
�

International Journal of the Physical Sciences Vol. 6(7), pp. 1766-1772, 4 April, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.105 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 
Full Length Research Paper 
 

New activation functions for complex-valued neural 
network 

 
Hamid A. Jalab1* and Rabha W. Ibrahim2 

 
1Department of Computer System and Technology, Faculty of Computer Science and Information Technology, 

University Malaya, 50603 Kuala Lumpur, Malaysia. 
2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, 

Selangor Darul Ehsan, Malaysia. 
 

Accepted 14 March, 2011 
 

This paper presents a new types of complex-valued  sigmoid function for  a fully multi-layered complex-
valued neural network (CVNN). By using the concept of the subordination between analytic functions in 
open disc, we able to study the reducibility of CVNN. A real-world problem example has been used as a 
classifier. The simulations results reveal that  the proposed fully complex-valued network, been better 
trained reduces the testing time by 54% compared to the choice of using the traditional sigmoid 
activation function. 
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INTRODUCTION 
 
The study on theory and applications of artificial neural 
network had increased because of their outstanding 
capability of fitting nonlinear models. Neural network had 
successfully been applied across an extraordinary range 
of problem domains, in areas as diverse as finance, 
medicine, engineering, geology and physics due to their 
strong capacity to handle complex problems and to 
improve system performance (Subramaniam et al., 2010; 
Taqa and Jalab, 2010). Artificial neural network is a 
mathematical model which emulates the activity of 
biological neural networks in the human brain. Each 
neuron in the ANN (Artificial neural network) has a 
number of inputs and one output (Sivanandam, 2006). 

The complex valued neural network are those neural 
network whose weights, threshold values, input, output 
signals all are complex numbers and the activation 
function and its derivatives have to be well behaved 
every where in the complex plane (Kim and Adali, 2002). 
However, the complex valued neural network is 
extending its field both in theories and applications. They 
are used to express real-world phenomena like time 
series analysis, signal amplitude and phase, and to 
analyze     various     mathematical      and     geometrical 
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relationships. Also the complex valued neural network 
(CVNN) had shown more powerful capability than real-
valued neural network in processing real-valued signals 
(Nitta, 2004a). 

In complex-valued neural network, one of the main 
problems is selecting of nodes activation function (Kim 
and Adali, 2002). In real case, the node activation 
function is usually chosen to be a continuous, bounded 
and nonconstant function. These conditions on the 
activation function are very mild and there is no problem 
in selecting a real function that satisfies these 
requirements and that is also smooth (derivative exists). 
In CVNN, any regular analytic function cannot be 
bounded unless it reduces to a constant. This is known 
as the Liouvilles’s theorem. In complex case, the main 
constraints that the activation function should satisfy can 
be found in literatures (Georgin and Koutsougeras, 2002; 
Haykin, 2008; Ganesh and Balasubramanian, 2009). 
 
Nitta (2004b) studied  the  reducibility of multilayer 
complex-valued  neural  network, in which  the 
reducibility is expressed by 2πn  rotation equivalence 
instead  of sign equivalence  which is an extension  to 
Sussmann’s  work of the real-valued  neural network . 
Sussmann (1992) presented necessary and sufficient 
conditions to reduce the  number  of  hidden  neurons  for 



�

 
 
 
 
real-valued neural networks, and using the important 
notion reducibility/ irreducibility of the real valued neural 
network he devised. He proved that the 3-layered real-
valued neural network was uniquely determined by its 
input-output map, up to an obvious finite group, provided 
that the real-valued neural network was irreducible 
(Uniqueness Theorem). Thus, the reducibility is closely 
related to the redundancy of the real-valued neural 
network, and is needed for proving the uniqueness 
theorem. The uniqueness theorem is important for 
investigating the properties based on the hierarchical 
structure of the real-valued neural network. 
 
 
COMPLEX-VALUED ACTIVATION FUNCTIONS 
 
Complex plane is two dimensional with respect to real 
numbers and is one dimensional with respect to complex 
number. The complex numbers have a magnitude 
associated with them and a phase that locates the 
complex number uniquely on the plane. Here, we 
consider the proposed activation function which maps 
complex-values into complex and has the form of 

CC →:F   
 

)(),()(=)( CRR ∈+ zyifxfzF                                   (1) 
 
 where in general  
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 This arrangement ensures that the magnitude of real and 
imaginary part of )(zF  is bounded between -1 and 1. 

But now the function )(zF  is no longer holomorphic, 
because the Cauchy-Riemann equation does not hold 
(Goodman, 1983), that is, 
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So, effectively, the holomorphy is compromised for 
boundedness of the activation function. Our consideration 
of )(zF  is held between the input layer and the hidden 

layer while the function )(=)( ztanhzG  is considered 
between the hidden and the output (Figures 1 and 2). 

Here, we consider the following 3-layers complex-
valued neurons, there is one hidden layer between the 
input and output layers. The input signals, weights, 
thresholds and output signals are all complex numbers.  

The net input nU  to a complex-valued neuron, n  is 
defined as: 
 

,= nmmn
m

n TXWU +�
                                                 

(2) 
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Figure 1. Activation function F and G. 

 
 
 

 
 
Figure 2. Subordination between F and G 

 
 
 

where mnW  is the (complex-valued) weight connecting 

the complex-valued neurons m  and nTn,  is the 
(complex valued) threshold value of the complex-valued 
neuron ,n  and mX  is the (complex-valued) input signal 
from the complex-valued neuron .m  To obtain the 
(complex-valued) output signal, convert the net output 

nU  into its real and imaginary parts as follows: 

.== ziyxU n +  The (complex-valued) output signal of 
the hidden and the output neurons are defined as 
respectively. 
 

,
3)(1

)(tanh
3)(1

)(tanh
=)( yx ey

y
i

ex
x

z −− −−
+

−−
Σ          (3) 

 
 )(tanh)(tanh=)( yixz +σ         (4) 
 
Assume that Cwij ∈  is the weight between the input 

neuron i  and  the  hidden  neuron  j
;  

C∈jc
 
 the  weight 
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between the hidden neuron j and the output neuron; 

)(zs j  denote the output values of the neuron j;  )(zg k  

denotes the output neuron for the input pattern 
,],...,[= 1

t
mzzz and let )(zv j  and )(zuk  denote the net 

inputs to the hidden  neuron j and the output neuron for 
the input pattern ,mz C∈  respectively.  

 That is ,=
1= jiij

m

ij tzwv +�  where jt  is the threshold 

of the hidden neuron j, ,)(=)(
1= kjj

n

jk czsczu +�  

where ck is the threshold of the output neuron, 
))((=)( zvzs jj Σ  and )).((=)( zuzg k σ  Denoted by 

,,nmN  the set of all 1−− nm  complex-valued neural 

network described previously is the object of this work. 
To illustrate our main results, we need the following 

concept. Given two functions, )(zF  and ),(zG  which 

are analytic in open disc, the function )(zF  is said to be 

subordinate to )(zG  denoted by )()( zGzF �  if there 

exists a function ),(zh  analytic in open disc with 

0=(0)h  and 1|<)(| zh  such that ))((=)( zhGzF  
(Miller and Mocanu, 2000). More applications of this 
concept can be found in Ibrahim and Darus (2008). 
 
 
REDUCIBILITY OF THE CVNN 
 
Here, we show the reducibility of the complex-valued 
neural network described in ‘Complex-valued activation 
functions’. First, we need the following preliminaries in 
the sequel  (Nitta, 2004b): 
  
1. For a fixed ,m  two complex-valued neural network 

1,1 nmNN ∈  and 2,2 nmNN ∈  are called OI −  equivalent 

if their corresponding complex-valued functions are the 
same. It is not essential that the number of neurons or 
parameters in the layers are equal. 
 2. Two complex-valued linear affine functions 

CC →m:α  and CC →m:β  are called /2πn  rotation-
equivalent if one of the following conditions holds:  
 

))(0].[(=)(=)(; ziexpzzz m ββαC∀                     (5) 
 
 ))(].[(=)(=)(; ziexpzzz m βπβα −∀ C                 (6) 
 

))(].
2

[(=)(=)(; ziexpzizz m βπβαC∀
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3. A complex-valued neural network nmNN ,∈  is called 

reducible if one of the following three conditions holds: 
 
a) One of the weights between the hidden layer and the 
output neuron is zero: 0.=;1 jcnj ≤∃≤  

b) There exist two hidden neurons such that the net 
inputs to them are /2πn  rotation-equivalent: 

121 ;;1 jvnjj ≤∃∃≤  and 2jv  are /2πn  rotation-

equivalent. 
c) There exists a hidden neuron such that the net input to 
it is a constant: jvnj ;1 ≤∃≤  is a constant. 

 
In the next result, we show how a 3-layered complex-
valued neural network preserves the reducibility for 
sandwich (subordination and superordination) sigmoid 
activation functions, that is, )()( zGzF � . 
 
 
Theorem 1 
 
If a 3-layered complex-valued neural network nmNN ,∈  

of two subordination activation functions ))()(( zGzF �  
is reducible, then it is I-O equivalent to another 3-layered 
complex-valued neural network with the activation 
function )(zG  and fewer hidden neurons. 
 
 
Proof  
 
Assume that a three-layered complex-valued neural 
network nmNN ,∈  is reducible.  
 

Case I: Consider that nj ≤∃≤1  such that 0.=jc  In 

this case by the subordination of F  and G , that 

is, (0).=(0) GF  This implies that the hidden neuron 
does not have effect on the output of the complex-valued 
neural network, the hidden neuron j can be deleted. 
Hence their corresponding complex-valued functions are 
the same. 
 

Case II: Let njj ≤∃≤ 21,1  such that 
1j

v  and 
2j

v  are 

/2πn  rotation equivalent. Let 
1j

c  be the weight between 

the hidden neuron 1j  and the output neuron, and 
2j

c  the 

weight between the hidden neuron 2j  and the output 

neuron. In this case, by the subordination of F  and G  
,that is, the image of F  is a proper subset of the image 
of )),()(( UGUFG ⊂  where U  is an open disc in ,C  
we obtain the  same  input-output  map  by  removing  the  
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Figure 3. Three-layer feed-forward CVNN implementing the back propagation algorithm. 

 
 
 
hidden neuron 2j  and changing the weight 

1j
c  to 

,
21 jj rcc +  where }.,1,{1, iir −−∈  Thus their 

corresponding complex-valued functions are still the 
same. 
 
Case III: Finally, if for ;1 nj ≤∃≤  ,δ≡jv  where δ  is a 

constant. The same input-output map can be obtained by 
removingthe hidden neuron j and changing the threshold 
of the output neuron c to 

)(=))((= δΣ+Σ++ czvcsc jj  because the output 
))(( zv jΣ

 of the hidden neuron j is a constant which 

leads that ))(( zuσ  is a constant under the subordination 
between Σ  and ,σ  that is, their corresponding complex-
valued functions remain the same. This completes the 
proof. 
 
 
Corollary 1 
 

If a 3-layered complex-valued neural network nmNN ,∈
 

is reducible, then it is I-O equivalent to another 3-layered 
complex-valued neural network with fewer hidden 
neurons (Nitta, 2004b). 
 
 
Corollary 2  
 
If a 3-layered complex-valued neural network nmNN ,∈  

has weight 
0=ijw

 , then it is  I-O  equivalent  to  another 

3-layered complex-valued neural network with fewer 
hidden neurons. 
 
 
IMPLEMENTATION 
 
The neural network used in the simulation process is a 3-
layer feed-forward CVNN implementing the back 
propagation algorithm as shown in Figure 3. In this 
network, all the inputs, outputs, weights, and biases are 
complex values. To implement our CVNN, we used 
Matlab R2009b on Intel(R) Core TM2Duo processor with 
3.00 GHz and 3 GB RAM. 

At the beginning of the learning process, the weight 
matrices between input and hidden layer and between 
hidden and output layer are initialized with the random 
complex values. Vectors for hidden neuron biases b1 and 
output neuron biases b2 are also initialized with random 
complex values. The goal of back propagation (BP) 
learning algorithm is to minimize the error-energy at the 
output layer. The neural network learns the relationships 
among sets of input-output data (training sets) that are 
characteristic of the component under consideration. 
First, input data are presented to the input neurons, and 
then output data are computed. The output data are 
compared with the desired value and the errors are 
computed. Further, error derivatives are calculated and 
summed up for each weight and bias until whole training 
set has been presented to the network. These error 
derivatives are then used to update the weights and 
biases for neurons in the model. The training process 
proceeds until errors lower than the prescribed values is 
reached. Once trained, the network provides a fast 
response for different input data. 
We have tested the behavior of the neural network by 
using    fully  complex  activation  functions,  verifying  the  
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Table 1. Weights (complex values) between input layer and hidden layer.  
 

Node Node H1 Node H2 Node H3 Node H4 

Input 1 0.701918692787938 + 
0.219021586670218i 

1.376393682831280 + 
0.292232742536123i 

0.091148032849257 + 
1.016530388375190i 

1.03777587861251 + 
1.23026776583944i 

 

Input 2 0.004612544021455 + 
1.095807166349050i 

0.191484488236877 + 
0.127132376049907i 

0.496416668904873 + 
0.540523136153263i 

0.470620411933422 + 
1.39605474922888i 

 

Input 3 0.380170225741953 + 
0.088187685676538i 

1.136936654333990 + 
0.999558556492102i 

0.417811427060826 + 
0.286635042168629i 

1.145834793604170 + 
0.635027432710810i 

 

Input 4 0.949555473578221 + 
0.741861737013464i 

1.35149224857271 0+ 
1.00923039132627i 

0.728083182731416 + 
0.332296585286707i 

0.902518962398014 + 
0.048918713439151i 

 

Input 5 0.607415857741603 + 
1.327356842432400i 

0.244507475736920 + 
0.706615592016859i 

1.179766452622360 + 
0.622994627960622i 

0.064772451991841 + 
0.748245343249140i 

 

Input 6 0.266892491698015 + 
0.315022189982046i 

0.865716138991662 + 
0.373969313064443i 

1.19191208111544 0+ 
0.670712134181853i 

0.059172055445492 + 
0.045198273999110i 

 
 
 

Table 2. Weights(complex values) between hidden layer and output  layer. 
 
 Node output1 Node output 2 
Node H1 36.2407385621735 - 236.495229913697i 0.928191869810991 + 0.532431465140660i 
Node H2 36.0075745920745 - 236.450555806004i 1.59082043936045 - 0.418882557002526i 
Node H3 37.2207291386245 - 237.041399244184i 1.24633171732695 - 0.582224146084517i 
Node H4 36.7091930058420 - 235.918493305041i 1.42438050039180 - 0.150026132837350i 

 
 
 
correctness and analyzing the improvement of these 
functions over traditional artificial neural network (ANN) 
solutions to specific real-world problems. These steps are 
discussed as follows. 

For the first model, in the hidden and output layers, the 
sigmoid activation function have been used as a transfer 
function. While, in the second model, for the same 
network, we used a pair of complex activation functions 
representing the real and the imaginary component of :z  
1. For the transfer function of hidden layer:  
 

))(*3)()/(1(= zexpzztanhy −−−
  

 2. For the transfer function of output layer :  
 

)(= ztanhy
  

 3. The performance criterion used is the sum of square 
due to error(SSE). 
 

A real-world problem illustrates using CVNN neural 
network as a classifier to identify the sex of crabs from its 
physical dimensions (data were taken from Mathworks). 

In this example, we built a classifier that can identify the 
sex of a crab from its physical measurements. Six 
physical characteristics of a crab are considered: 
Species, frontallip, rear width, length, width and depth. 
The six physical characteristics will act as inputs to a 
neural network and the sex of the crab will be target. The 
classification process consists of two phases: Training 
phase and testing phase.A training set is used in 
supervised training to present the proper network 
behavior, where each six inputs observed values for the 
physical characteristics of a crab is introduced with its 
corresponding correct target.  As these inputs are applied 
to the network, the network outputs are compared to the 
targets. The neural network is expected to identify if the 
crab is male or female. A 1-hidden layer feed forward 
network is created with 4 neurons. The values of weights 
(complex values) between input layer and hidden layer 
obtained during training phase, are shown in Table 1, 
where the rows correspond to input nodes and columns 
correspond to hidden nodes, while Table 2 shows the 
values of weights (complex values) between hidden layer 
and output layer obtained during training phase. The 
rows correspond to hidden nodes and columns 
correspond to output nodes. 
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Table 3. Bias (complex values) at the hidden nodes. 
 
Node H1 0.753173772130708 + 0.232078094143457i 
Node H2 0.591588200811105 + 0.536528269078829i 
Node H3 0.822891032240768 + 0.430618407870931i 
Node H4 0.329578870595237 + 0.403581086734115i 

 
 
 

Table 4. Bias (complex values) at the output nodes. 
 

Node output 1 Node output 2 
26.0483208415974 - 165.264442609909i 1.14856923573488 + 0.41888255700252i 

 
 
 

Table 5. Comparison of testing time. 
 
Activation function  Testing time (seconds) 
Traditional sigmoid activation function 0.007170 
Proposed complex activation function 0.003912 

 
 
 

Table 6. Irreducible CVNN. 
 
Activation function  Iteration number 
Traditional sigmoid activation function 541 
Proposed complex activation function  306 

 
 
 

Table 7. Reducible CVNN. 
 
Activation function Iteration number 
Traditional sigmoid activation function  379 
Proposed complex activation function  267 

 
 
 
The bias (complex values) at the hidden nodes, and at 
the output nodes are shown in Table 3 and 4, 
respectively. 
 
 
RESULTS AND DISCUSSION 
 
The neural network has been tested with the testing 
samples. This will give us a sense of how well the 
network will do when applied to data from the real world. 
Table 5 shows the performance CVNN based classifier in 
term of classification time only, while the classification 
accuracy was not affected by proposed activation 
function. As seen from Table 5, the time value for CVNN 
with the proposed activation function is less than that of 
traditional activation function using the same training and 
testing data. 

In the first model, the neural network works reliably 
when using the proposed complex activation functions. 

Less errors are found in the outputs, with respect to the 
low iteration numbers, while in the second model, the 
network's performance is dropping when using traditional 
sigmoid activation function, because of high iteration 
numbers. This indicates how slowly a neuron adjusts its 
weight and bias values according to the error. 

Tests by using fully complex activation functions, 
reduces the testing  time by 54 %  compared to the 
choice of using the traditional sigmoid activation function, 
this improves the testing time of the network and prevent 
the network from starting oscillation as shown in Table 5. 

In our simulation example, for comparison, another test 
has been performed for both models to investigate the 
effect of the reducibility on the model's convergence. The 
results of this test for the same sum of squared error 
(SSE) are shown in Table 6 (Irreducibility) and in Table 7 
(Reducibility). Irreducibility results in Table 6, show that 
the second model has better ability of quick learning and 
global convergence than the first model.  Table  7  shows  
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that for reducibility, the iteration number of the second 
model decreased 56 %  compared with the measured 
iteration number of the first model which decreased by 
70 %.  

The increasing of the training rate of the CVNN for 
reducibility is due to the tightly initial distribution of 
complex random weights and complex activation 
functions which tend to slow convergence and improves 
stability of CVNN. 
 
 
Conclusion 
 
In this paper, we have shown the efficiency of a complex 
valued network based on the study of the history of 
artificial neural networks, and the simulation of the 
CVNNs is discussed. 

A live example illustrates using CVNN neural network 
as a classifier to identify the sex of crabs from physical 
dimensions based on a fully complex back propagation 
neural network. The simulation results of this paper 
shows acceptable results for the reducible and not the 
irreducible performance. The performance of a fully 
complex back propagation neural network has been 
substantially improved by the proposed approach. 

As previously disccused using the subordination 
relation, we defined and studied the reducibility of 3-
layers CVNN with two different activation functions which 
satisfied )()( zGzF � . 

This idea leads to N-layers CVNN under the condition: 
 

),(...)()( 221 zGFzFzF N ���� −  
 
In this case, we used the subordination relation to get the 
sandwich assertion. Further, the variety of using 
subordinate activation functions in one CVNN does not 
change the reducibility of the network. This leads to the 
questions: Do Theorem 1 hold for non subordinate 
activation functions? More specifically, is there another 
relation on F  and G  such that Theorem 1 satisfies? 
 
 
ACKNOWLEDGEMENTS 
 
The authors would like to thank the reviewers for their 
comments which helped to improve the presentation of 
the paper. 
 
 
 
 
 
 
 
 
 

 
 
 
 
REFERENCES 
 
Ganesh A, Balasubramanian G (2009). Novel Complex Valued Neural 

Networks. Int. J. Comput. Appl. Math., 4: 165-171. 
Georgin GM, Koutsougeras C (2002). Complex domain 

backpropagation. Circuits and Systems II: Analog and Digital Signal 
Processing. IEEE Trans., 39: 330-334. 

Goodman A (1983). Univalent Functions. Mariner Publ. Co., Tampa, Fl, 
Vol. I. 

Haykin S (2008). Adaptive filter theory: Pearson Education India. 
Ibrahim RW, Darus M (2008). Subordination and superordination for 

univalent solutions for fractional differential equations. J. Math. Anal. 
Appl., 345: 871-879. 

Kim T, Adali T (2002). Fully complex multi-layer perceptron network for 
nonlinear signal processing. J. VLSI Sig. Process., 32: 29-43. 

Miller SS, Mocanu P (2000). Differential subordinations: Theory and 
applications: CRC. 

Nitta T (2004a). Orthogonality of decision boundaries in complex-valued 
neural networks. Neural Comput., 16: 73-97. 

Nitta T (2004b). Reducibility of the Complex-valued Neural Network. 
Neural Inf. Process.-Lett. Rev., 2: 53-56. 

Sivanandam S (2006) Introduction to neural networks using MATLAB 
6.0: Tata McGraw-Hill. 

Subramaniam T, Jalab HA, Taqa AY (2010). Overview of textual anti-
spam filtering techniques. 

Sussmann HJ (1992). Uniqueness of the weights for minimal 
feedforward nets with a given input-output map. Neural Netw., 5: 589-
593. 

Taqa AY, Jalab HA (2010). Increasing the reliability of skin detectors. 
Sci. Res. Essays, 5: 2480-2490. 


