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Abstract. Symplectic QR like methods for solving some structuredeigkie problems involves SR factoriza-
tion as a key step. The optimal symplectic Householder S®ifiaation (SROSH algorithm) is a suitable choice
for performing such a factorization. In this paper, we cauy a detailed error analysis of the SROSH algorithm.
In particular, backward and forward error results are @efiv Also, the computational aspects of the algorithm
(such as storage, complexity, implementation, factorenhfdlock representation) are described. Some numerical
experiments are presented.
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1. Introduction. Let A be a2n-by-2n real matrix. The SR factorization consists in
writing A as the produc$ R, whereS is symplectic and? is J-upper triangular, i.e.,

Ri1 Rao
R =
[Rm R22]

is such thatR,1, Ri2, Roo are upper triangular anfts; is strictly upper triangulard, 4].
This decomposition is a key step in constructing symple@tir-like methods in order to
solve the eigenvalue problem of a class of structured nestrgee3, 9, 14]. It can be viewed
as the equivalent of the classical QR factorization, wheted of an Euclidean space, one
considers a linear space equipped with a specified skew-gymermner product; see3[ 12]
and the references therein. The space is then called syticpkend its orthogonal group with
respect to this inner product is called the symplectic grdmpcontrast with the Euclidean
case, the symplectic group is not compact. A numerical detegtion of the canonical form
for symplectic matrices has been derived by Godunov etsal. The set of reabn-by-2n
matrices for which a SR factorization exists is densBin*2" [3].

Computing the QR factorization is currently handled by thrar®Schmidt orthogonal-
ization process]], 2] or via Householder transformation [LO, 15]. In the symplectic case,
the SR factorization can be performed via symplectic Grammr8dt (SGS) algorithms (see
[12] and the references therein) or by using the SRDECO alguor[#]. Recently, a new
algorithm (SROSH) for computing the SR factorization waggmsed in L.3). It is a method
based on optimal symplectic Householder transformatigves present here a detailed error
analysis of the method. In particular, backward and forweardr results are derived. Ques-
tions about how close is the computed symplectic factor tegogymplectic and how large is
the error in the SR factorization are answered. We also itkesits most important computa-
tional aspects: storage, complexity, implementatiortpfiadl form, block representation.
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The remainder of this paper is organized as follows. In $a&j the symplectic House-
holder SR factorization is reviewed. Secti®is devoted to the computational aspects of the
optimal symplectic Householder SR factorization. Sectitreats in detail the error analysis
of the SROSH algorithm. Some illustrative numerical experits are presented.

2. SR decomposition.We review briefly the SR factorization, via symplectic House
holder transformations. A detailed study is providedlii

2.1. Symplectic Householder transformations (SHT).Let J5,, (or simply J) be the
2n-by-2n real matrix

0, Iy

where0,, andI,, stand for thex-by-n null and identity matrices, resectively. The linear space
R?" with the indefinite skew-symmetric inner product

(z,y)s =" Jy (2.2)

is called symplectic. We denote the orthogonality with ez$go (-,-); by L', i.e., for
r,y € R?", o |’ y stands for(x,y); = 0. The symplectic adjoint:’ of a vectorz is
defined by

zl =27 (2.3)
The symplectic adjoint ol € R?"*2¥ is defined by
M7 = Jh M7 Jy,. (2.4)
DEFINITION 2.1. A matrix.S € R?"*2¥ is called symplectic if
S7S = Iy,. (2.5)

The symplectic group (multiplicative group of square syagpit matrices) is denoted by
S. A transformatiori” given by

T =1+ cvv’ wherec € R, v € RV (with v even) (2.6)
is called a symplectic Householder transformatiod [ It satisfies
T =1 —cvv”. (2.7)

The vectomw is called the direction of".

2.2. The mapping problem. For z,y € R", there exists a symplectic Householder
transformatior?” such thatl'z = y if x = y orz”/y # 0. T is given by

1
T=1- =)y

Moreover, each non-null vectarcan be mapped onto any non-null vecidsy a product of
at most two symplectic Householder transformations. Sgetfd Householder transforma-
tions are rotations, i.edet(7") = 1; and the symplectic group is generated by symplectic
Householder transformations.
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2.3. SR factorization via symplectic Householder transfamations. The symplectic
Householder SR factorization can be viewed as the analdgdeuseholder QR factorization
in the symplectic case; se&d for more details. Lefey, ..., e, } be the canonical basis of
R27%2 [a,b] € R?"*2 andp, u, andv be arbitrary scalars. We seek symplectic Householder
transformationd’; and7; such that

Ty (a) = peq, Ts(e1) = eq, To(T1(b)) = per + vept1. (2.8)
The fact thatl» 77 is a symplectic isometry yields the necessary condition
a’b = (ToT1(a))” (T2T1 (b)) = pv. (2.9)
THEOREM2.2. Let p, v be such thatZ.9) is satisfied, and let
1
1 = _paJel’ vl = per — a,
cy = — (Tl(b))J(u; ey’ vy = pey + ven 1 — T1(b).
Then
T =1+ clvlvi], Ty =1+ czvgv';, (2.10)
satisfy @.9).
2.4. The SRSH algorithm. We outline here the steps of the algorithm. Let
A = [ay...,ap, api1, ..., a2p) € RTX2PLetryy, r1p41, Tpi1,p+1 D€ arbitrary scalars

satisfyingri17,+1,p+1 = af ap41. The first step of the SRSH algorithm is to fifid (i.e., c1
andwv; by Theoren?.2) such thatl;(a1) = r11e1 andTx (i.e., co andvs by Theoren2.2)
such thatlz(e1) = eq andTuTh (ap+1) = T1pri1€1 + Tpiipri€nti- TS Step involves two
free parameters. The actionGfT; on A is

i r(L2:p) T1,p+1 r(1,p+2:2p)

2 2
A |0 A% 0 A
0 r(p+1,2:p) mpript1 r(p+1,p+2:2p)
0 AP 0 A
Denote
2 2
A2 — Agl) Agz)

3

2 2
Ay Ay

and letra, 72 10, Tp12,p42 e arbitrary scalars with () (1,:)7 A®) (p,:) = 793 712 1.
The next step is to apply the previous stepitd), i.e., find (by Theoren.?)

Ts = Ion_o + c30303, Whereds = Z}?’ € R?" 2 and
L 3_
7o ~ o~ ~ [y ] 2n—2
Ty = Iop—o + ca047; , Wherevy = " cR ,
L 4_
such that
T2 7(2,3:p) T2, p42 7(2,p+3: 2p)
T A® = | 9 A 0 A
0 r(Pp+2,3:p) 7Tpr2pr2 T(P+2,p+3:2p)
0 A 0 A
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SetTg =I5, + 031)3’03‘], Ty = I, + 041)41)4‘], where

0 0

u u n
[U?) U4] — 03 04 ERQ ><2.

w3 W4

ThenTs, T, are symplectic Householder transformatiohd [and their action is given by

i T2 r(1,3:p) T1p+1 T1,p42 r(1,p+3:2p)
0 r22 (2, :(3 ) ) 0 T2,p+2 r(2,p _|E Z; :2p)
0o 0 A 0 0 Al
TyT3TTh A = 11 12
et 0 rpy12 r(P+L3:p) Tpript1 Tpripr2 T(P+1,p+3:2p)
0 0 r(p+2,3:p) 0 Tptopre T(P+2,p+3:2p)
00 Ag) 0 0 A%

The jth step is now clear. At the last stegilf step), we obtain

Ryt Ry

Tnggp_l R T4T3T2T1A = |:R21 Roo

:| —Rec R2n><2p’
whereR11, Ri2, Roo are upper triangular anfly; is strictly upper triangular.R is called
J-upper triangular. We get = SR with S = YTy ... Ty, 1 T3,

The algorithm SRSH involves free parameters. At each itargtof SRSH, two of the
three parameters;, r; 4. 7j+p,.j+p CaN be chosen freely.

3. SR factorization via optimal symplectic Householder traasformations. The SROSH
algorithm corresponds to an efficient way of choosing the frarameters in the SRSH algo-
rithm. It is based on the following result; seE]].

THEOREM3.1. Let[a, b] € R?"*2, and let

1

J
——, U1 =a— per, Ty =1+ civvy.
parel

p = sign(ai)lally, c1 = —
ThenT; has minimal 2-norm condition number and satisfies
T1(a) = pes. (3.1)

Letu be the vector, = T3 (b) andu, its jth component, and let

v=upy1,  &=|u—uier — uptientilly, p=uy £,
1
o = ——, Vg = U — €1 — Upt1€nil, Ty = I + cavo0y .
+uni1

ThenTy has minimal 2-norm condition number and satisfies
Ts(e1) = ex and To(u) = pey + vep41. (3.2)

We refer tol?, T, as optimal symplectic Householder transformations.
REMARK 3.2. The vecton, differs fromu only by the first andn + 1)th components
and satisfies,(n + 1) = 0. This will be taken in consideration when storing
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3.1. The SROSH algorithm. Given an input vectad, the proceduresh1 below returns
the coefficient; and the vecton; for the optimal symplectic Householder transformafign
of TheorenB.1 Similarly, the proceduresh2 computes the optimal symplectic Householder
transformatiorys.

We normalize the optimal symplectic Householder vectohefgrocedureshl so that
v1(1) = 1. Thusvi(2 : 2n) can be stored where the zeros have been introducediia.,
a(2 : 2n). As in the classical case, we refert(2 : 2n) as the essential part of the optimal
symplectic Householder vector @f. This gives the following procedure:

ALGORITHM 3.3. (First optimal symplectic Householder transformation)

Givena € R?*", this function computes € R*" with v(1) = 1 andc € R such that
T = I + cvv’ is the optimal symplectic Householder transformations$giing7'a = pe; of
Theorens.1

function|c, v] = oshl()
den = length(a); n = den/2;
J = [zeros(n), eye(n); —eye(n), zeros(n)];
p = sign(a1) llally; auz = a(l) — p;
if auz =0
c=0; v=0; %T =1I;
elseif a1 =0

display('division by zero’);
return
else
a (I’UJSCQ
V= —; ¢c= ;u(l) =1
auxr Pln41
% T = (eye(den) + cxv*xv' x J);

end

In a similar way, it is possible to normalize the optimal syegtic Householder vectar, so
thatvy (1) = 1. Moreover, since thes(n + 1) is zero.v(2 : 2n) can be stored where the
zeros have been introducedunThis is clarified by the following figure. Such storage is not
possible if the symplectic Householder transformatiorduseot optimal (since in this case,
va(n + 1) is not necessarily zero).

U Tou V2
[ ug ] [ x ] [ 1 i

Uo 0 1)2(2)

U, T 0 va(n)
Un+1 — X — 0
Upto 0 va(n +2)

| u2n | 0 | v2(2n)

We refer tovy(2 : 2n) as the essential_part_of the optimal symplectic Househaleletor of
Ts.

ALGORITHM 3.4. (Second optimal symplectic Householder transformation)
Givenu € R?", this function computes € R?" with v(1) = 1 andc € R such that
T = I + cvv’ is the optimal symplectic Householder transformationssgitng 7e; = e;
andT'u = pey + ve,41 of TheorenB.1
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function[c, v] = osh2()
den = length(u); n = den/2;
J = [zeros(n), eye(n); —eye(n), zeros(n)];

if n=1
v = zeros(den,1); ¢=0; AT =1
else
I=[2:n,n+2:den]; &=mnorm(u(I));
if £€=0
v = zeros(den,1); ¢=0; %T =1,
else
v=uln+1); %u=wu;+ & noneedto compute;
if u(n+1)=0
display('division by zero’)
return
else ¢
u
v= ¢ v(l)=1; vin+1)=0; c= Tt
end
end
end

REMARK 3.5. The quantity also can be taken to benorm(u(I)) in Algorithm3.4.
Note that the product of a symplectic Householder méfrix I + cvv’ with a given
vectora of dimensior2n can be computed easily without explicitly formifigitself, since

Ta=a+cv(v’/a).

This formulation requiresn flops. If A € R?"*2? is a matrix, then thd A can be written
asTA = A+ cv(v/A) = A+ cv(vT JA) = A+ cowT, wherew = — AT Jv. Likewise, if
T =1+ covTJ € R?P*?P then

AT = A(T + cvv' J) = A+ cun™ J,

wherew = cAv. Hence, &n-by-2p symplectic Householder transformation is a rank-one
matrix update and involves a matrix-vector multiplicatiamd an outer product update. It
requiresl6np flops. If T'is treated as a general matrix and the structure is not @¢rplahe
amount of work increases by an order of magnitude. Thus, teiclassical case, symplec-
tic Householder updates never entail the explicit fornratd the symplectic Householder
matrix. Note that both of the above Householder updates eamplemented in a way that
exploits the fact that, (1) = 1 for 7} andvs(1) =1, va(n + 1) = 0 for T.

3.2. Factored form representation. Many symplectic Householder-based factorization
algorithms compute products of symplectic Householderioest

S = T\ T ToTso .. ToToiws T; =1+ ;o007 ), (3.3)
wherek < n and the vectors), v(»+7) j =1 ... k have the form
. , , , AT
11(-7)2{0?71 1 v§ﬂ21 RN vfﬁj véﬁ” ;
. . . . 17T
o) = [oF 1 W e W) ]
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It is not necessary to computeexplicitly, even if S is required in subsequent calculations.
Thus, if a productS’ B is needed, wherd ¢ R2"*2* then the following loop can be
executed:
ALGORITHM 3.6.
forj=1:k
B =T;B;
B =Tp4;B;
end.
The storage of the symplectic Householder vectéts, ..., vF) o +D (k)
and the corresponding amounts to a factored representaﬂoﬁ?oForb e R2", We examlne

carefully the implementation of the produE}]b. SetH; = cjv @)™ thenTj] =1-
H,Js,. Due to the structure of;, the submatrixd;([1 : j —1,n+1: n+j—1],:),
obtained fromH; by deleting all rows exceptrowss...,j —landn+1,...,n+j —1,is
null. This implies that components...,j —landn+1,...,n+ j — 1 of H;J,b vanish.
Hence, the corresponding componentg“gﬁb remain unchanged. Similarly, the submatrix
H;(:,[1 : 5 —1,n+j : 2n]) (obtained fromH; by deleting all columns except columns
1,...,7—1landn + j,...,2n) is null. Settingrows = [j : n,n + j : 2n], one gets
[H; Jonb](rows) = [H,](rows, rows)[Ja, bl (rows). It follows from the particular structure
of Jan that[Ja, ] (rows) = Ja(—j41)b(rows). Thus, the produdty b is reduced to compute
b(rows) — [Hj](rows, rows)Jan—j+1)b(rows).

Suppose now that the essential paf ([j + 1 : n,n + j : 2n]) of the vectorv¥) is
stored inA([j + 1 : n,n + j : 2n],7), and similarly thalv(ﬁ”)([J +1:n,n+j+2:2n)
is stored iM([j +1: n,n+j+2: 2n],n+ j). The overwriting ofB with S’ B can then be
implemented as follows.

ALGORITHM 3.7. Product in factored form

forj=1:k;
1
rows =[j:n, j+n:2n|; v(rows) = | AG+1:n,j) | ;
A(n+j:2n,j)
B(rows,:) = B(rows,:) — cjv(rows)v(rows)” Jaq,—j41)B(rows, :);
1
v(rows) = AG+1 0n7j +n) ;

An+j+1:2n,5+n)
B(rows,:) = B(rows,:) — cjv(rows)v(rows)” Jaq,—j+1)B(rows, :);

end

Algorithm 3.7 illustrates the economies of the factored form represiematt requires
only 16mk(2n — k) flops. If S is explicitly represented as2u-by-2n matrix, S’ B would
involves16n2m flops.

ReEMARK 3.8.Note thatin lines 3 and 5 of Algorith®7, it should beJs,, (rows, rows)
instead of.J(,,;41). Due to the particular structure of/, we haveJs, (rows,rows) =
Jo(n—j+1)- The interest of this fact is that the produgy,, ;1) B(rows, :) does not induce
additional flops cost (the situation would be different gtiead of.J, one has a general ma-
trix).

When it is necessary to computeexplicitly, one can use a forward accumulation algo-
rithm:

ALGORITHM 3.9.

S = IQn;

forj=1:k
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S = STJ,
S = STn+j;
end
Another option is to use a backward accumulation algorithm:
ALGORITHM 3.10.

S:IQn
forj=k:—-1:1
S =T;5;

S = Tn+jS§
end

Furthermore, it is important to note that backward accutiararequires fewer flops than
forward accumulation. This is due to the particular streefT;. In fact, the block(j —1)-
by-2n (resp. (n + j)-by-2n) of T; (resp. ofT,,;) is equal to the blocK; — 1)-by-2n
(resp. (n + j)-by-2n) of the identity. HencesS is “mostly the identity” at the beginning of
backward accumulation and becomes gradually full as tihatiten progresses. In contrast,
is full in forward accumulation immediately after the firriation. For this reason, backward
accumulation is cheaper. It can be implemented @22k — nk? + k3 /3) flops as follows.
ALGORITHM 3.11.Backward accumulation
S = IQn;
forj=k:—-1:1
rows=1[j:n j+n:2n];
1
v(rows) = Al +1 On,] +n) :
| A(n+3j+1:2n,5+n)
S(rows, rows) = S(rows, rows)—c;v(rows)v(rows)” Jo,—_j11)S(rows, rows);

1
v(irows) = | A(j+1:n,5) |;
| A(n + 7 :2n,j)
S(rows,rows) = S(rows, rows)—c;v(rows)v(rows)’ Joi,_j11)S(rows, rows);

end

3.3. A block representation. Suppose that = 717, 1115142 ... T Ty 1 IS @ prod-
uct of 2n—by—2n optimal symplectic Householder matrices as3r8(. Since eacll} is a
rank-one modification of the identity, it follows from the'wtture of the symplectic House-
holder vectors tha$ is a rank2k modification of the identity and can be written in the form

S=T1+wYyTy, (3.4)

whereWW andY are2n-by-2k matrices. We refer to this block representation as-aWWy
representation. Its computation is based on the follonémgrha.

LEMMA 3.12. Suppose thas = I + WY7.J is an2n-by-2n symplectic matrix with
W, Y e RZ*I If T = I + cov” J withv € R*® andz = ¢Swv, then

ST =1+W.Y[J,

whereW,. = [W z] andY, = [Y ] are 2n-by-(j + 1) matrices.
Proof.

ST =T +WYTIH(I 4+ cvvTJ) =T+ WYTJ + cSovTJ
=T+WYTJ+ 207 T =T+ [W 2)[Y v]"J. a
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The block representation ¢f can be generated from the factored form by repeatedly
applying the Lemm&.12as follows.

ALGORITHM 3.13.Block representation
Supposethat = T1 T 1112 T2 - . . Ti Tyt is @ product o2n—by—2n optimal symplectic
Householder matrices as ir8(3). This algorithm computes matricég, ¥ € R2"*2* such
thatS =T+ WY7J.

Y =oM; W =coW;
2= cp1(I + WYT J)p(nth),
W= ) Y = [y ol
forj=2:k
z=c;(I+WYT ],
W=[Wz; Y=[VoU
2= cpy;(I+WYT )+,
W= W Y = [V o)
end.

This algorithm requires about (k*n — k*/3) flops if the zeros i) andv(*+7) are
exploited. Note thal” is obviously the matrix of symplectic Householder vectopsauper-
mutation of columns. Clearly, the central task in the getiemaf the.J — WY representation
(3.4) is the computation of th&/ matrix.

The block representation of products of symplectic Houkidranatrices is attractive in
situations wheres must be applied to a matrix. Suppose thiat R?"*2*_ |t follows that the
operation” «— S/C = (I+WYTJ)/C = C-Y(WTJC)isrichin level-3 operations. If
Sisin factored formS” C is just rich in the level-2 operations of matrix-vector niplitation
and outer products updates.

We mention that the/ — WY representation is not a generalized symplectic House-
holder transformation from the geometric point of view. @aymplectic block reflectors are
discussed in11].

3.4. The SROSH algorithm. The steps of the SROSH algorithm are the same as those
of the SRSH algorithm. The only change is that the free paterme SRSH are replaced by
optimal ones in SROSH. Let € R?"*2? and assume that< n. Givenj < m < k < 2n
andj’ < m/ < K < 2p,let A([j : m,k : 2n],[j’ : m/, k' : 2p]) denote the submatrix
obtained fromA by deleting all rows except rows. .., m andk, ..., 2n and all columns
exceptcolumng’,...,m' andk’, ..., 2p.

ALGORITHM 3.14.SROSH algorithm, factored form
GivenA € R?"*2P with n > p, the following algorithm finds (implicitly) optimal symptéc
Householder matrice®y, . . ., Ty, such that ifS/ = TQ‘;TJ. T\ T/, thenS’A = Ris
J-upper triangular. The/J- upper triangular part ofA is overwritten by the/-upper triangu-
lar part of R, and the essential part of the optimal symplectic Housedraldctors are stored
in the zeroed portion ofl.

forj=1:p
ro=1[j:in,n+j:2n]; co=[j:p,p+j:2p;

[¢; 1] = osh1(A(ro, [j]));

A(ro, co) = A(ro,co) + cvivi JA(ro, co);
(¢, v2] = 0sh2(A(ro, [p + j]));
A(ro, co) = A(ro, co) + cvavd JA(ro, co);
if j<n
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AGG+1:n,j)=n(2:n—7+1);
AG+n:2n,5)=viln—7+2:2(n—j+1));
AG+1img+p) = 0a@ 0~ + 1)
AG+14+n:2n,j+p)=va(n—j5+3:2(n—j+1));
else
A(j +n:2n,p) =11(2);
end

end

This algorithm requires6m?(n — p/3) flops. To clarify howA is overwritten, we give
the following example:

11 T12 13 14 15 T16

v1(2) a2 ro3  v4(2)  ros T2

A _ U1 (3) (%) (3) 733 ’1}4(3) Vs (3) 736
v1(4) a2 T43 T44 T45  T46

v1(5) v2(5) sz wa(5) a5 736

(% (6) U2 (6) V3 (6) 1)4(6) (Y5 (6) T36

If the matrix S is required, it can be computed3g(n?p —np? + p*/3) flops using backward
accumulation. Note that due t@.7), computing the product’ = 7/ T;/ ... T, , T{ does
not cost any more flops due of the presencé-tfanspositions.

4. Error analysis of SROSH.

4.1. Background for error analysis. To carry out a rounding error analysis of the
SROSH algorithm, we adopt the standard model for floatingaijmns

fllzopy) = (zopy)(1+0), [0|<u, op=+, —, * /. (4.1)

The quantityu stands for the unit roundoff. In the following analysis ahdoughout the
paper, a hat denotes a computed quantity. We now recall sop@riant notations, conven-
tions, and results of rounding error analysis developedijin e will use these results in
what follows to derive a rounding error analysis for the SRIQfgorithm.

LEMMA 4.1.1f |§;| <u,andp; = +1fori =1:nandnu < 1, then

n

[T +60)7 =1+ 6,
=1
where

|9n| < nua

l—pu ™

Proof. See [, pp. 63].0

The 6,, and~,, notation is used throughout this section. It is implicitgsamed that
nu < 1 (which is usually satisfied), whenever we writg. Consider the inner product
s, = 2Ty, wherez, y € R". Using Lemmat.1, the computed,, is then given by

with 0;] < v < v, i =1 :mn,0, <, and thus each relative perturbation is certainly
bounded byy,,. Hence, we obtain

fllaTy) =8, = (x+ Az) 'y =2" (y+ Ay), |Az| <, lz|, [Ayl<nlyl, (4.3)
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where|z| denotes the vector such that, = |z;| and inequalities between vectors (or matri-
ces) hold componentwise. The result3) means that computation of an inner product is a
backward stable process.

For an outer product = zy”, we havei;; = z;y;(1 + i), |5 < u, so

A=zy" + A, |A| §u‘zyT’. (4.4)

The computation of an outer product is not backward stabévelhelessA.4) is a satisfac-
tory result.

The following lemma provides some necessary rules for maafing thel + 6, and-;,
terms involved in Lemmé&.1

LEMMA 4.2.For any positive integek;, let 8, denote a quantity bounded according to

ku
1—Fku’

10k < v =

The following relations hold:

1+9/€ {1+9k+j7 ]Ska

L+ 05)(1+6;) = (14 k), -
(1+6k)(1+6;) = (14 0k5) 146, 14+ 0Okyoj, J> Kk,

YV < Ymin(k,j) fOr max(j, k)u < 1/2,
Ok S Viks MU Vet Ve T F WY S Ve

Proof. See [, pp. 67].0

It is straightforward to analyze matrix-vector and matmetrix products, once error
analysis for inner products has been given. Aet R"*", z € R", andy = Az. We have
the backward error result

g=(A+AA)z,  [AAl <A (4.5)

The following result is needed.
LEMMA 4.3.1f X; + AX; € R™*™ satisfieg| A X || . < d;[|X;]|, forall j, then

p

p p p
& +ax)-T1x| <(I[a+6)—1)TL1Xl,-
Jj=0 j=0 §=0

F 7=0
Proof. See [, pp. 73].0

4.2. Error analysis for optimal symplectic Householder transformations. In the fol-
lowing analysis, it is not worthwhile to keep the preciseugabf the integer constants in the
~i terms. We make use of the notatian= cku/(1 — cku), wherec denotes a small integer
constant; see/]. For example, we writd~y,, < V4, = Y-

LEMMA 4.4. Consider the optimal symplectic Householder transforomaii;, = I +
c1v1vi given by Algorithn8.3. The computed; and; satisfyd; (2 : 2n) = v1(2 : 2n) and

er=c1(1+0s),  01(1) =v1(1)(1 + ba,,), (4.6)

where‘égn

S ’?271 .
199



ETNA
Kent State University
http://etna.math.kent.edu

Proof. We mention that each occurrencedtienotes a different number bounded by
d < u. We havep = sign(a1) ||al|, andv; (1) = a; — p, and we use the formula
a%—p2 7_a§+...+a§n

v1(1) = =
=27 ar +p

to avoid cancellation errors in computing(1). Settingd = a3 + ... + a3, ande = d + a?,
we getd = d(1+ 62, _1), and theré = (d+a?(1+6))(1+09) = (d+a?)(1+ 0s,) (because
there is cancellation in the sum). Settifig= v/¢, we obtain

F=Ve(l+06) = (d+a) (1 + 02,) (1 +6) = (d + a})V*(1 + O 11).
Sincep = sign(ay)(d + a?)*/2, it follows that
p = sign(ar)f = sign(a1)(d + a)"*(1 4 63,11),
and thus
p=p(l+02n41). (4.7)
Fromuvy (1) = —d/(a1 + p), we deduce

d(1+9)

w)=-C T hase

Since there is no cancellation in the sum+ p and using 4.7), we obtain

(1) = — d(1+9) _ A+ 62)
1 (a1 + )L+ O2n42) (a1 +p)(1+ O2nr2)
Furthermore, by applying Lemmal, we get
d

a; +p

01(1) = -

(L+ Osn+a) = v1(1)(1 + Oonta).

From

o

= |96n+4| < Yonta < V8n = Von,
we obtain
’lA}l(l) = ’Ul(l)(l + égn) and |A’U1(1)| < |’U1(1)| ’72”. a0

LEMMA 4.5. Consider the optimal symplectic Householder transforomaii, = 1 +
cavovy given by Algorithn8.4. The computeé, andd, satisfyd, (2 : 2n) = v2(2 : 2n), and

éo = co(140a,),  2(1) = v2(1)(1 + ay,), (4.8)

where‘e}n

< ’7211-

~ Proof. We haveny(1) = —¢ = —(a? +ot ap + g+t asn)'/?. Thus, we get

& = &(1 4 03,,—1) and hencer (1) = —& = v2(1)(1 + b2,,). Similar to the results of the

analysis ofce = 1/(&uy,41), we find

: _(1+6)? (140)?

° Eupit €1+ O2p—1)uns1
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From Lemma4.1, we then obtain

1 -
& = 14 01,) = ca(1465,). O
2 Gy () = 2l Oan)

The next result describes the application of a symplectiedgbolder transformation to a
vector, and is the basis of the subsequent analysis. Foea@nce we here write symplectic
Householder matrices in the forffi, = I + wlvi] andT, = I + U)Q’U'QJ, which requires
w1 = c1v; andwy = cove. Using then Lemmag.4and4.5, we obtain

w1 = wy + Awy, |Awi] < Aop |wr], and (4.9)
We = wy + Awsa, [Awz| < oy [wa]. .

LEMMA 4.6. Letb € R?", and consider the computation 9f= Tyb = (I + ;0 )b
wheret; andw, satisfy ¢.6) and @.9), respectively. The computgdsatisfies

g = (T1 + ATh)b, |AT || < 3%2n || T - (4.10)
Moreover,
- lall,
ATy ||z < 5%2n . (4.11)
|an+1|

Proof. We have
2= fl(an (b)) = (i1 + Adn ) (8] (b + Ab)),
where|Aw| < u|wq| and|Ab| < 72, |b]. Hence
2= (w1 + Awy + Ady)(vy + Avy)? (b + Ab) = wy (vb) + Az,
where|Az| < o, [w1] |v{] [b]. It follows that
J=fl0+2) =b+w (v]b)+ Az + Ayr, Ay <ulb+4].
We get
|Az + Ayi| < ulb| +Fon fwi ] [vf ] [5].- (4.12)
SettingAy = Az + Ay; andAT; = (AybT)/(b7b), we obtain

7 A
g=Tib+ Ay = (T, + ATy)b, ATy ||, = |||b?ﬁ|2
2

From @4.12, we have

1Ay, < wllblly + Fon [[lwn] [o7 |||, 1blly < Fon (1 + [|lwr] o [[|,) 15l -

Since
wil {07 ][], = Mwillly |07 [, = lwilly |07 ]|, = [Jwief ||, = 1T = Tully < 1+ Tall,,
we then get
A
ja7ify = I < 50,24 71l < 3520 I3l
2
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Substitutinguw;, = cyv; in (4.19, ||Ay||, can be bounded by

~ 2
[Ay[ly < ullblly +F2n leal foallz [10ll;

and thus
Ay 5
janify = 1200 <5, e o2
0],
Since
_ 2 2 2
O Yl Y S L el S L 1S
lally an+1 (lax] —llall,) lally — lai]
it follows that
2(llally = laal)
2
lea] [Jorllz = |27
an+1|
Hence,
_ 4la - a
JATY|p < ut Agndlelle g lals g
|an+1| |an+1|

REMARK 4.7. A very interesting exploitation oft(1]) is to use a strategy of pivoting
in the process of optimal symplectic Householder SR faztidn, with symplectic permuta-
tions so that the ratid(a||, / |a,1] is minimal.

Next, we consider a sequence of optimal symplectic Housendtansformations ap-
plied to a matrix.

LEMMA 4.8. Let(Ay) be the sequence of matrices given by

Ak+1 = TkAka k=1: T,

whereAd; = A € R 2™ and Ty, = I + wxvi € R?™*2" is a (optimal) symplectic House-
holder matrix. Assume that

1
TY2n < 5 (4.13)

Then the computed matrj&rﬂ satisfies

Arp1 = S(A+ AA), (4.14)
whereS = T, T,_1...T7 and
37”?271 .
< —— = - )
[sadll, < == 11 il NlAll; (4.15)
37”?271 .
< —— = : ) )
1841, < =52 T (T 141 (4.16)

i=1

Proof. The matrixA, 11 is given byA, ., = T;.T,_1...T1 A. By Lemma4.6, we have

Ar+1 = (TT + ATT) R (Tl + ATl)A, (417)
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where eac\ T}, satisfies| ATy || » < 392n || Tk|,. Using Lemmat.3and assumptiord(13,
we obtainA, ,; = S(A + AA), where

37“7”
[SAAl < ((1+372)" = 1) H||T||2||A||2_1 - HIITIIQHAIIQ (4.18)
i=1

Then||AA||, can be bounded by
1Al = [|S7SAA[|, < ISAA], [|57]], < [SAAL TIT, -
i=1

Using (.18, we get

[AA],

37°72n <H T ”2> <1:[1 ||Ti1H2> 14,

312
< — = ) |All, . a
_1_37%7”];[1/%2( )14l

Lemmad4.8yields the standard backward and forward error results/impgectic House-
holder SR factorization.

THEOREM 4.9. Let R € R2"*2™ phe the computed-upper trapezoidal SR factor of
A € R?"*2m (p > m) obtained via the SR optimal symplectic Householder atgori
SROSH. Then there exists a symplestie R2"*2" such that

A+ AA= SR,

where

Gm/y?n
|AAll, < 7 ||2an (4.19)

The matrix$ is given explicitly byS = (T, Tom_1...11)7, whereT; is the symplectic
Householder matrix that corresponds to the exact applazadf theith step of the algorithm
to Ag.

Proof. This is a direct application of Lemm&8, with T}, (resp. Tx+.,) defined as the
optimal symplectic Householder transformation that pretuzeros in the desired entries in
thekth (resp. th€k + m)th) column of the computed matrig;,. Note that in this algorithm,
we do not compute the null elements Bfexplicitly, but rather set them to zero explicitly.
Nevertheless, the conclusions of LemmdaSand4.8 are still valid. The reason is that the
elements ofAT1b (respectivelyAT;b) in Lemma4.6 that correspond to elements that are
zeroed by the optimal symplectic Householder transforondt] (respectivelyls) are forced
to be zero, and hence we can set the corresponding ro§ p{respectivelyATs) to zero,
too, without compromising the bound fpAT? || - (respectively|AT|| ). O

Note that the matrix in Theoremd.9is not computed by the optimal symplectic House-
holder SR factorization algorithm and is of purely thea&tinterest. The fact that is
exactly symplectic makes the result so useful. WKeis explicitly formed, two questions
arise:

1. How close is the computekito being symplectic?
2. How large isd — SR?
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Using the analysis above, these questions are answerelioagsfo

THEOREM 4.10. Let R € R?"*2™ pe the computed-upper trapezoidal SR factor
of A € R?"*?™ (n, > m) obtained via the SR optimal symplectic Householder atgori
SROSH and the computed factor of the produgt= 5 T3, evaluated in the more
efficient right-to-left order. Then

& 6m72n
- T, 4.20
|5-5], < =52 %i[[n lo- (4.20)
Moreover,
Ja-sR), < 2021y )| [[wm. @2
21— 6m'72n 1-— Gm%n 2 - 2 '

Proof. Lemma4.8gives (withA; = I,,)

~ 2m
§=5(h,+AD,  [s-5], = Isatl, < T T[T,
=1

Using Theoremt.9, we have

Hm—smLZHm—sm+«S—amL
< oo \A”zH@ )+[ls -5, |12],
< \AHQHm %HHTHQHRH

From Lemma&i.8, we have

2], < HAHQH I,

Sincers(T3) = | T3, || 7571, = 1Tl || T7 ||, = 7315 . the relation 4.23) is then straight-
forward.O
REMARK 4.11.

1. The relation 4.20 gives a bound for the loss of-orthogonality of the computed
factor S, and shows tha$ may be very close to a symplectic matrix if the optimal
symplectic Householder transformations used in the pwaes well-conditioned.

2. The relation 4.27) gives a bound for the backward error in the factorizatiorisr
backward error may be small if the optimal symplectic Houdéér transformations
involved in the process are well-conditioned.

3. The condition number of an optimal symplectic Househrdtdasformation is min-
imal (see [L3]), and this error analysis shows that their use in the SRO&jdrithm
constitutes the best choice.

4. Lemmad.6 suggests a pivoting strategy for reinforcing the numermeduracy of
the algorithm.

204



TABLE 4.1
Residual errors in SR factors computed by SROSH for Exadnpe

ETNA
Kent State University
http://etna.math.kent.edu

n | |[$7S — I3"O%T || A — SR|FROSH
8 | 1.464898e — 015  1.194492¢ — 014
91 1.464898e — 015  1.749372e — 014
10 | 1.464898e — 015  3.158085e — 014
11| 1.464898e — 015  2.842371e — 014
12 ] 1.464898e — 015  6.759145e — 014
11| 1.464898e — 015  1.149066e — 013
12| 1.464898e — 015 2.722963e — 013
13 | 1.464898e — 015  2.692070e — 013
14 | 1.464898e — 015  4.746886e — 012
151 2.031758e — 015 4.711156e — 012

4.3. A numerical example. To illustrate numerically thg-orthogonality and backward
error, we consider the following example.
EXAMPLE 4.12.

A= My Myo
My Mag |’
with

Mi; = eye(n);

Moy = diag(el/Q, e, ... ,e”/g);

1 1

et 1 1 1
My = _ ; Moy = - ,
e”t 1 1 1

whereeye is the MATLAB identity function. Errors for this example asbown in Tablet.1
The second example i = rand(2n, 2n), whererand is the MATLAB random func-
tion. Errors in this example are summarized in Tahl2

5. Conclusion. An error analysis of SROSH algorithm is presented. Moreoias
showed that the loss of-orthogonality of the computed symplectic fact9and the back-
ward error of the factorization are bounded in terms of thedion number of optimal
symplectic Householder transformations involved in thecpss. From this point of view,
the free parameters as taken in optimal symplectic Houdehdtansformations constitute
the best choice. The study led us also to a pivoting strategintreasing the accuracy of
the algorithm. This will be investigated in a forthcomingopa Computational aspects of
the SROSH algorithm are studied. Storage, complexityedhffit implementations, factored
form, block representation are discussed.
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Residual errors in SR factors computed by SROSH for rariziery-2n matrices.
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n | |78 — I|3RO% || A — SR|FHOST
10 | 1.422043e — 015  4.488151e — 016
11 | 3.920943e — 015 2.942877e — 015
12 | 1.213806e — 012 5.514552¢ — 014
13 | 2.642990e — 011  1.264768e — 012
14 | 4.465041e — 013 2.210450e — 013
15 | 1.878234e — 010  1.174566e — 011
16 | 1.859176e — 090  2.665177e — 011
17 | 1.018534e — 090  2.708870e — 013
18 | 5.868227¢ — 010  1.877163e — 011
19 | 4.827328¢ — 010  1.019172e — 011
20 | 4.805909e¢ — 011  1.769842e — 013
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