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Abstract

In this article, we characterize the pairs (u, v) of positive measurable functions such
that T maps the weighted amalgam (Lp̄(v), �q̄) in (Lp (u), ℓq) for all 1 < p, q, p̄, q̄ < ∞,
where T belongs to a class of positive operators which includes Hardy operators,
maximal operators, and fractional integrals.
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1. Introduction
Let u be a positive function of one real variable and let p, q > 1. The amalgam (Lp(u),

ℓ
q) is the space of one variable real functions which are locally in Lp(u) and globally in

ℓ
q. More precisely,

(Lp(u), �q) = {f : ||f ||p,u,q < ∞},

where

||f ||p,u,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n+1∫

n

|f |pu
⎞
⎠
q
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

.

These spaces were introduced by Wiener in [1]. The article [2] describes the role

played by amalgams in Harmonic Analysis.

Carton-Lebrun, Heinig, and Hoffmann studied in [3] the boundedness of the Hardy

operator Pf (x) =
∫ x
−∞ |f | in weighted amalgam spaces. They characterized the pairs of

weights (u, v) such that the inequality

||Pf ||p,u,q ≤ C||f ||p̄,v,q̄ (1:1)

holds for all f, with a constant C independent of f, whenever 1 < q̄ ≤ q < ∞. The

characterization of the pairs (u, v) for (1.1) to hold in the case 1 < q < q̄ < ∞ has

been recently completed by Ortega and Ramírez ([4]), who have also characterized the

weak type inequality∥∥Pf∥∥p,∞;u,q ≤ C
∥∥f∥∥p̄,v,q̄,
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where ||g||p,∞;u,q =

{∑
n∈Z

||gX(n,n+1)||qp,∞,u

}1
q
.

There are several articles dealing with the boundedness in weighted amalgams of

other operators different from Hardy’s one. Specifically, Carton-Lebrun, Heinig, and

Hoffmann studied in [3] weighted inequalities in amalgams for the Hardy-Littlewood

maximal operator as well as for some integral operators with kernel K(x, y) increasing

in the second variable and decreasing in the first one. On the other hand, Rakotondrat-

simba ([5]) characterized some weighted inequalities in amalgams (corresponding to

the cases 1 < p̄ ≤ p < ∞ and 1 < q̄ ≤ q < ∞) for the fractional maximal operators and

the fractional integrals. Finally, the authors characterized in [6] the weighted inequal-

ities for some generalized Hardy operators, including the fractional integrals of order

greater than one, in all cases 1 < p, p̄, q, q̄ < ∞, extending also results due to Heinig

and Kufner [7].

Analyzing the results in the articles cited above, one can see some common features

that lead to explore the possibility of giving a general theorem characterizing the

boundedness in weighted amalgams of a wide family of positive operators, and provid-

ing, in such a way, a unified approach to the subject. This is the purpose of this article.

2. The results
We consider an operator T acting on real measurable functions f of one real variable

and define a sequence {Tn}nÎℤ of local operators by

Tnf (x) = T(fX(n−1,n+2))(x) x ∈ (n − 1,n + 2).

We assume that there exists a discrete operator Td, i.e., which transforms sequences

of real numbers in sequences of real numbers, verifying the following conditions:

(i) There exists C > 0 such that for all non-negative functions f, all n Î ℤ and all x

Î (n, n + 1), the inequality

T
(
fX(−∞,n−1) + fX(n+2,∞)

)
(x) ≤ CTd

⎛
⎝

⎧⎨
⎩

m∫
m−1

f

⎫⎬
⎭

⎞
⎠ (n) (2:1)

holds.

(ii) There exists C > 0 such that for all sequences {ak} of non-negative real numbers

and n Î ℤ, the inequality

Td({ak})(n) ≤ CTf (y), (2:2)

holds for all y Î (n, n + 1) and all non-negative f such that
∫ m
m−1 f = am for all m.

We also assume that T verifies Tf = T |f|, T(lf) = |l| Tf, T(f + g)(x) ≤ Tf (x) + Tg (x)

and Tf(x) ≤ Tg(x) if 0 ≤ f (x) ≤ g(x).
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We will say that an operator T verifying all the above conditions is admissible.

There is a number of important admissible operators in Analysis. For instance:

Hardy operators, Hardy-Littlewood maximal operators, Riemann-Liouville, and Weyl

fractional integral operators, maximal fractional operators, etc.

Our main result is the following one:

Theorem 1. Let 1 < p, q, p̄, q̄ < ∞. Let u and v be positive locally integrable functions

on ℝ and let T be an admissible operator. Then there exists a constant C > 0 such that

the inequality

||Tf ||p,u,q ≤ C||f ||p̄,v,q̄. (2:3)

holds for all measurable functions f if and only if the following conditions hold:

(i) Td is bounded from �q̄({vn})to ℓ
q({un}), where

vn =
(∫ n

n−1 v
1−p̄′ )−

q̄
p̄′ and

un =
(∫ n+1

n u
)qp.

(ii) (a) sup
n∈Z

||Tn||(Lp̄(v),Lp(u)) < ∞in the case 1 < q̄ ≤ q < ∞.

(b) {||Tn||(Lp̄(v),Lp(u))} ∈ �s, with
1
s
=
1
q

− 1
q̄
, in the case 1 < q < q̄ < ∞.

The proof of Theorem 1 is contained in Sect. 3.

Working as in Theorem 1, we can also prove the following weak type result:

Theorem 2. Let 1 < p, q, p̄, q̄ < ∞. Let u and v be positive locally integrable functions

on ℝ and let T be an admissible operator. Then there exists a constant C > 0 such that

the inequality

||Tf ||p,∞,u,q ≤ C||f ||p̄,v,q̄ (2:4)

holds for all measurable functions f if and only if the following conditions hold:

(i) Td is bounded from �q̄({vn})to ℓ
q ({un}),), with vn and un defined as in Theorem 1.

(ii) (a) sup
n∈Z

||Tn||(Lp̄(v),Lp,∞(u)) < ∞in the case 1 < q̄ ≤ q < ∞.

(b) {||Tn||(Lp̄(v),Lp,∞(u))} ∈ �s, with
1
s
=
1
q

− 1
q̄
, in the case 1 < q < q̄ < ∞.

If conditions on the weights u, v, and {un}, {vn} characterizing the boundedness of the

operators Tn and Td, respectively, are available in the literature, we immediately obtain,

by applying Theorems 1 and 2, conditions guaranteeing the boundedness of T between

the weighted amalgams. In this sense, our result includes, as particular cases, most of

the results cited above from the papers [3-7], as well as other corresponding to opera-

tors whose behavior on weighted amalgams has not been studied yet.

Thus, if M - is the one-sided Hardy-Littlewood maximal operator defined by

M−f (x) = sup
h>0

1
h

x∫
x−h

|f |,
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we have:

(i) The discrete operator (M -)d, defined by

(M−)d({an})(j) = sup
k≤j−1

1
j − k

j−1∑
i=k

| ai|,

verifies conditions (2.1) and (2.2).

(ii) The local operators M−
n are defined by

M−
n f (x) = sup

0<h≤x−n+1

1
h

x∫
x−h

|f |, x ∈ (n − 1, n + 2).

(iii) If p = p̄ and q = q̄, there are well-known conditions on the weights u, v, and {un},

{vn} that characterize the boundedness of M−
n and (M -)d (see, for instance [8-10]).

Therefore, we obtain the following result:

Theorem 3. The following statements are equivalent:

(i) M - is bounded from (Lp(w), ℓq) to (Lp(w), ℓq).

(ii) M- is bounded from (Lp(w), ℓq) to (Lp,∞(w), ℓq).

(iii) The next conditions hold simultaneously:

(a) w ∈ A−
p,(n−1,n+2)for all n, uniformly, and

(b) the pair ({un}, {vn}) verifies the discrete Sawyer’s condition S−
q , i.e., there exists

C > 0 such that

k∑
j=r
((M−)d({v1−q′

n }))q(j)uj ≤ C
k∑
j=r

v1−q′
j ,

for all r, k Î ℤ with r ≤ k.

We can state a similar result for the one-sided maximal operator M+. In this case,

the operator (M +)d defined by

(M+)d({an})(j) = sup
k≥j+3

1
k − j − 2

k∑
i=j+3

| ai|,

verifies conditions (2.1) and (2.2). The theorem is the next one:

Theorem 4. The following statements are equivalent:

(i) M + is bounded from (Lp(w), ℓq) to (Lp(w), ℓq).

(ii) M + is bounded from (Lp(w), ℓq) to (Lp,∞ (w), ℓq).

(iii) The next conditions hold simultaneously:

(a) w ∈ A+
p,(n−1,n+2)for all n, uniformly, and

(b) the pair ({un}, {vn-3}) verifies the discrete Sawyer’s condition S+q, i.e., there

exists C > 0 such that

k∑
j=r
((M+)d({v1−q′

n }))q(j)uj ≤ C
k∑
j=r

v1−q′
j ,
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for all r, k Î ℤ with r ≤ k.

If M is the Hardy-Littlewood maximal operator, defined by

Mf (x) = sup
x∈I

1
|I|

∫
I

|f |,

then M is admissible, with Md({an})(j) = sup
r≤j≤k

1
k − r + 1

k∑
i=r

| ai|, and there are well-

known results, due to Muckenhoupt ([11]) and Sawyer ([12]), which characterize the

boundedness of M in weighted Lebesgue spaces. Applying Theorems 1 and 2, we get

the following result:

Theorem 5. The following statements are equivalent:

(i) M is bounded from (Lp(w), ℓq) to (Lp(w), ℓq).

(ii) M is bounded from (Lp(w), ℓq) to (Lp,∞(w), ℓq).

(iii) The next conditions hold simultaneously:

(a) w Î Ap,(n-1,n+2) for all n, uniformly, and

(b) the pair ({un}, {vn}) verifies the discrete two-sided Sawyer’s condition Sq, i.e.,

there exists C > 0 such that

k∑
j=r
(Md({v1−q′

n })q(j)uj ≤ C
k∑
j=r

v1−q′
j

for all r, k Î ℤ with r ≤ k.

This result improves the one obtained by Carton-Lebrun, Heinig and Hofmann in

[3], in the sense that the conditions we give are necessary and sufficient for the bound-

edness of the maximal operator in the amalgam (Lp(w), ℓq), while in [3] only sufficient

conditons were given. We also prove the equivalence between the strong type inequal-

ity and the weak type inequality. The equivalence (i) ⇔ (iii) in Theorem 5 is included

in Rakotondratsimba’s paper [5], where the proof of the admissibility of M can also be

found.

Finally, we will apply our results to the fractional maximal operator Ma, 0 <a < 1,

defined by

Mαf (x) = sup
c<x<d

1

(d − c)1−α

d∫
c

| f |.

The proof of the admissibility of Ma, with the obvious Md
α, is implied in Rakoton-

dratsimba’s paper ([5]).

Verbitsky ([13]) in the case 1 <q <p < ∞ and Sawyer ([12]) in the case 1 <p ≤ q < ∞

characterized the boundedness of Ma from Lp to Lq(w). These results allow us to give

necessary and sufficient conditions on the weight u for Ma to be bounded from

(Lp̄, �q̄) to (Lp(u), �q).
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Before stating the theorem, we introduce the notation:

(i) If 1 < q̄ < ∞, we define H : ℤ ® ℝ by

H(i) = sup
r≤i≤k

1

(k − r + 1)1−αq̄

k∑
j=r

uj.

(ii) If 1 < q̄ ≤ q, we define

J = sup
r≤k

||X[r,k]Md
α(X[r,k])||�q({uj})

(k − r + 1)

1
q̄

.

(iii) If 1 < p̄ < ∞ and n Î ℤ, we define for x Î (n - 1, n + 2)

Hn(x) = sup
x∈I⊂(n−1,n+2)

1

|I|1−αp̄

∫
I
u.

(iv) If 1 < p̄ < p and n Î ℤ, we define

Jn = sup
I⊂(n−1,n+2)

||XIMα(XI)||Lp(u)

|I|
1
p̄

.

The result reads as follows.

Theorem 6. Ma is bounded from (Lp̄, �q̄)to (Lp(u), ℓq) if and only if

(i) in the case 1 < p̄ ≤ p < ∞and 1 < q̄ ≤ q < ∞, supnÎℤ Jn < ∞ and J < ∞;

(ii) in the case1 < p < p̄ < ∞and1 < q̄ ≤ q < ∞, supn∈Z||Hn||
L

p
p̄−p (u)

< ∞and J < ∞;

(iii) in the case 1 < p̄ ≤ p < ∞and 1 < q < q̄ < ∞, {Jn}n Î ℓ
s, where

1
s
=
1
q

− 1
q̄
,

and H ∈ �
q

q̄−q({uj});

(iv) in the case 1 < p < p̄ < ∞and 1 < q < q̄ < ∞, ||Hn||
L

p
p̄−p (u)

∈ �sand

H ∈ �
q

q̄−q({uj}).

3. Proof of Theorem 1
Let us suppose that the inequality (2.3) holds. Let n Î ℤ and let f be a non-negative

function supported in (n - 1, n + 2). Then, on one hand,

||f ||p̄,v,q̄ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝ n∫
n−1

f p̄v

⎞
⎠
q̄
p̄
+

⎛
⎝ n+1∫

n

f p̄v

⎞
⎠
q̄
p̄
+

⎛
⎝ n+2∫
n+1

f p̄v

⎞
⎠
q̄
p̄

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

≤ Cp̄,q̄

⎛
⎝ n+2∫

n−1

f p̄v

⎞
⎠
1
p̄
,
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and, on the other hand,

||Tf ||p,u,q ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝ n∫
n−1

(Tf )pu

⎞
⎠
q
p
+

⎛
⎝ n+1∫

n

(Tf )pu

⎞
⎠
q
p
+

⎛
⎝ n+2∫
n+1

(Tf )pu

⎞
⎠
q
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

≥ Cp,q

⎛
⎝ n+2∫
n−1

(Tf )pu

⎞
⎠
1
p

≥ Cp,q

⎛
⎝ n+2∫
n−1

(Tnf )
pu

⎞
⎠
1
p

= Cp,q||Tnf ||p,u.

Therefore, by (2.3), Tn is bounded and ||Tn||(Lp̄(v),Lp(u)) ≤ C, where C is a positive con-

stant independent of n. Then (ii)a holds independently of the relationship between q

and q̄. Let us prove that if 1 < q < q̄ < ∞, then (ii)b also holds.

It is well known that ||Tn||(Lp̄(v),Lp(u)) = sup
{f :||f ||Lp̄(v)=1}

||Tnf ||Lp(u). Therefore, for each n

there exists a non-negative measurable function fn, with support in (n - 1, n + 2) and

with ||fn||(Lp̄(v),(n−1,n+2)) = 1, such that ||Tn||(Lp̄(v),Lp(u)) < ||Tnfn||Lp(u) + 1
2|n|.

Since

{
1
2|n|

}
∈ �s, to prove that {||Tn||(Lp̄(v),Lp(u))} ∈ �s it suffices to see that

{||Tnfn||Lp(u)} ∈ �s.

Let {an} be a sequence of non-negative real numbers and f =
∑
n
anfn. For each n Î ℤ,

f(x) ≥ anfn (x) and then Tf (x) ≥ anTnfn (x) for all x Î (n - 1, n + 2). Thus,

||Tf ||p,u,q ≥ C

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈Z

(
n+2∫
n−1

apn(Tnfn)
pu

)q
p

⎫⎪⎪⎬
⎪⎪⎭

1
q

= C
{∑
n∈Z

aqn||Tnfn||qLp(u)
}1
q .

Then, from (2.3) we deduce

{∑
n∈Z

aqn||Tnfn||qLp(u)
}1
q ≤ C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n+2∫
n−1

f p̄v

⎞
⎠
q̄
p̄

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

≤ C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n∈Z

aq̄n

⎛
⎝ n+2∫
n−1

f p̄n v

⎞
⎠
q̄
p̄

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

= C

{∑
n∈Z

aq̄n

}
.
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This means that the identity operator is bounded from �q̄ to �q
({

||Tnfn||qLp(u)
})
. Then

{||Tnfn||Lp(u)} ∈ �s, by applying the following lemma (see [4]).

Lemma 1. Let 1 < q < q̄ < ∞and
1
s
=
1
q

− 1
q̄
. Suppose that {un} and {vn} are

sequences of positive real numbers. The following statements are equivalent:

(i) There exists C >0 such that the inequality

{∑
n∈Z

(|an|un)q
}1
q ≤ C

{∑
n∈Z

(|an|vn)q̄
}1
q̄

holds for all sequences {an} of real numbers.

(ii) The sequence {unv−1
n }belongs to the space ls.

On the other hand, let us prove that (i) holds. If {am} is a a sequence of non-negative

real numbers and

f =
∑
m∈Z

amχ(m−1,m)

⎛
⎝ m∫
m−1

ν1−p̄′

⎞
⎠

−1

ν1−p̄′
,

then
∫ m
m−1 f = am,

∫ m
m−1 f

p̄v = ap̄m
(∫ m

m−1 v
1−p̄′)1−p̄ and by the properties of the operator

T we have

||Tf ||p,u,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n+1∫

n

(Tf )p(x)u(x) dx

⎞
⎠
q
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

≥ C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n+1∫

n

Td

⎛
⎝

⎧⎨
⎩

m∫
m−1

f

⎫⎬
⎭

⎞
⎠

p

(n)u(x) dx

⎞
⎠
q

p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

= C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈Z

Td({am})q(n)
⎛
⎝ n+1∫

n

u(x) dx

⎞
⎠
q
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

= ||Td{am}||�q{un}).
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Applying (2.3) we obtain

||Td{am}||�q({un}) ≤ C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n+1∫

n

f p̄v

⎞
⎠
q̄
p̄

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

= C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n∈Z

aq̄n

⎛
⎝ n∫
n−1

v1−p̄′

⎞
⎠

−
q̄
p̄′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

= ||an||�q̄({vn}),

which means that the discrete operator Td is bounded from �q̄({vn}) to ℓ
q ({un}), as

we wished to prove.

Conversely, let us suppose that (i) and (ii) hold. Then, we have

||Tf ||p,u,q ≤ C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n+1∫

n

(T(fχ(−∞,n−1) + fχ(n+2,∞)))
pu

⎞
⎠
q
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

+ C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n+1∫

n

(Tfχ(n−1,n+2))
pu

⎞
⎠
q

p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

≤ C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈Z

(Td({am})(n))q
⎛
⎝ n+1∫

n

u

⎞
⎠
q
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

+ C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n+1∫

n

(Tnf )
pu

⎞
⎠
q
p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
q

= C(I1 + I2),

where am =
∫ m
m−1 f .
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Applying that Td is bounded from �q̄({vn}) to ℓ
q ({un}) and Hölder inequality, we

obtain

I1 ≤ C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n∈Z

aq̄n

⎛
⎝ n∫
n−1

v1−p̄′

⎞
⎠

−
q̄
p̄′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

= C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n∫
n−1

f

⎞
⎠

q̄⎛
⎝ n∫
n−1

v1−p̄′

⎞
⎠

−
q̄
p̄′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

≤ C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n∫
n−1

f p̄v

⎞
⎠
q̄
p̄
⎛
⎝ n∫
n−1

v1−p̄′

⎞
⎠

q̄
p̄′

⎛
⎝ n∫
n−1

v1−p̄′

⎞
⎠

−
q̄
p̄′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

= C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n∈Z

⎛
⎝ n∫
n−1

f p̄v

⎞
⎠
q̄
p̄

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q̄

= C||f ||p̄,v,q̄.

Now we estimate I2. If 1 < q̄ ≤ q < ∞, since (ii)a holds, we know that the operators

Tn are uniformly bounded from Lp(u, (n - 1, n + 2)) to Lp̄(v, (n − 1, n + 2)) and then

I2 ≤

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈Z

⎛
⎝ n+2∫
n−1

(Tnf )
pu

⎞
⎠

q
p

⎫⎪⎪⎬
⎪⎪⎭

1
q

≤ C

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈Z

⎛
⎝ n+2∫
n−1

f p̄v

⎞
⎠

q
p̄

⎫⎪⎪⎬
⎪⎪⎭

1
q

≤ C

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈Z

⎛
⎝ n+2∫
n−1

f p̄v

⎞
⎠

q̄
p̄

⎫⎪⎪⎬
⎪⎪⎭

1
q̄

≤ C||f ||p̄,v,q̄.
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Let us suppose, finally, that 1 < q < q̄ < ∞. Then (ii)b holds and, therefore,

I2 ≤ C

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈Z

⎛
⎝ n+2∫
n−1

Tnf pu

⎞
⎠

q
p

⎫⎪⎪⎬
⎪⎪⎭

1
q

≤ C

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈Z

(||Tn||(Lp̄(v),Lp(u)))q
⎛
⎝ n+2∫
n−1

f p̄v

⎞
⎠

q
p̄

⎫⎪⎪⎬
⎪⎪⎭

1
q

≤ C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎝∑

n∈Z

⎛
⎝ n+2∫
n−1

f p̄v

⎞
⎠

q̄
p̄

⎞
⎟⎟⎠

q
q̄ (∑

n∈Z

(||Tn||(Lp̄(v),Lp(u))) qq̄
q̄−q

) q̄−q
q̄

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
q

= C

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈Z

⎛
⎝ n+2∫
n−1

f p̄v

⎞
⎠

q̄
p̄

⎫⎪⎪⎬
⎪⎪⎭

1
q̄ (∑

n∈Z

(||Tn||(Lp̄(v),Lp(u)))s
) 1

s

≤ C||f ||p̄,v,q̄.

This finishes the proof of the theorem.
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