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Abstract. Symplectic QR like methods for solving some structured eigenvalue problems involves SR factoriza-
tion as a key step. The optimal symplectic Householder SR factorization (SROSH algorithm) is a suitable choice
for performing such a factorization. In this paper, we carryout a detailed error analysis of the SROSH algorithm.
In particular, backward and forward error results are derived. Also, the computational aspects of the algorithm
(such as storage, complexity, implementation, factored form, block representation) are described. Some numerical
experiments are presented.
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1. Introduction. Let A be a2n-by-2n real matrix. The SR factorization consists in
writing A as the productSR, whereS is symplectic andR is J-upper triangular, i.e.,

R =

[

R11 R12

R21 R22

]

is such thatR11, R12, R22 are upper triangular andR21 is strictly upper triangular [3, 4].
This decomposition is a key step in constructing symplecticQR-like methods in order to
solve the eigenvalue problem of a class of structured matrices; see [3, 9, 14]. It can be viewed
as the equivalent of the classical QR factorization, when instead of an Euclidean space, one
considers a linear space equipped with a specified skew-symmetric inner product; see [8, 12]
and the references therein. The space is then called symplectic, and its orthogonal group with
respect to this inner product is called the symplectic group. In contrast with the Euclidean
case, the symplectic group is not compact. A numerical determination of the canonical form
for symplectic matrices has been derived by Godunov et al. [5]. The set of real2n-by-2n
matrices for which a SR factorization exists is dense inR

2n×2n [3].
Computing the QR factorization is currently handled by the Gram-Schmidt orthogonal-

ization process [1, 2] or via Householder transformations [6, 10, 15]. In the symplectic case,
the SR factorization can be performed via symplectic Gram-Schmidt (SGS) algorithms (see
[12] and the references therein) or by using the SRDECO algorithm [3]. Recently, a new
algorithm (SROSH) for computing the SR factorization was proposed in [13]. It is a method
based on optimal symplectic Householder transformations.We present here a detailed error
analysis of the method. In particular, backward and forwarderror results are derived. Ques-
tions about how close is the computed symplectic factor to being symplectic and how large is
the error in the SR factorization are answered. We also describe its most important computa-
tional aspects: storage, complexity, implementation, factored form, block representation.
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The remainder of this paper is organized as follows. In Section2, the symplectic House-
holder SR factorization is reviewed. Section3 is devoted to the computational aspects of the
optimal symplectic Householder SR factorization. Section4 treats in detail the error analysis
of the SROSH algorithm. Some illustrative numerical experiments are presented.

2. SR decomposition.We review briefly the SR factorization, via symplectic House-
holder transformations. A detailed study is provided in [13].

2.1. Symplectic Householder transformations (SHT).Let J2n (or simplyJ) be the
2n-by-2n real matrix

J2n =

[

0n In

−In 0n

]

, (2.1)

where0n andIn stand for then-by-n null and identity matrices, resectively. The linear space
R

2n with the indefinite skew-symmetric inner product

(x, y)J = xT Jy (2.2)

is called symplectic. We denote the orthogonality with respect to (·, ·)J by ⊥′, i.e., for
x, y ∈ R

2n, x ⊥′ y stands for(x, y)J = 0. The symplectic adjointxJ of a vectorx is
defined by

xJ = xT J. (2.3)

The symplectic adjoint ofM ∈ R
2n×2k is defined by

MJ = JT
2kMT J2n. (2.4)

DEFINITION 2.1. A matrixS ∈ R
2n×2k is called symplectic if

SJS = I2k. (2.5)

The symplectic group (multiplicative group of square symplectic matrices) is denoted by
S. A transformationT given by

T = I + cvvJ wherec ∈ R, v ∈ R
ν (with ν even) (2.6)

is called a symplectic Householder transformation [13]. It satisfies

T J = I − cvvJ . (2.7)

The vectorv is called the direction ofT .

2.2. The mapping problem. For x, y ∈ R
n, there exists a symplectic Householder

transformationT such thatTx = y if x = y or xJy 6= 0. T is given by

T = I − 1

xJy
(y − x)(y − x)J .

Moreover, each non-null vectorx can be mapped onto any non-null vectory by a product of
at most two symplectic Householder transformations. Symplectic Householder transforma-
tions are rotations, i.e.,det(T ) = 1; and the symplectic groupS is generated by symplectic
Householder transformations.
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2.3. SR factorization via symplectic Householder transformations. The symplectic
Householder SR factorization can be viewed as the analogue of Householder QR factorization
in the symplectic case; see [13] for more details. Let{e1, . . . , e2n} be the canonical basis of
R

2n×2, [a, b] ∈ R
2n×2, andρ, µ, andν be arbitrary scalars. We seek symplectic Householder

transformationsT1 andT2 such that

T1(a) = ρe1, T2(e1) = e1, T2(T1(b)) = µe1 + νen+1. (2.8)

The fact thatT2T1 is a symplectic isometry yields the necessary condition

aJb = (T2T1(a))J (T2T1(b)) = ρν. (2.9)

THEOREM 2.2. Letρ, ν be such that (2.9) is satisfied, and let

c1 = − 1

ρaJe1
, v1 = ρe1 − a,

c2 = − 1

(T1(b))J (µe1 + νen+1)
, v2 = µe1 + νen+1 − T1(b).

Then

T1 = I + c1v1v
J
1 , T2 = I + c2v2v

J
2 , (2.10)

satisfy (2.8).

2.4. The SRSH algorithm. We outline here the steps of the algorithm. Let
A = [a1, . . . , ap, ap+1, . . . , a2p] ∈ R

2n×2p. Let r11, r1,p+1, rp+1,p+1 be arbitrary scalars
satisfyingr11rp+1,p+1 = aJ

1 ap+1. The first step of the SRSH algorithm is to findT1 (i.e.,c1

andv1 by Theorem2.2) such thatT1(a1) = r11e1 andT2 (i.e., c2 andv2 by Theorem2.2)
such thatT2(e1) = e1 andT2T1(ap+1) = r1,p+1e1 + rp+1,p+1en+1. This step involves two
free parameters. The action ofT2T1 onA is

T2T1A =









r11 r(1, 2 : p) r1,p+1 r(1, p + 2 : 2p)

0 A
(2)
11 0 A

(2)
12

0 r(p + 1, 2 : p) rp+1,p+1 r(p + 1, p + 2 : 2p)

0 A
(2)
21 0 A

(2)
22









.

Denote

Ã(2) =

[

A
(2)
11 A

(2)
12

A
(2)
21 A

(2)
22

]

,

and letr22, r2,p+2, rp+2,p+2 be arbitrary scalars with̃A(2)(1, :)JÃ(2)(p, :) = r22 rp+2,p+2.
The next step is to apply the previous step toÃ(2), i.e., find (by Theorem2.2)

T̃3 = I2n−2 + c3ṽ3ṽ
J
3 , whereṽ3 =

[

u3

w3

]

∈ R
2n−2, and

T̃4 = I2n−2 + c4ṽ4ṽ
J
4 , whereṽ4 =

[

u4

w4

]

∈ R
2n−2,

such that

T̃4T̃3Ã
(2) =









r22 r(2, 3 : p) r2,p+2 r(2, p + 3 : 2p)

0 A
(3)
11 0 A

(3)
12

0 r(p + 2, 3 : p) rp+2,p+2 r(p + 2, p + 3 : 2p)

0 A
(3)
21 0 A

(3)
22









.
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SetT3 = I2n + c3v3v3
J , T4 = I2n + c4v4v4

J , where

[

v3 v4

]

=









0 0
u3 u4

0 0
w3 w4









∈ R
2n×2.

ThenT3, T4 are symplectic Householder transformations [13], and their action is given by

T4T3T2T1A =

















r11 r12 r(1, 3 : p) r1,p+1 r1,p+2 r(1, p + 3 : 2p)
0 r22 r(2, 3 : p) 0 r2,p+2 r(2, p + 3 : 2p)

0 0 A
(3)
11 0 0 A

(3)
12

0 rp+1,2 r(p + 1, 3 : p) rp+1,p+1 rp+1,p+2 r(p + 1, p + 3 : 2p)
0 0 r(p + 2, 3 : p) 0 rp+2,p+2 r(p + 2, p + 3 : 2p)

0 0 A
(3)
21 0 0 A

(3)
22

















.

Thejth step is now clear. At the last step (pth step), we obtain

T2pT2p−1 . . . T4T3T2T1A =

[

R11 R12

R21 R22

]

= R ∈ R
2n×2p,

whereR11, R12, R22 are upper triangular andR21 is strictly upper triangular.R is called
J-upper triangular. We getA = SR with S = T J

1 T J
2 . . . T2p−1T

J
2p.

The algorithm SRSH involves free parameters. At each iteration j of SRSH, two of the
three parametersrjj , rj,p+j , rj+p,j+p can be chosen freely.

3. SR factorization via optimal symplectic Householder transformations. The SROSH
algorithm corresponds to an efficient way of choosing the free parameters in the SRSH algo-
rithm. It is based on the following result; see [13].

THEOREM 3.1. Let [a, b] ∈ R
2n×2, and let

ρ = sign(a1)‖a‖2, c1 = − 1

ρaJe1
, v1 = a− ρe1, T1 = I + c1v1v

J
1 .

ThenT1 has minimal 2-norm condition number and satisfies

T1(a) = ρe1. (3.1)

Letu be the vectoru = T1(b) anduj its jth component, and let

ν = un+1, ξ = ‖u− u1e1 − un+1en+1‖2 , µ = u1 ± ξ,

c2 = − 1

±ξun+1
, v2 = u− µe1 − un+1en+1, T2 = I + c2v2v

J
2 .

ThenT2 has minimal 2-norm condition number and satisfies

T2(e1) = e1 and T2(u) = µe1 + νen+1. (3.2)

We refer toT1, T2 as optimal symplectic Householder transformations.
REMARK 3.2. The vectorv2 differs fromu only by the first and(n + 1)th components

and satisfiesv2(n + 1) = 0. This will be taken in consideration when storingv2.
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3.1. The SROSH algorithm. Given an input vectora, the procedureosh1 below returns
the coefficientc1 and the vectorv1 for the optimal symplectic Householder transformationT1

of Theorem3.1. Similarly, the procedureosh2 computes the optimal symplectic Householder
transformationT2.

We normalize the optimal symplectic Householder vector of the procedureosh1 so that
v1(1) = 1. Thusv1(2 : 2n) can be stored where the zeros have been introduced ina, i.e.,
a(2 : 2n). As in the classical case, we refer tov1(2 : 2n) as the essential part of the optimal
symplectic Householder vector ofT1. This gives the following procedure:

ALGORITHM 3.3. (First optimal symplectic Householder transformation)
Given a ∈ R

2n, this function computesv ∈ R
2n with v(1) = 1 and c ∈ R such that

T = I + cvvJ is the optimal symplectic Householder transformation satisfyingTa = ρe1 of
Theorem3.1.

function[c, v] = osh1(a)
den = length(a); n = den/2;
J = [zeros(n), eye(n);−eye(n), zeros(n)];
ρ = sign(a1) ‖a‖2 ; aux = a(1)− ρ;
if aux = 0

c = 0; v = 0; %T = I;
else if an+1 = 0

display(’division by zero’);
return

else

v =
a

aux
; c =

aux2

ρan+1
; v(1) = 1;

% T = (eye(den) + c ∗ v ∗ v′ ∗ J);
end

In a similar way, it is possible to normalize the optimal symplectic Householder vectorv2 so
thatv2(1) = 1. Moreover, since thev2(n + 1) is zero.v2(2 : 2n) can be stored where the
zeros have been introduced inu. This is clarified by the following figure. Such storage is not
possible if the symplectic Householder transformation used is not optimal (since in this case,
v2(n + 1) is not necessarily zero).

u




























u1

u2

...
un

un+1

un+2

...
u2n





























T2

−→

T2u




























×
0
...
0
×
0
...
0





























←−

v2




























1
v2(2)

...
v2(n)

0
v2(n + 2)

...
v2(2n)





























We refer tov2(2 : 2n) as the essential part of the optimal symplectic Householdervector of
T2.

ALGORITHM 3.4. (Second optimal symplectic Householder transformation)
Given u ∈ R

2n, this function computesv ∈ R
2n with v(1) = 1 and c ∈ R such that

T = I + cvvJ is the optimal symplectic Householder transformation satisfyingTe1 = e1

andTu = µe1 + νen+1 of Theorem3.1.
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function[c, v] = osh2(u)
den = length(u); n = den/2;
J = [zeros(n), eye(n);−eye(n), zeros(n)];
if n = 1

v = zeros(den, 1); c = 0; %T = I
else

I = [2 : n, n + 2 : den]; ξ = norm(u(I));
if ξ = 0

v = zeros(den, 1); c = 0; %T = I;
else

ν = u(n + 1); %µ = u1 + ξ; no need to computeµ;
if u(n + 1) = 0

display(’division by zero’)
return

else

v = −u

ξ
; v(1) = 1; v(n + 1) = 0; c =

ξ

u(n + 1)
;

end
end

end

REMARK 3.5. The quantityξ also can be taken to be−norm(u(I)) in Algorithm3.4.
Note that the product of a symplectic Householder matrixT = I + cvvJ with a given

vectora of dimension2n can be computed easily without explicitly formingT itself, since

Ta = a + cv(vJa).

This formulation requires8n flops. If A ∈ R
2n×2p is a matrix, then theTA can be written

asTA = A + cv(vJA) = A + cv(vT JA) = A + cvwT , wherew = −AT Jv. Likewise, if
T = I + cvvT J ∈ R

2p×2p, then

AT = A(I + cvvT J) = A + cwvT J,

wherew = cAv. Hence, a2n-by-2p symplectic Householder transformation is a rank-one
matrix update and involves a matrix-vector multiplicationand an outer product update. It
requires16np flops. If T is treated as a general matrix and the structure is not exploited, the
amount of work increases by an order of magnitude. Thus, as inthe classical case, symplec-
tic Householder updates never entail the explicit formation of the symplectic Householder
matrix. Note that both of the above Householder updates can be implemented in a way that
exploits the fact thatv1(1) = 1 for T1 andv2(1) = 1, v2(n + 1) = 0 for T2.

3.2. Factored form representation.Many symplectic Householder-based factorization
algorithms compute products of symplectic Householder matrices

S = T1Tn+1T2Tn+2 . . . TkTn+k, Tj = I + cjv
(j)v(j)T

J, (3.3)

wherek ≤ n and the vectorsv(j), v(n+j), j = 1, . . . , k have the form

v(j) =
[

0T
j−1 1 v

(j)
j+1 . . . v

(j)
n | 0T

j−1 v
(j)
n+j . . . v

(j)
2n

]T

,

v(n+j) =
[

0T
j−1 1 v

(n+j)
j+1 . . . v

(n+j)
n | 0T

j v
(n+j)
n+j+1 . . . v

(n+j)
2n

]T

.
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It is not necessary to computeS explicitly, even ifS is required in subsequent calculations.
Thus, if a productSJB is needed, whereB ∈ R

2n×2k, then the following loop can be
executed:

ALGORITHM 3.6.
for j = 1 : k

B = TjB;
B = Tn+jB;

end.
The storage of the symplectic Householder vectorsv(1), . . . , v(k), v(n+1), . . . , v(n+k)

and the correspondingcj amounts to a factored representation ofS. Forb ∈ R
2n, we examine

carefully the implementation of the productT J
j b. SetHj = cjv

(j)v(j)T
; thenT J

j = I −
HjJ2n. Due to the structure ofvj , the submatrixHj([1 : j − 1, n + 1 : n + j − 1], :),
obtained fromHj by deleting all rows except rows1, . . . , j − 1 andn + 1, . . . , n + j − 1, is
null. This implies that components1, . . . , j − 1 andn + 1, . . . , n + j − 1 of HjJ2nb vanish.
Hence, the corresponding components ofT J

j b remain unchanged. Similarly, the submatrix
Hj(:, [1 : j − 1, n + j : 2n]) (obtained fromHj by deleting all columns except columns
1, . . . , j − 1 and n + j, . . . , 2n) is null. Settingrows = [j : n, n + j : 2n], one gets
[HjJ2nb](rows) = [Hj ](rows, rows)[J2nb](rows). It follows from the particular structure
of J2n that[J2nb](rows) = J2(n−j+1)b(rows). Thus, the productT J

j b is reduced to compute
b(rows) − [Hj ](rows, rows)J2(n−j+1)b(rows).

Suppose now that the essential partv(j)([j + 1 : n, n + j : 2n]) of the vectorv(j) is
stored inA([j + 1 : n, n + j : 2n], j), and similarly thatv(j+n)([j + 1 : n, n + j + 2 : 2n])
is stored inA([j + 1 : n, n + j + 2 : 2n], n + j). The overwriting ofB with SJB can then be
implemented as follows.

ALGORITHM 3.7. Product in factored form
for j = 1 : k;

rows = [j : n, j + n : 2n]; v(rows) =





1
A(j + 1 : n, j)
A(n + j : 2n, j)



 ;

B(rows, :) = B(rows, :) − cjv(rows)v(rows)T J2(n−j+1)B(rows, :);

v(rows) =









1
A(j + 1 : n, j + n)

0
A(n + j + 1 : 2n, j + n)









;

B(rows, :) = B(rows, :) − cjv(rows)v(rows)T J2(n−j+1)B(rows, :);
end
Algorithm 3.7 illustrates the economies of the factored form representation. It requires

only 16mk(2n − k) flops. If S is explicitly represented as a2n-by-2n matrix, SJB would
involves16n2m flops.

REMARK 3.8. Note that in lines 3 and 5 of Algorithm3.7, it should beJ2n(rows, rows)
instead ofJ2(n−j+1). Due to the particular structure ofJ , we haveJ2n(rows, rows) =
J2(n−j+1). The interest of this fact is that the productJ2(n−j+1)B(rows, :) does not induce
additional flops cost (the situation would be different if instead ofJ , one has a general ma-
trix).

When it is necessary to computeS explicitly, one can use a forward accumulation algo-
rithm:

ALGORITHM 3.9.
S = I2n;
for j = 1 : k
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S = STj ;
S = STn+j ;

end
Another option is to use a backward accumulation algorithm:

ALGORITHM 3.10.
S = I2n

for j = k : −1 : 1
S = TjS;
S = Tn+jS;

end
Furthermore, it is important to note that backward accumulation requires fewer flops than
forward accumulation. This is due to the particular structure ofTj. In fact, the block(j − 1)-
by-2n (resp. (n + j)-by-2n) of Tj (resp. ofTn+j) is equal to the block(j − 1)-by-2n
(resp. (n + j)-by-2n) of the identity. Hence,S is “mostly the identity” at the beginning of
backward accumulation and becomes gradually full as the iteration progresses. In contrast,S
is full in forward accumulation immediately after the first iteration. For this reason, backward
accumulation is cheaper. It can be implemented with32(n2k−nk2 +k3/3) flops as follows.

ALGORITHM 3.11.Backward accumulation
S = I2n;
for j = k : −1 : 1

rows = [j : n j + n : 2n];

v(rows) =









1
A(j + 1 : n, j + n)

0
A(n + j + 1 : 2n, j + n)









;

S(rows, rows) = S(rows, rows)−cjv(rows)v(rows)T J2(n−j+1)S(rows, rows);

v(rows) =





1
A(j + 1 : n, j)
A(n + j : 2n, j)



 ;

S(rows, rows) = S(rows, rows)−cjv(rows)v(rows)T J2(n−j+1)S(rows, rows);
end

3.3. A block representation. Suppose thatS = T1Tn+1T2Tn+2 . . . TkTn+k is a prod-
uct of 2n−by−2n optimal symplectic Householder matrices as in (3.3). Since eachTj is a
rank-one modification of the identity, it follows from the structure of the symplectic House-
holder vectors thatS is a rank-2k modification of the identity and can be written in the form

S = I + WY T J, (3.4)

whereW andY are2n-by-2k matrices. We refer to this block representation as aJ −WY
representation. Its computation is based on the following lemma.

LEMMA 3.12. Suppose thatS = I + WY T J is an 2n-by-2n symplectic matrix with
W, Y ∈ R

2n×j . If T = I + cvvT J with v ∈ R
2n andz = cSv, then

ST = I + W+Y T
+ J,

whereW+ = [W z] andY+ = [Y v] are2n-by-(j + 1) matrices.
Proof.

ST = (I + WY T J)(I + cvvT J) = I + WY T J + cSvvT J

= I + WY T J + zvT J = I + [W z][Y v]T J.
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The block representation ofS can be generated from the factored form by repeatedly
applying the Lemma3.12as follows.

ALGORITHM 3.13.Block representation
Suppose thatS = T1Tn+1T2Tn+2 . . . TkTn+k is a product of2n−by−2n optimal symplectic
Householder matrices as in (3.3). This algorithm computes matricesW, Y ∈ R

2n×2k such
thatS = I + WY T J.

Y = v(1); W = c1v
(1);

z = cn+1(I + WY T J)v(n+1);
W = [W z]; Y = [Y v[n+1]];
for j = 2 : k

z = cj(I + WY T J)v(j);
W = [W z]; Y = [Y v(j)];
z = cn+j(I + WY T J)v(n+j);
W = [W z]; Y = [Y v(n+j)];

end.

This algorithm requires about16(k2n − k3/3) flops if the zeros inv(j) andv(n+j) are
exploited. Note thatY is obviously the matrix of symplectic Householder vectors up a per-
mutation of columns. Clearly, the central task in the generation of theJ−WY representation
(3.4) is the computation of theW matrix.

The block representation of products of symplectic Householder matrices is attractive in
situations whereS must be applied to a matrix. Suppose thatC ∈ R

2n×2k. It follows that the
operationC ←− SJC = (I+WY T J)JC = C−Y (WT JC) is rich in level-3 operations. If
S is in factored form,SJC is just rich in the level-2 operations of matrix-vector multiplication
and outer products updates.

We mention that theJ − WY representation is not a generalized symplectic House-
holder transformation from the geometric point of view. True symplectic block reflectors are
discussed in [11].

3.4. The SROSH algorithm. The steps of the SROSH algorithm are the same as those
of the SRSH algorithm. The only change is that the free parameters in SRSH are replaced by
optimal ones in SROSH. LetA ∈ R

2n×2p and assume thatp ≤ n. Givenj ≤ m ≤ k ≤ 2n
andj′ ≤ m′ ≤ k′ ≤ 2p, let A([j : m, k : 2n], [j′ : m′, k′ : 2p]) denote the submatrix
obtained fromA by deleting all rows except rowsj, . . . , m andk, . . . , 2n and all columns
except columnsj′, . . . , m′ andk′, . . . , 2p.

ALGORITHM 3.14.SROSH algorithm, factored form
GivenA ∈ R

2n×2p with n ≥ p, the following algorithm finds (implicitly) optimal symplectic
Householder matricesT1, . . . , T2p such that ifSJ = T J

2pT
J
p . . . T J

p+1T
J
1 , thenSJA = R is

J-upper triangular. TheJ-upper triangular part ofA is overwritten by theJ-upper triangu-
lar part of R, and the essential part of the optimal symplectic Householder vectors are stored
in the zeroed portion ofA.

for j = 1 : p
ro = [j : n, n + j : 2n]; co = [j : p, p + j : 2p];
[c, v1] = osh1(A(ro, [j]));
A(ro, co) = A(ro, co) + cv1v

T
1 JA(ro, co);

[c, v2] = osh2(A(ro, [p + j]));
A(ro, co) = A(ro, co) + cv2v

T
2 JA(ro, co);

if j < n
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A(j + 1 : n, j) = v1(2 : n− j + 1);
A(j + n : 2n, j) = v1(n− j + 2 : 2(n− j + 1));
A(j + 1 : n, j + p) = v2(2 : n− j + 1);
A(j + 1 + n : 2n, j + p) = v2(n− j + 3 : 2(n− j + 1));

else
A(j + n : 2n, p) = v1(2);

end
end

This algorithm requires16m2(n− p/3) flops. To clarify howA is overwritten, we give
the following example:

A =

















r11 r12 r13 r14 r15 r16

v1(2) r22 r23 v4(2) r25 r26

v1(3) v2(3) r33 v4(3) v5(3) r36

v1(4) r42 r43 r44 r45 r46

v1(5) v2(5) r53 v4(5) r55 r36

v1(6) v2(6) v3(6) v4(6) v5(6) r36

















.

If the matrixS is required, it can be computed in32(n2p−np2 +p3/3) flops using backward
accumulation. Note that due to (2.7), computing the productSJ = T J

2pT
J
p . . . T J

p+1T
J
1 does

not cost any more flops due of the presence ofJ-transpositions.

4. Error analysis of SROSH.

4.1. Background for error analysis. To carry out a rounding error analysis of the
SROSH algorithm, we adopt the standard model for floating operations

fl(x opy) = (x opy)(1 + δ), |δ| ≤ u, op = +, −, ∗, /. (4.1)

The quantityu stands for the unit roundoff. In the following analysis and throughout the
paper, a hat denotes a computed quantity. We now recall some important notations, conven-
tions, and results of rounding error analysis developed in [7]. We will use these results in
what follows to derive a rounding error analysis for the SROSH algorithm.

LEMMA 4.1. If |δi| ≤ u, andρi = ±1 for i = 1 : n andnu < 1, then

n
∏

i=1

(1 + δi)
ρi = 1 + θn,

where

|θn| ≤
nu

1− nu

=: γn.

Proof. See [7, pp. 63].
The θn andγn notation is used throughout this section. It is implicitly assumed that

nu < 1 (which is usually satisfied), whenever we writeγn. Consider the inner product
sn = xT y, wherex, y ∈ R

n. Using Lemma4.1, the computed̂sn is then given by

ŝn = x1y1(1 + θn) + x2y2(1 + θ′n) + x3y3(1 + θn−1) + . . . + xnyn(1 + θ2), (4.2)

with |θi| ≤ γi ≤ γn, i = 1 : n, θ′n ≤ γn, and thus each relative perturbation is certainly
bounded byγn. Hence, we obtain

fl(xT y) = ŝn = (x + ∆x)T y = xT (y + ∆y), |∆x| ≤ γn |x| , |∆y| ≤ γn |y| , (4.3)
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where|x| denotes the vector such that|x|i = |xi| and inequalities between vectors (or matri-
ces) hold componentwise. The result (4.3) means that computation of an inner product is a
backward stable process.

For an outer productA = xyT , we havêaij = xiyj(1 + δij), |δij | ≤ u, so

Â = xyT + ∆, |∆| ≤ u

∣

∣xyT
∣

∣ . (4.4)

The computation of an outer product is not backward stable. Nevertheless, (4.4) is a satisfac-
tory result.

The following lemma provides some necessary rules for manipulating the1 + θk andγk

terms involved in Lemma4.1.
LEMMA 4.2. For any positive integerk, let θk denote a quantity bounded according to

|θk| ≤ γk =
ku

1− ku
.

The following relations hold:

(1 + θk)(1 + θj) = (1 + θk+j),
1 + θk

1 + θj
=

{

1 + θk+j , j ≤ k,

1 + θk+2j , j > k,

γkγj ≤ γmin(k,j) for max(j, k)u ≤ 1/2,

iγk ≤ γik, γk + u ≤ γk+1, γk + γj + γkγj ≤ γk+j .

Proof. See [7, pp. 67].
It is straightforward to analyze matrix-vector and matrix-matrix products, once error

analysis for inner products has been given. LetA ∈ R
m×n, x ∈ R

n, andy = Ax. We have
the backward error result

ŷ = (A + ∆A)x, |∆A| ≤ γn |A| . (4.5)

The following result is needed.
LEMMA 4.3. If Xj + ∆Xj ∈ R

m×m satisfies‖∆Xj‖F ≤ δj ‖Xj‖2 for all j, then

∥

∥

∥

∥

∥

∥

p
∏

j=0

(Xj + ∆Xj)−
p
∏

j=0

Xj

∥

∥

∥

∥

∥

∥

F

≤





p
∏

j=0

(1 + δj)− 1





p
∏

j=0

‖Xj‖2 .

Proof. See [7, pp. 73].

4.2. Error analysis for optimal symplectic Householder transformations. In the fol-
lowing analysis, it is not worthwhile to keep the precise value of the integer constants in the
γk terms. We make use of the notationγ̃k = cku/(1− cku), wherec denotes a small integer
constant; see [7]. For example, we write4γn ≤ γ4n = γ̃n.

LEMMA 4.4. Consider the optimal symplectic Householder transformation T1 = I +
c1v1v

J
1 given by Algorithm3.3. The computed̂c1 andv̂1 satisfyv̂1(2 : 2n) = v1(2 : 2n) and

ĉ1 = c1(1 + θ̃2n), v̂1(1) = v1(1)(1 + θ̃2n), (4.6)

where
∣

∣

∣θ̃2n

∣

∣

∣ ≤ γ̃2n.
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Proof. We mention that each occurrence ofδ denotes a different number bounded by
δ ≤ u. We haveρ = sign(a1) ‖a‖2 andv1(1) = a1 − ρ, and we use the formula

v1(1) =
a2
1 − ρ2

a1 + ρ
= −a2

2 + . . . + a2
2n

a1 + ρ

to avoid cancellation errors in computingv1(1). Settingd = a2
2 + . . . + a2

2n ande = d + a2
1,

we getd̂ = d(1+ θ2n−1), and then̂e = (d̂+a2
1(1+ δ))(1+ δ) = (d+a2

1)(1+ θ2n) (because
there is cancellation in the sum). Settingf =

√
ê, we obtain

f̂ =
√

ê(1 + δ) = (d + a2
1)

1/2(1 + θ2n)1/2(1 + δ) = (d + a2
1)

1/2(1 + θ2n+1).

Sinceρ = sign(a1)(d + a2
1)

1/2, it follows that

ρ̂ = sign(a1)f̂ = sign(a1)(d + a2
1)

1/2(1 + θ2n+1),

and thus

ρ̂ = ρ(1 + θ2n+1). (4.7)

Fromv1(1) = −d/(a1 + ρ), we deduce

v̂1(1) = − d̂(1 + δ)

(a1 + ρ̂)(1 + δ)
.

Since there is no cancellation in the suma1 + ρ̂ and using (4.7), we obtain

v̂1(1) = − d̂(1 + δ)

(a1 + ρ)(1 + θ2n+2)
= − d(1 + θ2n)

(a1 + ρ)(1 + θ2n+2)
.

Furthermore, by applying Lemma4.1, we get

v̂1(1) = − d

a1 + ρ
(1 + θ6n+4) = v1(1)(1 + θ6n+4).

From
∣

∣

∣θ̃2n

∣

∣

∣ = |θ6n+4| ≤ γ6n+4 ≤ γ8n = γ̃2n,

we obtain

v̂1(1) = v1(1)(1 + θ̃2n) and |∆v1(1)| ≤ |v1(1)| γ̃2n.

LEMMA 4.5. Consider the optimal symplectic Householder transformation T2 = I +
c2v2v

J
2 given by Algorithm3.4. The computed̂c2 andv̂2 satisfyv̂2(2 : 2n) = v2(2 : 2n), and

ĉ2 = c2(1 + θ̃2n), v̂2(1) = v2(1)(1 + θ̃2n), (4.8)

where
∣

∣

∣θ̃2n

∣

∣

∣ ≤ γ̃2n.

Proof. We havev2(1) = −ξ = −(a2
2 + . . . + a2

n + a2
n+2 + . . . + a2n)1/2. Thus, we get

ξ̂ = ξ(1 + θ2n−1) and hencêv2(1) = −ξ̂ = v2(1)(1 + θ̃2n). Similar to the results of the
analysis ofc2 = 1/(ξun+1), we find

ĉ2 =
(1 + δ)2

ξ̂un+1

=
(1 + δ)2

ξ(1 + θ2n−1)un+1
.
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From Lemma4.1, we then obtain

ĉ2 =
1

ξun+1
(1 + θ4n) = c2(1 + θ̃2n).

The next result describes the application of a symplectic Householder transformation to a
vector, and is the basis of the subsequent analysis. For convenience we here write symplectic
Householder matrices in the formT1 = I + w1v

J
1 andT2 = I + w2v

J
2 , which requires

w1 = c1v1 andw2 = c2v2. Using then Lemmas4.4and4.5, we obtain

ŵ1 = w1 + ∆w1, |∆w1| ≤ γ̃2n |w1| , and

ŵ2 = w2 + ∆w2, |∆w2| ≤ γ̃2n |w2| .
(4.9)

LEMMA 4.6. Let b ∈ R
2n, and consider the computation ofy = T̂1b = (I + ŵ1v̂

J
1 )b

wherev̂1 andŵ1 satisfy (4.6) and (4.9), respectively. The computedŷ satisfies

ŷ = (T1 + ∆T1)b, ‖∆T1‖F ≤ 3γ̃2n ‖T1‖2 . (4.10)

Moreover,

‖∆T1‖F ≤ 5γ̃2n
‖a‖2
|an+1|

. (4.11)

Proof. We have

ẑ = fl(ŵ1(v̂
J
1 b)) = (ŵ1 + ∆ŵ1)(v̂

J
1 (b + ∆b)),

where|∆ŵ1| ≤ u |ŵ1| and|∆b| ≤ γ2n |b|. Hence

ẑ = (w1 + ∆w1 + ∆ŵ1)(v1 + ∆v1)
J(b + ∆b) = w1(v

J
1 b) + ∆z,

where|∆z| ≤ γ̃2n |w1|
∣

∣vJ
1

∣

∣ |b|. It follows that

ŷ = fl(b + ẑ) = b + w1(v
J
1 b) + ∆z + ∆y1, |∆y1| ≤ u |b + ẑ| .

We get

|∆z + ∆y1| ≤ u |b|+ γ̃2n |w1|
∣

∣vJ
1

∣

∣ |b| . (4.12)

Setting∆y = ∆z + ∆y1 and∆T1 = (∆ybT )/(bT b), we obtain

ŷ = T1b + ∆y = (T1 + ∆T1)b, ‖∆T1‖F =
‖∆y‖2
‖b‖2

.

From (4.12), we have

‖∆y‖2 ≤ u ‖b‖2 + γ̃2n

∥

∥|w1|
∣

∣vJ
1

∣

∣

∥

∥

2
‖b‖2 ≤ γ̃2n(1 +

∥

∥|w1|
∣

∣vJ
1

∣

∣

∥

∥

2
) ‖b‖2 .

Since
∥

∥|w1|
∣

∣vJ
1

∣

∣

∥

∥

2
= ‖|w1|‖2

∥

∥

∣

∣vJ
1

∣

∣

∥

∥

2
= ‖w1‖2

∥

∥vJ
1

∥

∥

2
=
∥

∥w1v
J
1

∥

∥

2
= ‖I − T1‖2 ≤ 1 + ‖T1‖2 ,

we then get

‖∆T1‖F =
‖∆y‖2
‖b‖2

≤ γ̃2n(2 + ‖T1‖2) ≤ 3γ̃2n ‖T1‖2 .
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Substitutingw1 = c1v1 in (4.12), ‖∆y‖2 can be bounded by

‖∆y‖2 ≤ u ‖b‖2 + γ̃2n |c1| ‖v1‖22 ‖b‖2 ,

and thus

‖∆T1‖F =
‖∆y‖2
‖b‖2

≤ u + γ̃2n |c1| ‖v1‖22 .

Since

|c1| =
(|a1| − ‖a‖2)2
‖a‖2 an+1

and ‖v1‖22 = 1 +
‖a‖22 − a2

1

(|a1| − ‖a‖2)2
= 2

‖a‖2
‖a‖2 − |a1|

,

it follows that

|c1| ‖v1‖22 =
2(‖a‖2 − |a1|)
|an+1|

.

Hence,

‖∆T1‖F ≤ u + γ̃2n
4 ‖a‖2
|an+1|

≤ 5γ̃2n
‖a‖2
|an+1|

.

REMARK 4.7. A very interesting exploitation of (4.11) is to use a strategy of pivoting
in the process of optimal symplectic Householder SR factorization, with symplectic permuta-
tions so that the ratio‖a‖2 / |an+1| is minimal.

Next, we consider a sequence of optimal symplectic Householder transformations ap-
plied to a matrix.

LEMMA 4.8. Let (Ak) be the sequence of matrices given by

Ak+1 = TkAk, k = 1 : r,

whereA1 = A ∈ R
2n×2m andTk = I + wkvJ

k ∈ R
2n×2n is a (optimal) symplectic House-

holder matrix. Assume that

rγ̃2n <
1

2
. (4.13)

Then the computed matrix̂Ar+1 satisfies

Âr+1 = S(A + ∆A), (4.14)

whereS = TrTr−1 . . . T1 and

‖S∆A‖2 ≤
3rγ̃2n

1− 3rγ̃2n

r
∏

i=1

‖Ti‖2 ‖A‖2 , (4.15)

‖∆A‖2 ≤
3rγ̃2n

1− 3rγ̃2n

r
∏

i=1

κ2(Ti) ‖A‖2 . (4.16)

Proof. The matrixAr+1 is given byAr+1 = TrTr−1 . . . T1A. By Lemma4.6, we have

Âr+1 = (Tr + ∆Tr) . . . (T1 + ∆T1)A, (4.17)
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where each∆Tk satisfies‖∆Tk‖F ≤ 3γ̃2n ‖Tk‖2. Using Lemma4.3and assumption (4.13),
we obtainÂr+1 = S(A + ∆A), where

‖S∆A‖2 ≤ ((1 + 3γ̃2n)r − 1)

r
∏

i=1

‖Ti‖2 ‖A‖2 ≤
3rγ̃2n

1− 3rγ̃2n

r
∏

i=1

‖Ti‖2 ‖A‖2 . (4.18)

Then‖∆A‖2 can be bounded by

‖∆A‖2 =
∥

∥SJS∆A
∥

∥

2
≤ ‖S∆A‖2

∥

∥SJ
∥

∥

2
≤ ‖S∆A‖2

r
∏

i=1

∥

∥T−1
i

∥

∥

2
.

Using (4.18), we get

‖∆A‖2 ≤
3rγ̃2n

1− 3rγ̃2n

(

r
∏

i=1

‖Ti‖2

)(

r
∏

i=1

∥

∥T−1
i

∥

∥

2

)

‖A‖2

≤ 3rγ̃2n

1− 3rγ̃2n

r
∏

i=1

κ2(Ti) ‖A‖2 .

Lemma4.8yields the standard backward and forward error results for symplectic House-
holder SR factorization.

THEOREM 4.9. Let R̂ ∈ R
2n×2m be the computedJ-upper trapezoidal SR factor of

A ∈ R
2n×2m (n ≥ m) obtained via the SR optimal symplectic Householder algorithm

SROSH. Then there exists a symplecticS ∈ R
2n×2n such that

A + ∆A = SR̂,

where

‖∆A‖2 ≤
6mγ̃2n

1− 6mγ̃2n
‖A‖2

2m
∏

i=1

κ2(Ti). (4.19)

The matrixS is given explicitly byS = (T̂2mT̂2m−1 . . . T̂1)
J , whereT̂i is the symplectic

Householder matrix that corresponds to the exact application of theith step of the algorithm
to Âk.

Proof. This is a direct application of Lemma4.8, with Tk (resp.Tk+m) defined as the
optimal symplectic Householder transformation that produces zeros in the desired entries in
thekth (resp. the(k + m)th) column of the computed matrix̂Ak. Note that in this algorithm,
we do not compute the null elements ofR̂ explicitly, but rather set them to zero explicitly.
Nevertheless, the conclusions of Lemmas4.6 and4.8 are still valid. The reason is that the
elements of∆T1b (respectively∆T2b) in Lemma4.6 that correspond to elements that are
zeroed by the optimal symplectic Householder transformationT1 (respectivelyT2) are forced
to be zero, and hence we can set the corresponding rows of∆T1 (respectively∆T2) to zero,
too, without compromising the bound for‖∆T1‖F (respectively‖∆T2‖F ).

Note that the matrixS in Theorem4.9is not computed by the optimal symplectic House-
holder SR factorization algorithm and is of purely theoretical interest. The fact thatS is
exactly symplectic makes the result so useful. WhenS is explicitly formed, two questions
arise:

1. How close is the computed̂S to being symplectic?
2. How large isA− ŜR̂?
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Using the analysis above, these questions are answered as follows.
THEOREM 4.10. Let R̂ ∈ R

2n×2m be the computedJ-upper trapezoidal SR factor
of A ∈ R

2n×2m (n ≥ m) obtained via the SR optimal symplectic Householder algorithm

SROSH and̂S the computed factor of the productS = T̂1
J
T̂2

J
. . . T̂ J

2m evaluated in the more
efficient right-to-left order. Then

∥

∥

∥Ŝ − S
∥

∥

∥

2
≤ 6mγ̃2n

1− 6mγ̃2n

2m
∏

i=1

‖Ti‖2 . (4.20)

Moreover,

∥

∥

∥(A− ŜR̂)
∥

∥

∥

2
≤ 6mγ̃2n

1− 6mγ̃2n
(1 +

1

1− 6mγ̃2n
) ‖A‖2

2m
∏

i=1

κ2(Ti). (4.21)

Proof. Lemma4.8gives (withA1 = I2n)

Ŝ = S(I2n + ∆I),
∥

∥

∥S − Ŝ
∥

∥

∥

2
= ‖S∆I‖2 ≤

6mγ̃2n

1− 6mγ̃2n

2m
∏

i=1

‖Ti‖2 .

Using Theorem4.9, we have
∥

∥

∥(A− ŜR̂)
∥

∥

∥

2
=
∥

∥

∥(A− SR̂) + ((S − Ŝ)R̂)
∥

∥

∥

2

≤ 6mγ̃2n

1− 6mγ̃2n
‖A‖2

2m
∏

i=1

κ2(Ti) +
∥

∥

∥S − Ŝ
∥

∥

∥

2

∥

∥

∥R̂
∥

∥

∥

2

≤ 6mγ̃2n

1− 6mγ̃2n
‖A‖2

2m
∏

i=1

κ2(Ti) +
6mγ̃2n

1− 6mγ̃2n

2m
∏

i=1

‖Ti‖2
∥

∥

∥R̂
∥

∥

∥

2
.

From Lemma4.8, we have

∥

∥

∥R̂
∥

∥

∥

2
≤ 1

1− 6mγ̃2n
‖A‖2

2m
∏

i=1

‖Ti‖2 .

Sinceκ2(Ti) = ‖Ti‖2
∥

∥T−1
i

∥

∥

2
= ‖Ti‖2

∥

∥T J
i

∥

∥

2
= ‖Ti‖22 , the relation (4.21) is then straight-

forward.
REMARK 4.11.
1. The relation (4.20) gives a bound for the loss ofJ-orthogonality of the computed

factor Ŝ, and shows that̂S may be very close to a symplectic matrix if the optimal
symplectic Householder transformations used in the process are well-conditioned.

2. The relation (4.21) gives a bound for the backward error in the factorization. This
backward error may be small if the optimal symplectic Householder transformations
involved in the process are well-conditioned.

3. The condition number of an optimal symplectic Householder transformation is min-
imal (see [13]), and this error analysis shows that their use in the SROSH algorithm
constitutes the best choice.

4. Lemma4.6 suggests a pivoting strategy for reinforcing the numericalaccuracy of
the algorithm.
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TABLE 4.1
Residual errors in SR factors computed by SROSH for Example4.12.

n ‖SJS − I‖SROSH
2 ‖A− SR‖SROSH

2

8 1.464898e− 015 1.194492e− 014
9 1.464898e− 015 1.749372e− 014

10 1.464898e− 015 3.158085e− 014
11 1.464898e− 015 2.842371e− 014
12 1.464898e− 015 6.759145e− 014
11 1.464898e− 015 1.149066e− 013
12 1.464898e− 015 2.722963e− 013
13 1.464898e− 015 2.692070e− 013
14 1.464898e− 015 4.746886e− 012
15 2.031758e− 015 4.711156e− 012

4.3. A numerical example.To illustrate numerically theJ-orthogonality and backward
error, we consider the following example.

EXAMPLE 4.12.

A =

[

M11 M12

M21 M22

]

,

with

M11 = eye(n);

M22 = diag(e1/2, e, . . . , en/2);

M12 =











1
e−1 1

. . .
. . .
e−1 1











; M21 =











1
1 1

. . .
. . .
1 1











,

whereeye is the MATLAB identity function. Errors for this example areshown in Table4.1
The second example isA = rand(2n, 2n), whererand is the MATLAB random func-

tion. Errors in this example are summarized in Table4.2.

5. Conclusion. An error analysis of SROSH algorithm is presented. Moreover, it is
showed that the loss ofJ-orthogonality of the computed symplectic factorŜ and the back-
ward error of the factorization are bounded in terms of the condition number of optimal
symplectic Householder transformations involved in the process. From this point of view,
the free parameters as taken in optimal symplectic Householder transformations constitute
the best choice. The study led us also to a pivoting strategy for increasing the accuracy of
the algorithm. This will be investigated in a forthcoming paper. Computational aspects of
the SROSH algorithm are studied. Storage, complexity, different implementations, factored
form, block representation are discussed.

Acknowledgement. The authors are grateful to an anonymous referee for his useful
comments and suggestions, which greatly improved the presentation.
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TABLE 4.2
Residual errors in SR factors computed by SROSH for random2n-by-2n matrices.

n ‖SJS − I‖SROSH
2 ‖A− SR‖SROSH

2

10 1.422043e− 015 4.488151e− 016
11 3.920943e− 015 2.942877e− 015
12 1.213806e− 012 5.514552e− 014
13 2.642990e− 011 1.264768e− 012
14 4.465041e− 013 2.210450e− 013
15 1.878234e− 010 1.174566e− 011
16 1.859176e− 090 2.665177e− 011
17 1.018534e− 090 2.708870e− 013
18 5.868227e− 010 1.877163e− 011
19 4.827328e− 010 1.019172e− 011
20 4.805909e− 011 1.769842e− 013
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