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A MULTIGRID SMOOTHER FOR HIGH REYNOLDS NUMBER FLOWS  *

ERIK STERNER

Abstract. The linearized Navier-Stokes equations are solved in two space dimensions using a multigrid method where a semi-
implicit Runge—Kutta scheme is the smoother. Explicit time-integration in the streamwise direction is combined with implicit integra-
tion in the body-normal direction. Thereby the stiffness of the equations due to the disparate scales in the boundary layer is removed.
Reynolds number independent convergence is demonstrated in analysis as well as in numerical experiments.
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1. Introduction. The solution to the steady compressible Navier—Stokes equations is often found by
the method of lines. Space discretization leads to a large system of equations, which may be solved by
integrating in time with an explicit Runge—Kutta scheme until a steady state is reached. This is a fairly
straightforward and robust method, but for some viscous calculations it can be very time consuming. One
way to speed up the calculations is to usemi-implicit Runge—Kutta schepvehere explicit integration in
the streamwise direction is combined with implicit integration in the body-normal direction, see [14]. Here
we use the semi-implicit scheme as the smoother in a multigrid method. For a linear model problem this
technique leads to Reynolds number independent convergence, whereas the number of iterations increases
by Re'/? when the smoother is an explicit Runge—Kutta scheme.

2. The linearized Navier—Stokes equationsWe restrict ourselves to two space dimensions and ne-
glect the body force and the heat flux. The compressible Navier—Stokes equations can be written as

ow oF°¢ 0G°  OF" 0G"

(2.1) W—Fax—’—ay—ax—’_ay’

whereW = (p, pu, pv, pE)T, p is the densityu andv the Cartesian velocity component aftthe
total energy. There are two convective flux vectdrs,and G¢, and two viscous flux vectord;” and
Gv. The system is closed by an equation of state that relates the pressure to the other variables,
(v — D)p(E — (u® +v?)/2), wherey is the ratio of specific heats.

For a steady incompressible flow along a flat plate with a free-stream veldgitparallel to the
z-axis, (2.1) may be simplified, yielding th®undary layer equatign

u@ + v@ = Fu
Ox Oy Oy?
(2.2)
@ + @ — 0
ox Oy '

Here, the boundary conditions ate= v = 0 aty = 0, andu = U, aty = oo; see, e.g., [12]. The
kinematic viscosity iz = u/p, the coefficient of viscosity:, the density isp = 1 and the Reynolds
number is defined as

(2.3) Re = Y=L

v

wherelL is the length scale. Exploiting the transformatipe: y(Us, /vx)'/?, the system of PDEs (2.2) is
transformed into an ODE, the Blasius equation, which can easily be solved numerically. Back substituting
gives us the solution
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(24) WBlasius = (U(Qﬁ,y) ) V(xay) ) R(xay))Tv

whereU(z,y) andV(x,y) are the velocity profiles an&(z,y) = 1 is the density. We also obtain an
expression for theoundary layer thickness

1/2
(2.5) 5~ 5.2 (ﬁ) :

which is the distance from the plate where- 0.99 - U,.. Note thats ~ Re~'/2, i.e., the boundary layers
are very thin for highReflows.

By linearizing the compressible Navier—Stokes equations (2.1) arblsds.s we obtain ainear
system of PDEs

ow ow ow ?W 0*wW 0*wW

(2.6) W+AlE+AQa—y:Bl 922 + By 352 +B38:c8y+F’
200 1 00 0 20
Bi=v| 01 0], Bo=v| 0 2 0|, By=v| s+ 0 0 |,
0 00 0 0 0 0 00
(2.7)
Uu o % vV 0 0
A= 0 U 0|, 4= 0 V £ ],
R 0 U 0 RV

whereW = (u,v,p)T; cf. [7]. The pressure has been eliminated by the relatfos ~ - p/p, where we
sety = 1. The functionF in (2.6) is a sum of spatial derivatives Bfg;,sius. IN the sequel we lef’ = 0
since it has no influence on the convergence. We alse set and thusc = ¢2/y = 1. If Re is not too

low and the Mach numbet/., /¢, is not too high, our linear model problem approximates very well the
solution to the Navier—Stokes equations (2.1) for the subsonic flow over a flat plate.

3. Space discretization.The domain) < x < 1 and0 < y < 1 is subdivided inta\/ x N cells.
Along thex-axis there is a flat plate and the other boundaries are open. We only consider rectangular cells,
but the time-stepping methods we study can be used for cells with arbitrary shape as long as the mesh is
structured. In theg-direction the grid is stretched by

(3.1) y(() = 2P~

expa—1"~
wherea is a constant; = j/N andj = 0,1,..., N. This gives a constant stretching factoy; 1 /Ay; =
1+ 6, wheref) = exp (a/N) — 1.

A standard technique to discretize the Navier—Stokes equations in space is the cell centered finite
volume method described in [6]. The discretization of the linearized Navier—Stokes equations can be
performed in a similar manner. Applying (2.1) on integral form to each cell we obtain

dWi,j
dt

1
(3.2) +Ri; =0, Rj;= T(Qi,j —Di;),
4]
whereW; ; is an approximation of the flow quantity” at the center of cellz, j), R; ; is the residual and
S;.; is the area of the cell with edges of lengths; andAy;. In the calculation of the physical flux,
Qi,;, the values at the cell faces are computed by taking the average of the values in the centers of the two
adjacent cells.
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Artificial dissipation is introduced as fluxes

D; ; = diy1/2,5 —di—1y2j +dijp172 — dij_1)2,
(3.3) div1/2,; = —€-0ip1)2;(Wiga; —3Wigr; +3Wi; —Wii1 )
dijri2 = —€ aijy12(Wijra —3Wijp1 +3Wi; — Wi 1),

wheree is a small constant. For explicit Runge—Kutta schemes we set
Qiy1/2,5 = N = Ay(lul + ¢) Qg jt1/2 = A = Az(jv| + ¢)

according to thescalar anisotropic modeh [9]. However, for the semi-implicit schemes this may lead
to an excessive amount of damping and therefore befiictors are scaled b/, which improves the
accuracy of the numerical solution in boundary layers whérg> \’.

Finally boundary conditions are introduced by using two layers of ghost cells around the computational
domain. At the solid wall the non slip condition is imposed and open boundaries are taken care of by using
Riemann invariants; see, e.g., [5].

4. Time integration. Applying the space discretization above to the linearized Navier—Stokes equa-
tions we obtain a linear system of ODEs

dW
4.1 — + AW =
(4.1) dt b,

whereWV is the vector of the flow variabled, is the discretization matrix arids the right hand side vector
with contributions from the boundary conditions. We seek the stationary solution
(4.2) AW =b.

In computational fluid dynamics this has traditionally been done with an explisiage Runge—Kutta
scheme (ERK) as in [6]:

w©O = pn

wh = WO 4o At(b— AWO)

W@ = WO 4 apAt(b— AWD)
(4.3) ]

wm = WO L amAt(b — AW(m—l))

wrtl = wim),

whereAt is a diagonal matrix.
Another approach is to apply a semi-implicit time-integration technique. Consider the splitfihg:
(B + C)W, where

oW 82W discretization
R [ —

A B BW
2 ay 2 ayz
(4.4)
oW 82W aQW discretization
Al— — B —— — B3—— = cw
Y0z 1922 00y

with the matricesd;, Ao, B1, B> and B3 given by (2.7). We finally add the dissipative flux (3.310V. If
we copy (4.3), but plac&W on the implicit side, we obtain semi-implicit Runge—Kutta scher(fRK):
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W(O) - Wnr
(I+aAtBYWD = WO 4 o, At(b— CWO)
@s) (I +aAtBYW®? = WO 4 ayAt(b— CWW)
(I +an AtBYW™ = WO 4 a,, At(b — CW 1)
Wt = wim),

In each stagé/ block tri-diagonal systems of equations, each 8itti unknowns, have to be solved. Itis
also possible to define blends of (4.3) and (4.5), e.g. the following two-stage scheme

W(O) - Wnr
4.6) (I +a AtBYWD) = WO o At(b — CWO)
' W@ = WO 4 ayAt(b— (B+C)WW)
wntl  — W(2)

which we call arexplicit semi-implicit Runge—Kutta schel(ieSIRK).

The schemes (4.5) and (4.6) both belong to a class of methods that in [1] and [2] isazidite
Runge—Kutta scheme¥hese schemes are not equivalent to the well-known alternating direction implicit
(ADI) schemes, where an approximate factorization is performed and one system of equation is solved
for each spatial direction. Instead we treat one direction, where the computational cells are very thin,
implicitly and the rest explicitly. It is also clear that the schemes (4.5) and (4.6) are not equivalent to the
line Gauss—Seidel method.

5. Convergence analysis.
5.1. Time step restrictions for a scalar model problem.Let us study a simplscalar PDE,
ou 0%u 0%u 0%u

ou ou
+epm = b+

1 U — o2t au
(5.1) ot Tz T 25y T %92 T Pazay T Co2

wherecy, ¢, a,b andc are real constants. Discretizing (5.1) by centered differences, applying a Fourier
transformation and separating xx- andxy-derivatives fromy- andyy-derivatives according to (4.4), we
obtain the test equation

(5.2) — =\,

with A = \E? + X\ and

NCE— 2sinwyAy B Célsin2 %’TM
5:3) Ay Ay?
\Bx . sinw,Ax 4 sin? “’“’TM bsin wr Az sinwy, Ay
= —ic —a — .
A Ax? Az Ay

Applying a Runge—Kutta scheme to (5.2), one time-step can be written

(5.4) 0" = p(z1, z2)0",

where we have the two complex parameters= AtA\"* andz, = AtA™. For SIRK and ESIRK,
p(z1, 22) is a rational function, whereas for ERK it is a polynomiakig- z; + z2.
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In [14] we gave stability restrictions for the Runge—Kutta schemes when applied to the test equation
(5.2). For the explicit scheme this is straightforward; we numerically compute the domain in the complex
plane wherdp(z1, z2)| < 1. For the semi-implicit schemes, things are a little bit more complicated since
we want our time step to be based solely)di? and not o\’ In [14] we therefore derived a closed set,

Q, in the complex plane, so that the schema-stablein z; if z; € Q. In other words

z1€Q and R(z2) <0 = |p(z1,22)] <1,

i.e., we have to choosAt such thatz:; = AtAF* € Q. Here we make the reasonable assumption that
c> 0.

In Fig.5.1 we plot the stability domaif for the schemes (4.5) and (4.6), where we have as) =
(1,1). We also give the stability domain in theplane for the corresponding explicit scheme (4.3).

ERK

ESIRK

Oz )
FIG. 5.1. Stability regions for ERK, SIRK and ESIRK, when , a2) = (1,1)
As in [11] time step restrictions are found by cutting out a rectangular area

Q= {Z : _QCFL S %(Z) S QCFL; _QRK S 3?(Z) S 0}
of the stability domains in Fig.5.1 and choosing
(55) At = min (Atinviscid; A’fviscous)-
For SIRK and ESIRK we have

QcrL |e1]
Atinviscid < max |[S(OE)] max [S(\F?)| = A’
(5.6)
Qrk Ex 4al 10|
. ey E— el
Abviscows < Tomm gy maxIRO = 355 + oay
and for ERK
QcrL ler] ez
Atinviscid £ —— s S — =y 2l

sid S ey e SWII= T+ Ry

(5.7)
Rk 4|a| |b] 4|
A-lfvi‘ ;, < T Y2 R = .
"N = max [R(N)| max [R(A)| Az? + AzAy  Ay?

Note that the stability domain for SIRK is not attached to the imaginary axis. However, since we are solving
a viscous problem this does not cause any instability problems.
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5.2. Wave propagation for a scalar model problem.Consider the Runge—Kutta smoothers ERK,
SIRK and ESIRK, defined by (4.3), (4.5) and (4.6). We(sat a2) = (1, 1), so that the stability regions
in Fig.5.1 can be used. For problems with dominant first derivatives, the convergence process of an iterative
method of Runge—Kutta type is a combination of propagation of smooth error modes out of the compu-
tational domain and damping of oscillatory modes [3]. Let us analyze the schemes with respect to wave
propagation and damping as proposed in [3]. As a model problem we take the hyperbolic part of (5.1),

@4_ @4_ @—O
ot " Tor T ’

(5.8) 5 =

on a two-dimensional grid with step sizésr and Ay, where(z,y) = (Azu, Ayv). We assume that
Az > Ay, which is typical for a boundary layer region. The two non-negative constamatsdc, are of
the same order. The Fourier representation of the grid funetigris

Uy = u(Azp, Ayv) = [, exp (i(wamu + wyAyu))ﬂ(w)dw,
(5.9)

W= (wma wy)Tv D= [—W/A{E, W/AQS] X [_W/Ayv 7T/Ay]

Discretization by centered difference approximations gives

(Au) = [, Aexp (i(wwA:cu + wyAyV)>ﬂ(w)dw,
(5.10)

. sin w; Az sinwy, Ay
A=—i i Y
! (Cl Ar @7 Ay ) !

where A is the Fourier transform of the difference operatbr One iteration with the smoothers can be
written 4"t = p(z1, z2)4"™, where

p(z1,22) = 1+ (21+ 22) + (21 + 22)? for ERK,
(5.11) p(z1,22) = ((1—22)(1—22)) (1 + 21 + 212 — 22) for SIRK,
p(z1,22) = (1—22)7 11+ 21+ 212 + 2129) for ESIRK.

Let us split the grid function in one smooth and one oscillatory part

ug = (u s + (Wi o
(5.12) = fDo exp (hlp(zl, z9) + i(w Axp + wyAyl/))ﬁ" (w)dw+

fDl p(21, 22) exp (i(wax,u + wyAyl/))@"(w)dw.

Correspondingly the wave number domdinis divided in two partsDy and D,. The oscillatory part
(uptt)o is damped out ifp(z1, z2)| < 1 forw € Dy.

We now study the smooth part. For small wave numbersui.e&e Dy, we expand the logarithm of
p(z1, 22) in a Taylor series, which for all three schemes gives
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Inp(z1,22) = 21+ 22+05(z1 + 22)2 + O(hj)

At (01 sinw, Ax e sinwyAy> B

Az Ay

(5.13)

sin w; Az sinwy Ay
Az te Ay

2
0.5A¢ (01 ) +O(h?)

= —iAt(cwy + cowy) — 0.5AE (crwy + cowy)? + O(h3),

wherew € Dy andh = max (Az, Ay). Exploiting (5.13) the smooth part can be written
exp (lnp(zl, z9) + i(wAxp + wyAyV)>
, At At
(5.14) = exp (z ((_CIA_x + u) Wy Az + (—CQA—y + 1/) wyAy)—
0.5A¢2 (crwy + cowy)” + 0(h3)>.
The time stepAt is restricted by the stability conditions (5.5)—(5.7), where we chénsg, = 0.7 for

SIRK and ESIRK andcrr, = 1.0 for ERK. Inserting the maximum time steps into (5.14) and assuming
small enough space steps yields

exp (1np(zl, z9) + i(w Axp + wyAyV))

) A
(5.15) ~ exp (Z ((- E;Agyc -Qerr + u) wza Az 4+ (—Qcrr, +v) wyAy) -

C1

2
0.5 025y - Ay (C—wx + wy> )
2

for ERK and correspondingly

exp (1np(zl, z9) + i(w Axp + wyAyl/))

. CQAJ)
(5.16) ~ exp (z ((—QCFL + p) we Az + (— oAy - QcFL + 1/) wyAy) _

2
0.5- Q25 - Ax? <wm + Z—?u@) > ,

for SIRK and ESIRK. Inserting (5.15) and (5.16) in (5.12) we obtain

n+1 ~ n
(5'17) (u,uj )S ~ (uH_QCFL'(ClAy)/(CZAﬁf)ﬂ/—QCFL)S7

for ERK and

n+1 ~ n
(5.18) (uuj )S ~ (uH_QCFL7V_QCFL'(C2A37)/(01Ay))S7
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for SIRK and ESIRK, i.e., in one iteration smooth waves are transported a distance

(xdist, yaist) = QcrL-Ay-(c1/ca, 1) by ERK,
(5.19)
(Zdists Ydist) = SQorL - Az - (1,c2/c1) by SIRK and ESIRK.

SinceAz > Ay smooth waves are transported faster out of the computational domain by the semi-implicit
schemes.
Taylor expansion of the functions in (5.11) for smallandz, yields

Ip(21,22)] = 1—0O(Ay?) for ERK,
(5.20)
Ip(21,22)] = 1—O(Ax?) for SIRK and ESIRK,

i.e., smooth waves are better damped by the semi-implicit schemes.

5.3. The linearized Navier—Stokes equationsWe here derive time-step restrictions for the lin-
earized Navier—Stokes equations in the same way as we did for the scalar model problem in Section 5.1.
Discretizing (2.6) by centered differences and applying the Fourier transformation we obtain an ODE,

aw, X
(5.21) dt“ + AW, =0,
whereA,, = B, + C,, and
. sinw,Ay 4in? L8y
B, = iA Y B 2
1Az Ay + b2 Ay
(5.22)
. sinwyAzx 4 sin? “’“’TM sinwy Az sinw, Ay
C, = iA B B . .
v YLTTAS +5 Ax? + s Az Ay ’

cf. (4.4). We proceed by splitting the matrices into one inviscid and one viscous part} gg. Alnviscid
Aviscous Thereby the time step for ERK can be chosen according to (5.5), where

QcrL
Atirwisci S o a
d max \(Ainviscid)
(5.23)
Qrk

Aty <
viscous = max)\(ijlscous)

are based on the following estimates of the spectral radii

o ul v 1 1\"?
AlIlVlSCld — |_ =1 _ _
max A(A ) A:E+Ay+c<Ax2+Ay2)
(5.24)
iscous — 4 4 4
max A(AY) ) = 3V (AmQ + Ay2> .

Correspondingly we have for semi-implicit schemes

QcrFL
A invisci S T N/ invieeidN
t scid max )\(C’&)IIVISCIC[)
(5.25)
Q
Alfviscous K )

< -
- max )\(Cxlscous)
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and
N U
Inax)\(ci)rwlsmd) — % + Aix
(5.26)
) 4 4 1
A CV]SCOHS — _ X
max (G ) 3" (Ax2 * 4A$Ay>

In [13] the stability restrictions (5.23) and (5.25) were studied for the flow over a flat plate. Assuming a
reasonable refinement in the boundary layer region, the inviscid condition proved to be the more restrictive.
We also assume that the grid is refined so that the truncation error is of the same ordeRfor Sihce
the boundary layer thickness@ Re~'/?) according to (2.5), we have a typical cell si2e = O(1) and
Ay = O(Re~'/?) in the boundary layer. Relation (5.19) thus says that smooth waves are transported a
distance®(Re~1/2) in one ERK iteration and corresponding®(1) in one SIRK or ESIRK iteration. The
number of iterations before smooth error modes are outside the computational domain is therefore

#iter = O(Rel/?) for ERK,
(5.27)
#Hiter = O(1) for SIRK and ESIRK,

indicating Re-independent convergence for the semi-implicit schemes.

6. Multigrid. Since only a linear problem is considered, we use the following linear formulation of
the multigrid method:

procedure MG(l, u, f);
if (1 =0) thenu = SV ) (u, f);

else begin
u=38") (u,f);
d=rx(Liu— f);

fori=1(1)ydo MG(l — 1,v,d);
U=u—Dp*v;
u=S8) (uvf);

end;

given in [4] for solvingL;u; = fi, cf. the linear system (4.2). As smooth&r,we use the Runge—Kutta
schemes (4.3), (4.5) and (4.6). The type of cycle is determined by the pargnagigtthe number of pre-
and post smoothing steps are givenhyandr,. On the coarsest level we have no exact solver, but instead
V1 + o sSmoothing iterations. In all experiments below we have- v, = 1.

To transfer grid functions between two levels we use a prolongation opepatand a restriction
operatory:, which are both based on second order interpolation. On the finest grid level thédear®y
cells. If there areM /2 x N/2 cells on the second finest level etc. we hdwi coarsening Another
possibility is to usesemi-coarseningas suggested in [10], where the grid is refined in one direction at a
time.

7. Numerical experiments. Here we solve the linearized Navier—Stokes equations (2.6) on the unit
square, where there is a flat platgjat 0 and the other boundaries are open. The iterations are terminated
when the norm

Wt _n 2
n|2 _ ) ) %,J (2]
(7.1) 1R"* = ;Amy] <7A% )
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of the initial residual has been decreased a faiér As an initial guess we set= U,, = 0.1,v = 0 and
P = pso = 1. The dissipation parameter is here- 0.02.

Let us first study a flow wherBe = 100 on a uniform grid with\/ = N and perform a grid refinement
study for the multigrid method (6.1) with full coarsening ane: 2, which gives a W-cycle. The smoother
is the three-stage ERK (4.3) with
(a1, a2,a3) = (0.6,0.6,1), Qcrr, = 1.5 andQrx = 0.8. This is a more efficient smoother than the
two-stage ERK in Fig.5.1. In Table 7.1 we see that more or less grid independent convergence is achieved
by increasing the number of grid levels as the grid is refined, which is in agreement with theory in [8]. But
introducing more grid levels is not always possible, especially in more complex flow simulations where
one can seldom define more than three or four grid levels.

TABLE 7.1
Grid refinement study for full coarsening MG.

N 16| 32 | 64 | 128 | 256
#gridlevels| 2 | 3 | 4 5 6
#cycles | 73| 51| 48| 49 | 67

We continue with an experiment wheRe is varied by changing in (2.3). Here the grid is designed
to give sufficient accuracy for alke rather than impressive convergence rates for the multigrid method.
The number of cells in the body-normal directidw, is increased wittRe according to Table 7.2 so that
there are approximately 25 cells in the boundary layer at 0.6. The other parameterd/ = 64 and
6 = 0.05 are fixed, i.e., the stretching parameter in (3.1) is givenby N - In (1 + 9).

TABLE 7.2
Number of cells for various Reynolds numbers.

N | 56 | 80 | 104 | 128
Re | 10% | 10* | 10° | 10°

The multigrid method (6.1) is used for 1, 2 and 3 grid levels. Full coarsening is applied and we &ave
yielding a V-cycle. In Fig.7.1 we see that the number of cycles grows approximat&ly'aswhen ERK

is the smoother, i.e., the same kind of behavior as in the single grid case, cf. (5.27). But with the ESIRK
scheme (4.6) as smoother, the result is more orlessdependent convergence.

4 ERK ESIRK
4 X210 , , 1600 — ; ; ;
3 1200 “““ M S o S
0 0 : : : :
Q Q N N N .
Q Q : : : :
52 5 800 prs S o
o o ) ) ) )
= =
1 400
0 0
4 5 6 3 4 5
log(Re) log(Re)

F1G. 7.1.Number of full coarsening MG cycles for1)( 2 (0), and 3 &) grid levels

We now change to semi-coarsening and repeat the experiment above. Coarsening is applied only in the
body normal direction. Since we thereby improve the aspect ratio of cells in the boundary layer on coarser
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levels, the stiffness is hopefully alleviated and the convergence rate is increased f&tehiglowever,

in Fig.7.2 we see that the number of iterations is almost the same as for full coarsening when ERK is
the smoother, and with ESIRK as smoother the number of iterations is actually increased from the full
coarsening experiment. Moreover, tRe-dependency seems to be very similar no matter what coarsening
strategy is used, i.e., the key factor in order to obRérindependent convergence proves to be the choice

of smoother.

4 ERK ESIRK
4 %10 , , 1600 — : : :
3 1200 “““ M oo A N
n n . . . .
Q Q N . . .
Q Q : : : :
32 3 800 R S T
o o oo
= = ~ ~ ~ ~
1 400~ SRR e SRREEAERE B
0 3 4 5 6 0 3 4 5 6
log(Re) log(Re)

FIG. 7.2.Number of semi-coarsening MG cycles for), @ (0), and 3 ) grid levels

We let our f90-code run on a Digital AlphaServer 8200 with a EV5/300 MHz processor. In Fig.7.3
we plot the CPU-time in seconds for the MG algorithm with three grid levels, both for full coarsening
and semi-coarsening. Since we are solving a linear problem, the CPU-time may be decreased by LU-
factorizing the systems in (4.6) once and in each iteration just back substitute. However, this has been
avoided since it would give ESIRK an unfair advantage over ERK. After all, our interest is primarily in
non linearproblem. Of course ESIRK requires more operations than ERK, for instance in the experiment
where Re = 10% one MG cycle with ESIRK is roughly 40 % more expensive. Nevertheless, since the
number of iterations is drastically decreased we gain as much as one order of magnitude in CPU-time by
switching from ERK to ESIRK. Finally note that semi-coarsening gives rise to more work on coarser grid
levels than full coarsening, and therefore it proves to be slower than full coarsening in all our experiments.

8. Concluding remarks. In [13] we solved the Navier—Stokes equations (2.1) and the linearized
equations (2.6) on a single grid. In both cases the convergence rate was substantially improved by switching
from an explicit to a semi-implicit Runge—Kutta scheme. Here we have solved the linearized equations and
obtained similar results for the multigrid method. Thus, there are strong reasons to believe that the semi-
implicit scheme also works well as a smoother in a non linear multigrid method. In [15] it has been shown
that this is indeed the case.
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