i

= 0, 1, 2, the divided differences in first and second order are defined as follows:

[
ui, ui+1, f

]
=
f (ui+1) − f (ui)

ui+1 − ui
(i = 0, 1) ,

[
u0, u1, u2, f

]
=

[
u1, u2, f

] − [
u0, u1, f

]
u2 − u0

.

(13)

The values of the divided differences are independent of the order of the points u0,

u1, u2 and may be extended to include the cases when some or all points are equal,

that is

[u0, u0, f ] = lim
u1→u0

[u0, u1, f ] = f ′(u0),

provided that f’ exists.

Now passing through the limit u1 ® u0 and replacing u2 by u in (13), we have [[4],

p. 16]

[u0, u0, u, f ] = lim
u1→u0

[u0, u1, u, f ] =
f (u) − f (u0) − (u − u0)f ′(u0)

(u − u0)
2 , u �= u0,

provided that f’ exists. Also passing to the limit ui ® u (i = 0, 1, 2) in (13), we have

[u, u, u, f ] = lim
ui→u

[u0, u1, u2, f ] =
f ′′(u)
2

,

provided that f″ exists.

One can note that if for all u0, u1 Î I, [u0, u1, f] ≥ 0, then f is increasing on I and if

for all u0, u1, u2 Î I, [u0, u1, u2, f] ≥ 0, then f is convex on I.

(M1) Under the assumptions of Theorem 1.4, with all xi’s not equal, we define a lin-

ear functional as
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P1(f ) = f

(
n∑
i=1

pixi

)
−

n∑
i=1

pif (xi).

(M2) Under the assumptions of Theorem 1.6, with all xi’s not equal and (4) is valid,

we define a linear functional as

P2(f ) = P1(f ).

(M3) Under the assumptions of Theorem 1.6, with all xi’s not equal and (5) is valid,

we define a linear functional as

P3(f ) = −P1(f ).

(M4) Under the assumptions of Theorem 1.7, with all xi’s not equal, we define a lin-

ear functional as

P4(f ) = f (x1) −
n∑
i=2

f (xi) − f

(
x1 −

n∑
i=2

xi

)
.

(M5) Under the assumptions of Theorem 1.9, with all xi’s not equal, we define a lin-

ear functional as

P5(f ) =
n∑
i=1

qif

(
n∑
i=1

pixi

)
−

n∑
i=1

qif (xi).

(M6) Under the assumptions of Theorem 1.11, with all xi’s not equal, we define a lin-

ear functional as

P6(f ) = f

(
n∑
i=1

pixi

)
−

n∑
i=1

pif (xi) −
(
1 −

n∑
i=1

pi

)
f (0).

(M7) Under the assumptions of Theorem 1.13, such that (9) is valid, we define a lin-

ear functional as

P7(f ) =

b∫
a

f (h(t))dg(t) − f

⎛
⎝ b∫

a

h(t)dg(t)

⎞
⎠ −

⎛
⎝ b∫

a

dg(t) − 1

⎞
⎠ f (0).

(M8) Under the assumptions of Theorem 1.13, such that (11) or (12) is valid, we

define a linear functional as

P8(f ) = −P7(f ).

Remark 2.1. Under the assumptions of (Mk) for k = 1, 2, 3, 4, if f(u)/u is an increas-

ing function for u Î I, then

Pk(f ) ≥ 0, for k = 1, 2, 3, 4.

If f(u)/u is strictly increasing for u Î I and all xi’s are not equal or
∑n

1 pi �= 1then

strict inequality holds in the above expression.

Remark 2.2. Under the assumptions of (M5), if f is an increasing function on I, then

P5(f ) ≥ 0.

Butt et al. Journal of Inequalities and Applications 2011, 2011:89
http://www.journalofinequalitiesandapplications.com/content/2011/1/89

Page 5 of 16



If f is strictly increasing function on I and all xi’s are not equal, then we obtain strict

inequality in the above expression.

Remark 2.3. Under the assumptions of (Mk) for k = 6, 7, 8, if f is a convex function

on I, then

Pk(f ) ≥ 0 for k = 6, 7, 8.

If f is strictly increasing function on I and all xi’s are not equal, then we obtain strict

inequality in the above expression for P6(f ).

The following lemma is nothing more than the discriminant test for the non-negativ-

ity of second-order polynomials.

Lemma 2.4. Let I ⊆ ℝ be an interval. A function f : I ® (0, ∞) is log-convex in J-sense

on I, that is, for each r, t Î I

f (r)f (t) ≥ f 2
(
t + r
2

)

if and only if, the relation

m2f (t) + 2mnf
(
t + r
2

)
+ n2f (r) ≥ 0 (14)

holds for each m, n Î ℝ and r, t Î I.

To define different families of functions, let I ⊆ ℝ and (c, d) ⊆ ℝ be intervals. For

distinct points u0, u1, u2 Î I we suppose

D1 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u1, Ft] is log-convex in J-sense, where Ft(u)

= ft (u)/u}.

D2 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u0, Ft] is log-convex in J-sense, where Ft(u)

= ft (u)/u and F′
t exists}.

D3 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u1, ft] is log-convex in J-sense}.

D4 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u0, ft] is log-convex in J-sense, where f ′
t

exists}.

D5 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u1, u2, ft] is log-convex in J-sense}.

D6 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u0, u2, ft] is log-convex in J-sense, where f ′
t

exists}.

D7 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u0, u0, ft] is log-convex in J-sense, where f ′′
t

exists}.

In this theorem, we prove log-convexity in J-sense, log-convexity and related results

of the functionals associated with their respective families of functions.

Theorem 2.5. Let Pk be the linear functionals defined in (Mk), associate the func-

tionals with Di in such a way that, for k = 1, 2, 3, 4, ft Î Di, i = 1, 2, for k = 5, ft Î Di,

i = 3, 4 and for k = 6, 7, 8, ft Î Di, i = 5, 6, 7. Also for k = 7, 8, assume that the linear

functionals are positive. Then, the following statements are valid:

(a) The functions t �→ Pk(ft)are log-convex in J-sense on (c, d).

(b) If the functions t �→ Pk(ft)are continuous on (c, d), then the functions

t �→ Pk(ft)are log-convex on (c, d).

(c) If the functions t �→ Pk(ft)are derivable on (c, d), then for t, r, u, v Î (c, d) such

that t ≤ u, r ≤ v, we have
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Bk,i(t, r; ft) ≤ Bk,i(u, v; ft),

where

Bk,i(t, r; ft) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Pk(ft)
Pk(fr)

) 1
t−r , t �= r,

exp

(
d
dt
(Pk(ft))

Pk(ft)

)
, t = r.

(15)

Proof. (a) First, we prove log-convexity in J-sense of t �→ Pk(ft) for k = 1, 2, 3, 4. For

this, we consider the families of functions defined in D1 and D2.

Choose any m, n Î ℝ, and t, r Î (c, d), we define the function

h(u) = m2ft(u) + 2mnf t+r
2
(u) + n2fr(u).

This gives

[u0, u1,H] = m2 [u0, u1, Ft] + 2mn
[
u0, u1, F t+r

2

]
+ n2 [u0, u1, Fr] ,

where H (u) = h(u)/u and Ft(u) = ft(u)/u.

Since t ↦ [u0, u1, Ft] is log-convex in J-sense, by Lemma 2.4 the right-hand side of

above expression is non-negative. This implies h(u)/u is an increasing function for u Î
I.

Thus by Remark 2.1

Pk(h) ≥ 0 for k = 1, 2, 3, 4,

this implies

m2Pk(ft) + 2mnPk(f t+r
2
) + n2Pk(fr) ≥ 0. (16)

Now [u0, u1, Ft] > 0 as it is log-convex, this implies ft(u)/u is strictly increasing for all

u Î I and t Î (c, d). Also all xi’s are not equal and therefore by Remark 2.1, Pk(ft) are

positive valued, and hence, by Lemma 2.4, the inequality (16) implies log-convexity in

J-sense of the functions t �→ Pk(ft)for k = 1, 2, 3, 4.

Now we prove log-convexity in J-sense of t �→ P5(ft). For this, we consider the

families of functions defined in D3 and D4. Following the same steps as above and hav-

ing H(u) = h(u), we have the log-convexity in J-sense of P5(ft) by using Remark 2.2

and Lemma 2.4.

At last, we prove log-convexity in J-sense of t �→ Pk(ft) for k = 6, 7, 8. For this, we

consider the families of Functions defined in Di for i = 5, 6, 7.

Choose any m, n Î ℝ, and t, r Î (c, d), we define the function

h(u) = m2ft(u) + 2mnf t+r
2
(u) + n2fr(u).

This gives

[
u0, u1, u2, h

]
= m2 [

u0, u1, u2, ft
]
+ 2mn

[
u0, u1, u2, f t+r

2

]
+ n2

[
u0, u1, u2, fr

]
.
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Since t ↦ [u0, u1, u2, ft] is log-convex in J-sense, by Lemma 2.4 the right-hand side of

above expression is non-negative. This implies h is a strictly convex function on I.

Thus by Remark 2.3

Pk(h) ≥ 0 for k = 6, 7, 8,

this implies

m2Pk(ft) + 2mnPk(f t+r
2
) + n2Pk(fr) ≥ 0. (17)

Since Pk(ft) are positive valued, we have by Lemma 2.4 and inequality (17) the log-

convexity in J-sense of the functions t �→ Pk(ft) for k = 6, 7, 8.

(b) If t �→ Pk(ft) are additionally continuous for k = 1, ..., 8 and Di’s associated with

them, then these are log-convex, since J-convex continuous functions are convex

functions.

(c) Since the functions log Pk(ft) are convex for k = 1, ..., 8, and Di’s associated with

them, therefore for t ≤ u, r ≤ v, t ≠ r, u ≠ v, we have [[4], p.2],

logPk(ft) − logPk(fr)
t − r

≤ logPk(fu) − logPk(fv)
u − v

,

concluding

Bk,i(t, r; ft) ≤ Bk,i(u, v; ft).

Now if t = r ≤ u, we apply limr®t, concluding,

Bk,i(t, t; ft) ≤ Bk,i(u, v; ft).

Other possible cases are treated similarly.

In order to define different families of functions related to exponential convexity, let

I ⊆ ℝ and (c, d) ⊆ ℝ be any intervals. For distinct points u0, u1, u2 Î I we suppose

E1 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u1, Ft] is exponentially convex, where Ft(u) =

ft (u)/u}.

E2 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u0, Ft] is exponentially convex, where Ft(u) =

ft (u)/u and F′
t exists}.

E3 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u1, ft] is exponentially convex}.

E4 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u0, ft] is exponentially convex, where f ′
t

exists}.

E5 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u1, u2, ft] is exponentially convex}.

E6 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u0, u2, ft] is exponentially convex, where f ′
t

exists}.

E7 = {ft : I ® ℝ | t Î (c, d) and t ↦ [u0, u0, u0, ft] is exponentially convex, where f ′′
t

exists}.

In this theorem, we prove the exponential convexity of the functionals associated

with their respective families of functions. Also we define positive semi-definite

matrices for these functionals and give some related results.

Theorem 2.6. Let Pkbe the linear functionals defined in (Mk), associate the func-

tionals with Ei in such a way that, for k = 1, 2, 3, 4, ft Î Ei, i = 1, 2, for k = 5, ft Î Ei, i

= 3, 4 and for k = 6, 7, 8, ft Î Ei, i = 5, 6, 7. Then, the following statements are valid:
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(a) If t �→ Pk(ft)are continuous on (c, d), then the functions t �→ Pk(ft), are exponen-

tially convex on (c, d).

(b) For every q ÎN and t1, ..., tq Î (c, d), the matrices[
Pk(f tl+tm

2
)
]q

l,m=1

are positive semi-definite. In particular

det
[
Pk(f tl+tm

2
)
]s

l,m=1
≥ 0 for s = 1, 2, . . . , q.

(c) If t �→ Pk(ft)are positive derivable on (c, d), then for t, r, u, v Î (c, d) such that t

≤ u, r ≤ v, we have

Ck,i(t, r; ft) ≤ Ck,i(u, v; ft)

where Ck,i(t, r; ft)is defined similarly as in (15).

Proof. (a) First, we prove exponential convexity of t �→ Pk(ft) for k = 1, 2, 3, 4. For

this, we consider the families of functions defined in E1 and E2.

For any n Î N, ξi Î ℝ and ti Î (c, d), i = 1, ..., n, we define

h(u) =
n∑

i,j=1

ξiξjf ti + tj
2

(u).

This gives

[u0, u1,H] =
n∑

i,j=1

ξiξj

[
u0, u1, F ti+tj

2

]
,

where H (u) = h(u)/u and Ft(u) = ft(u)/u.

Since t ↦ [u0, u1, Ft] is exponentially convex, right-hand side of the above expression

is non-negative, which implies h(u)/u is an increasing function on I.

Thus by Remark 2.1, we have

Pk(h) ≥ 0, for k = 1, 2, 3, 4,

thus

n∑
i,j=1

ξiξjPk

(
f ti+tj

2

)
≥ 0.

Hence t �→ Pk(ft) is exponentially convex for k = 1, 2, 3, 4.

Now we prove exponential convexity of t �→ P5(ft). For this, we consider the families

of functions defined in E3 and E4. Following the same steps as above and having H (u)

= h(u), we have the exponential convexity of the P5(ft) by using Remark 2.2.

At last, we prove exponential convexity of t �→ Pk(ft) for k = 6, 7, 8. For this, we

consider the families of functions defined in Ei for i = 5, 6, 7.
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For any n Î N, ξi Î ℝ and ti Î (c, d), i = 1, ..., n, we define

h(u) =
n∑

i,j=1

ξiξjf ti+tj
2
(u).

This gives

[
u0, u1, u2, h

]
=

n∑
i,j=1

ξiξj

[
u0, u1, u2, f ti+tj

2

]
.

Since t ↦ [u0, u1, u2, ft] is exponentially convex therefore right-hand side of the

above expression is non-negative, which implies h(u) is a strictly convex function on I.

Thus by Remark 2.3, we have

Pk(h) ≥ 0 for k = 6, 7, 8,

thus

n∑
i,j=1

ξiξjPk

(
f ti+tj

2

)
≥ 0.

Hence t �→ Pk(ft) are exponentially convex for k = 6, 7, 8.

(b) It follows by Proposition 1.2.

(c) Since t �→ Pk(ft) are positive derivable for k = 1, ..., 8 with Ei’s associated with

them, we have our conclusion using part (c) of the Theorem 2.5.

3 Examples
In this section, we will vary on choices of families of functions in order to construct

different examples of log and exponentially convex functions and related results.

Example 1. Let t Î ℝ and �t : (0, ∞) ® ℝ be the function defined as

ϕt(u) =
{ ut

t−1 , t �= 1,
u log u, t = 1.

(18)

Then �t (u)/u is strictly increasing on (0, ∞) for each t Î ℝ. One can note that t ↦

[u0, u0, �t (u)/u] is log-convex for all t Î ℝ. If we choose ft = �t in Theorem 2.5, we

get log-convexity of the functionals Pk(ϕt) for k = 1, 2, 3, 4, which have been proved

in [5,6].

Since �t (u)/u)’ = ut-2 = e(t - 2) log u, the mapping t ↦ (�t (u)/u)’ is exponentially con-

vex [7]. If we choose ft = �t in Theorem 2.6, we get results that have been proved in

[6,8]. Also we get C1,2(t, r;ϕt) = A1
t,r(x;p) for t, r ≠ 1. By making substitution xi �→ xsi, t

↦ t/s, r ↦ r/s and s ≠ 0, t, r ≠ s, we get C1,2(t, r;ϕt) = As
t,r(x;p) for t, r ≠ s, where

As
t,r(x;p) is defined in [5].

Similarly, C4,2(t, r;ϕt) = C1
t,r(x)for t, r ≠ 1, and by substitution used above

C4,2(t, r;ϕt) = Cs
t,r(x) for t, r ≠ s, where Cs

t,r(x) is defined in [6].

Example 2. Let t Î ℝ and bt : (0, ∞) ® ℝ be the function defined as

βt(u) =
{

ut
t , t �= 0,
log u, t = 0.

(19)
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Then, bt is strictly increasing on (0, ∞) for each t Î ℝ. One can note that t ↦ [u0, u0,

bt] is log-convex for all t Î ℝ. If we choose ft = bt in Theorem 2.5, we get log-convex-

ity of the functional P5(βt), which have been proved in [9].

Since β ′
t(u) = ut−1 = e(t−1) log u, the mapping t �→ β ′

t is exponentially convex [7]. If we

choose ft = bt in Theorem 2.6, we get results that have been proved in [9]. Also we get

ℭ5,4 (t, r; bt) = Ht,r (x; p; q) for t, r ≠ 0, where Ht,r (x; p; q) is defined in [9].

Example 3. Let t Î (0, ∞) and δt : [0, ∞) ® ℝ be the function defined as

δt(u) =

{
ut

t(t−1) , t �= 1,
u log u, t = 1,

(20)

with a convention that 0 log 0 = 0. Then δt is convex on [0, ∞) for each t Î (0, ∞).

One can note that t ↦ [u0, u0, u0, δt] is log-convex for all t Î (0, ∞). If we choose ft =

δt in Theorem 2.5, we get log-convexity of the functionals Pk(δt) for k = 6, 7, 8, which

have been proved in [10].

Since δ′′
t (u) = ut−2 = e(t−2) log u, the mapping t �→ δ′′

t is exponentially convex [7]. If we

choose ft = δt in Theorem 2.6, we get results that have been proved in [8,10]. Also we

get C6,7(t, r; δt) = B1
t,r(x;p) for t, r ≠ 1. By making substitution xi �→ xsi, t ↦ t/s, r ↦ r/s

and s ≠ 0, t, r ≠ s, we get C6,7(t, r; δt) = Bs
t,r(x;p) for t, r ≠ s, where Bs

t,r(x;p) is defined

in [10].

Similarly, C7,7(t, r; δt) = F1t,r(a, b, h, g) for t, r ≠ 1 and by substitution used above

C7,7(t, r; δt) = Fst,r(a, b, h, g) for t, r ≠ s, where Fst,r(a, b, h, g) is defined in [6].

Example 4. Let t Î (0, ∞) and ζt : (0, ∞) ® ℝ be the function defined as

ζt(u) =

{
ut−u

− log t , t �= 1,
u2, t = 1.

(21)

One can note that t ↦ [u0, u0, ζt (u)/u] is log-convex for all t Î (0, ∞). If we choose ft
= ζt in Theorem 2.5, we get log-convexity of the functionals Pk(ζt) for k = 1, 2, 3, 4.

Since ζt (u)/u)’ = t-u, the mapping t ↦ (ζt (u)/u)’ is exponentially convex [7]. If we

choose ft = ζt in Theorem 2.6, we get exponential convexity of the functionals Pk(ζt)

for k = 1, 2, 3, 4.

For P1(ft) using the function ζt in Theorem 2.6, ℭ1,2 (t, r; ζt) in this particular case

looks like

C1,2(t, r; ζt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ log r

(
x̃nt−x̃n−

n∑
i=1

pixit−xi

)

log t
(
x̃nr−x̃n−

n∑
i=1

pixir−xi

)
⎞
⎠

1
t−r

, t �= r, t, r �= 1,

⎛
⎝ x̃nt−x̃n−

n∑
i=1

pixit−xi

− log t
(
x̃2n−

n∑
i=1

pix2i

)
⎞
⎠

1
t−1

, t �= r = 1,

exp

⎛
⎝ −1

t log t −
x̃2nt

−x̃n−
n∑
i=1

pix2i t
−xi

t
(
x̃nt−x̃n−

n∑
i=1

pixit−xi

)
⎞
⎠ , t = r, t, r �= 1,

exp

⎛
⎝ x̃3n−

n∑
i=1

pix3i

−2
(
x̃2n−

n∑
i=1

pix2i

)
⎞
⎠ , t = r = 1,

where x̃n =
∑n

i=1 pixi.
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For P4(ft) using the function ζt in Theorem 2.6, ℭ4,2 (t, r; ζt) in this particular case

looks like

C4,2(t, r; ζt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ log r

(
x1t−x1−

n∑
i=2

xit−xi−x̂nt−x̂n

)

log t
(
x1r−x1−

n∑
i=2

xir−xi−x̂nr−x̂n

)
⎞
⎠

1
t−r

, t �= r, t, r �= 1,

⎛
⎝ x1t−x1−

n∑
i=2

xit−xi−x̂nt−x̂n

− log t
(
x21−

n∑
i=2

x2i −x̂2n

)
⎞
⎠

1
t−1

, t �= r = 1,

exp

⎛
⎝ −1

t log t −
x21t

−x1−
n∑
i=2

x2i t
−xi−x̂2nt

−x̂n

t
(
x1t−x1−

n∑
i=2

xit−xi−x̂nt−x̂n

)
⎞
⎠ , t = r, t, r �= 1,

exp

⎛
⎝ x31−

n∑
i=2

x3i −x̂3n

−2
(
x21−

n∑
i=2

x2i −x̂2n

)
⎞
⎠ , t = r = 1,

where x̂n = (x1 − ∑n
i=2 xi).

Example 5. Let t Î (0, ∞) and θt : (0, ∞) ® ℝ be the function defined as

θt(u) =

{
t−u

− log t , t �= 1,
u, t = 1.

(22)

One can note that t ↦ [u0, u0, θt] is log-convex for all t Î (0, ∞), and if we choose ft
= θt in Theorem 2.5, we get log-convexity of the functional P5(θt).

Since θ ′
t (u) = t−u, the mapping t �→ θ ′

t (u) is exponentially convex function [7]. If we

choose ft = θt in Theorem 2.6, we get exponential convexity of the functional P5(θt).

For P5(ft) using the function θt in Theorem 2.6, ℭ5,4 (t, r; θt) in this particular case

looks like

C5,4(t, r; θt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ log r

(
n∑
i=1

qit−x̃n−
n∑
i=1

qit−xi

)

log t
(

n∑
i=1

qir−x̃n−
n∑
i=1

qir−xi

)
⎞
⎠

1
t−r

, t �= r, t, r �= 1,

⎛
⎝

n∑
i=1

qit−x̃n−
n∑
i=1

qit−xi

− log t
(

n∑
i=1

qix̃n−
n∑
i=1

qixi

)
⎞
⎠

1
t−1

, t �= r = 1,

exp

⎛
⎝ −1

t log t −
n∑
i=1

qix̃nt−x̃n−
n∑
i=1

qixit−xi

−t
(

n∑
i=1

qit−x̃n−
n∑
i=1

qit−xi

)
⎞
⎠ , t = r, t, r �= 1,

exp

⎛
⎝

n∑
i=1

qix̃2n−
n∑
i=1

qix2i

−2
(

n∑
i=1

qix̃n−
n∑
i=1

qixi

)
⎞
⎠ , t = r = 1,

Where x̃n =
∑n

i=1 pixi.

Example 6. Let t Î (0, ∞) and lt : (0, ∞) ® ℝ be the function defined as

λt(u) =
ue−u

√
t

−√
t
. (23)

One can note that t ↦ [u0, u0, lt (u)/u] is log-convex for all t Î (0, ∞). If we choose

ft = lt in Theorem 2.5, we get log-convexity of the functionals Pk(λt) for k = 1, 2, 3, 4.
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Since
(
λt(u)/u

)′ = e−u
√
t, the mapping t ↦ (lt (u)/u)’ is exponentially convex function

[7]. If we choose ft = lt in Theorem 2.6, we get exponential convexity of the func-

tionals Pk(λt) for k = 1, 2, 3, 4.

For P1(ft) using the function lt in Theorem 2.6, ℭ1,2 (t, r; lt) in this particular case

looks like

C1,2(t, r;λt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝√

r
(
x̃ne−x̃n

√
t−

n∑
i=1

pixie−xi
√
t

)
√
t
(
x̃ne−x̃n

√
r−

n∑
i=1

pixie−xi
√
r

)
⎞
⎠

1
t−r

, t �= r,

exp

⎛
⎝−1

2t −
x̃2ne

−x̃n
√
t−

n∑
i=1

pix2i e
−xi

√
t

2
√
t
(
x̃ne−x̃n

√
t−

n∑
i=1

pixie−xi
√
t

)
⎞
⎠ , t = r,

Where x̃n =
∑n

i=1 pixi.

Now for P4(ft) using the function lt in Theorem 2.6, ℭ4,2 (t, r; lt) in this particular

case looks like

C4,2(t, r;λt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

√
r
(
x1e−x1

√
t −

n∑
i=2

xie−xi
√
t − x̂ne−x̂n

√
t

)
√
t
(
x1e−x1

√
t −

n∑
i=2

xie−xi
√
r − x̂ne−x̂n

√
r

)
⎞
⎟⎟⎠

1
t − r

, t �= r,

exp

⎛
⎜⎜⎝−1

2t
−

x21e
−x1

√
t −

n∑
i=2

x2i e
−xi

√
t − x̂2ne

−x̂n
√
t

2
√
t
(
x1e−x1

√
t −

n∑
i=2

xie−xi
√
t − x̂ne−x̂n

√
t

)
⎞
⎟⎟⎠ , t = r,

Where x̂n = (x1 − ∑n
i=2 xi).

Example 7. Let t Î (0, ∞) and ξt : (0, ∞)® ℝ, be the function defined as

ξt(u) =
e−u

√
t

−√
t
. (24)

One can note that t ↦ [u0, u0, ξt] is log-convex for all t Î (0, ∞). If we choose ft = ξt
in Theorem 2.5, we get log-convexity of the functional P5(ξt).

Since ξ ′
t (u) = e−u

√
t, the mapping t �→ ξ ′

t (u) is exponentially convex function [7]. If we

choose ft = ξt in Theorem 2.6 we get exponential convexity of the functional P5(ξt).

For P5(ft) using the function ξt in Theorem 2.6, ℭ5,4 (t, r; ξt) in this particular case

looks like

C5,4(t, r; ξt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

√
r
(

n∑
i=1

qie−x̃n
√
t −

n∑
i=1

qie−xi
√
t

)
√
t
(

n∑
i=1

qie−x̃n
√
r −

n∑
i=1

qie−xi
√
r

)
⎞
⎟⎟⎠

1
t − r

, t �= r,

exp

⎛
⎜⎜⎝−1

2t
−

n∑
i=1

qix̃ne−x̃n
√
t −

n∑
i=1

qixie−xi
√
t

2
√
t
(

n∑
i=1

qie−x̃n
√
t −

n∑
i=1

qie−xi
√
t

)
⎞
⎟⎟⎠ , t = r,

Where x̃n =
∑n

i=1 pixi.
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Example 8. Let t Î ℝ and ψt : (0, ∞) ® ℝ be the function defined as

ψt(u) =
{

ueut
t , t �= 0,

u2, t = 0.
(25)

One can note that t ↦ [u0, u0, ψt (u)/u] is log-convex for all t Î ℝ. If we choose ft =

ψt in Theorem2.5, we get log-convexity of the functionals Pk(ψt) for k = 1, 2, 3, 4.

Since (ψt (u)/u)’ = eut, the mapping t ↦ (ψt (u)/u)’ is exponentially convex function

[7]. If we choose ft = ψt in Theorem 2.6 we get exponential convexity of the functionals

Pk(ψt) for k = 1, 2, 3, 4.

For P1(ft) using the function ψt in Theorem 2.6, ℭ1,2 (t, r; ψt) in this particular case

looks like

C1,2(t, r;ψt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
r
(
x̃nex̃nt −

n∑
i=1

pixiexit
)

t
(
x̃nex̃nr −

n∑
i=1

pixiexir
)

⎞
⎟⎟⎠

1
t − r

, t �= r, t, r �= 0,

⎛
⎜⎜⎝
x̃nex̃nt −

n∑
i=1

pixiexit

t
(
x̃2n −

n∑
i=1

pix2i

)
⎞
⎟⎟⎠

1
t − 1

, t �= r = 0,

exp

⎛
⎜⎜⎝−1

t
+

x̃2ne
x̃nt −

n∑
i=1

pix2i e
xit

x̃nex̃nt −
n∑
i=1

pixiexit

⎞
⎟⎟⎠ , t = r, t, r �= 0,

exp

⎛
⎜⎜⎝

x̃3n −
n∑
i=1

pix3i

2
(
x̃2n −

n∑
i=1

pix2i

)
⎞
⎟⎟⎠ , t = r = 0,

Where x̃n =
∑n

i=1 pixi.

Now for P4(ft) using the function ψt in Theorem 2.6, ℭ4,2 (t, r; ψt) in this particular

case looks like

C4,2(t, r;ψt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

r
(
x1ex1t −

n∑
i=2

xiexit − x̂nex̂n
)

t
(
x1ex1r −

n∑
i=2

xiexir − x̂nex̂nr
)

⎞
⎟⎟⎠

1
t − r

, t �= r, t, r �= 0,

⎛
⎜⎜⎝
x1ex1t −

n∑
i=2

xiexit − x̂nex̂n

t
(
x21 −

n∑
i=2

x2i − x̂2n

)
⎞
⎟⎟⎠

1
t − 1

, t �= r = 0,

exp

⎛
⎜⎜⎝−1

t
+

x21e
x1t −

n∑
i=2

x2i e
xit − x̂2ne

x̂nt

x1ex1t −
n∑
i=2

xiexit − x̂nex̂nt

⎞
⎟⎟⎠ , t = r, t, r �= 0,

exp

⎛
⎜⎜⎝

x31 −
n∑
i=2

x3i − x̂3n

2
(
x21 −

n∑
i=2

x2i − x̂2n

)
⎞
⎟⎟⎠ , t = r = 0,
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where x̂n = (x1 −
n∑
i=2

xi).

Example 9. Let t Î ℝ and ωt : (0, ∞) ® ℝ be the function defined as

ωt(u) =
{

eut
t , t �= 0,
u, t = 0.

(26)

One can note that t ↦ [u0, u0, ωt] is log-convex for all t Î ℝ. If we choose ft = ωt in

Theorem 2.5, we get log-convexity of the functional P5(ωt).

Since ω′
t(u) = eut, the mapping t �→ ω′

t(u) is exponentially convex function [7]. If we

choose ft = ωt in Theorem 2.6 we get exponential convexity of the functional P5(ωt).

For P5(ft) using the function ωt in Theorem 2.6, ℭ5,4 (t, r; ωt) in this particular case

looks like

C5,4(t, r;ωt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
r
(

n∑
i=1

qiex̃nt −
n∑
i=1

qiexit
)

t
(

n∑
i=1

qiex̃nr −
n∑
i=1

qiexir
)

⎞
⎟⎟⎠

1
t − r

, t �= r, t, r �= 0,

⎛
⎜⎜⎝

n∑
i=1

qiex̃nt −
n∑
i=1

qiexit

t
(

n∑
i=1

qix̃n −
n∑
i=1

qixi

)
⎞
⎟⎟⎠

1
t − 1

, t �= r = 0,

exp

⎛
⎜⎜⎝−1

t
+

n∑
i=1

qix̃nex̃nt −
n∑
i=1

qixiexit

n∑
i=1

qiex̃nt −
n∑
i=1

qiexit

⎞
⎟⎟⎠ , t = r, t, r �= 0,

exp

n∑
i=1

qix̃2n −
n∑
i=1

qix2i

2
(

n∑
i=1

qix̃n −
n∑
i=1

qixi

) , t = r = 0,

Where x̃n =
∑n

i=1 pixi.

Acknowledgements
The authors wish to thank the anonymous referees for their very careful reading of the manuscript and fruitful
comments and suggestions. This research was partially funded by Higher Education Commission, Pakistan. The
research of the first author was supported by the Croatian Ministry of Science, Education and Sports under the
Research Grant 117-1170889-0888.

Author details
1Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan 2Faculty of Textile Technology,
University of Zagreb, Zagreb, Croatia 3Department of Mathematics, University of Sargodha, Sargodha, Pakistan

Authors’ contributions
All authors jointly worked on the results and they read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 22 March 2011 Accepted: 20 October 2011 Published: 20 October 2011

References
1. Bernstein, SN: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929). doi:10.1007/BF02592679
2. Widder, DV: The Laplace Transform. Princeton. 1941 (1946)
3. Mitrinović, DS, Pečarić, J, Fink, AM: Classical and New Inequalities in Analysis. Kluwer, The Netherlands (1993)

Butt et al. Journal of Inequalities and Applications 2011, 2011:89
http://www.journalofinequalitiesandapplications.com/content/2011/1/89

Page 15 of 16



4. Pečarić, J, Proschan, F, Tong, YL: Convex Functions, Partial Orderings and Statistical Applications, vol. 187 of
Mathematics in Science and Engineering. Academic Press, Boston (1992)

5. Pečarić, J, Ur Rehman, A: On logarithmic convexity for power sums and related results. J Inequal Appl 2008, 9 (2008).
Article ID 389410

6. Pečarić, J, Farid, G, Ur Rehman, A: On refinements of Aczél, Popoviciu, Bellmans inequalities and related results. J
Inequal Appl 2010, 17 (2010). Article ID 579567

7. Jakšetić, J, Pečarić, J: Exponential convexity method. (in press)
8. Anwar, M, Jakšetić, J, Pečarić, J, Ur Rehman, A: Exponential convexity, positive semi-definite matrices and fundamental

inequalities. J Math Inequal. 4(2), 171–189 (2010)
9. Pečarić, J, Ur Rehman, A: On exponentially convexity for power sums and related results. J Math Inequal. (to appear)
10. Pečarić, J, Ur Rehman, A: On logarithmic convexity for power sums and related results II. J Inequal Appl 2008, 12 (2008).

Article ID 305623

doi:10.1186/1029-242X-2011-89
Cite this article as: Butt et al.: Exponential convexity of Petrović and related functional. Journal of Inequalities and
Applications 2011 2011:89.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Butt et al. Journal of Inequalities and Applications 2011, 2011:89
http://www.journalofinequalitiesandapplications.com/content/2011/1/89

Page 16 of 16

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Main results
	3 Examples
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

