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A MULTIGRID SMOOTHER FOR HIGH REYNOLDS NUMBER FLOWS ∗

ERIK STERNER†

Abstract. The linearized Navier–Stokes equations are solved in two space dimensions using a multigrid method where a semi-
implicit Runge–Kutta scheme is the smoother. Explicit time-integration in the streamwise direction is combined with implicit integra-
tion in the body-normal direction. Thereby the stiffness of the equations due to the disparate scales in the boundary layer is removed.
Reynolds number independent convergence is demonstrated in analysis as well as in numerical experiments.
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1. Introduction. The solution to the steady compressible Navier–Stokes equations is often found by
the method of lines. Space discretization leads to a large system of equations, which may be solved by
integrating in time with an explicit Runge–Kutta scheme until a steady state is reached. This is a fairly
straightforward and robust method, but for some viscous calculations it can be very time consuming. One
way to speed up the calculations is to use asemi-implicit Runge–Kutta scheme, where explicit integration in
the streamwise direction is combined with implicit integration in the body-normal direction, see [14]. Here
we use the semi-implicit scheme as the smoother in a multigrid method. For a linear model problem this
technique leads to Reynolds number independent convergence, whereas the number of iterations increases
by Re1/2 when the smoother is an explicit Runge–Kutta scheme.

2. The linearized Navier–Stokes equations.We restrict ourselves to two space dimensions and ne-
glect the body force and the heat flux. The compressible Navier–Stokes equations can be written as

∂W

∂t
+

∂F c

∂x
+

∂Gc

∂y
=

∂F v

∂x
+

∂Gv

∂y
,(2.1)

whereW = (ρ, ρu, ρv, ρE)T , ρ is the density,u and v the Cartesian velocity component andE the
total energy. There are two convective flux vectors,F c andGc, and two viscous flux vectors,F v and
Gv. The system is closed by an equation of state that relates the pressure to the other variables,p =
(γ − 1)ρ(E − (u2 + v2)/2), whereγ is the ratio of specific heats.

For a steady incompressible flow along a flat plate with a free-stream velocityU∞ parallel to the
x-axis, (2.1) may be simplified, yielding theboundary layer equation,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2

∂u

∂x
+

∂v

∂y
= 0.

(2.2)

Here, the boundary conditions areu = v = 0 at y = 0, andu = U∞ at y = ∞; see, e.g., [12]. The
kinematic viscosity isν = µ/ρ, the coefficient of viscosityµ, the density isρ = 1 and the Reynolds
number is defined as

Re =
U∞L

ν
,(2.3)

whereL is the length scale. Exploiting the transformationη = y(U∞/νx)1/2, the system of PDEs (2.2) is
transformed into an ODE, the Blasius equation, which can easily be solved numerically. Back substituting
gives us the solution

∗ Received May 15, 1997. Accepted for publication September 26, 1997. Communicated by D. Melson.
† Department of Scientific Computing, Uppsala University, Box 120, S-751 04 Uppsala, Sweden (erik@tdb.uu.se )

234



ETNA
Kent State University 
etna@mcs.kent.edu

Erik Sterner 235

WBlasius = (U(x, y) , V (x, y) , R(x, y))T ,(2.4)

whereU(x, y) andV (x, y) are the velocity profiles andR(x, y) = 1 is the density. We also obtain an
expression for theboundary layer thickness,

δ ≈ 5.2
(

νx

U∞

)1/2

,(2.5)

which is the distance from the plate whereu ≈ 0.99 ·U∞. Note thatδ ∼ Re−1/2, i.e., the boundary layers
are very thin for highRe-flows.

By linearizing the compressible Navier–Stokes equations (2.1) aroundWBlasius we obtain alinear
system of PDEs

∂W

∂t
+ A1

∂W

∂x
+ A2

∂W

∂y
= B1

∂2W

∂x2
+ B2

∂2W

∂y2
+ B3

∂2W

∂x∂y
+ F,(2.6)

B1 = ν

 4
3 0 0
0 1 0
0 0 0

 , B2 = ν

 1 0 0
0 4

3 0
0 0 0

 , B3 = ν

 0 1
3 0

1
3 0 0
0 0 0

 ,

A1 =

 U 0 κ
R

0 U 0
R 0 U

 , A2 =

 V 0 0
0 V κ

R
0 R V

 ,

(2.7)

whereW = (u, v, ρ)T ; cf. [7]. The pressure has been eliminated by the relationc2 = γ · p/ρ, where we
setγ = 1. The functionF in (2.6) is a sum of spatial derivatives ofWBlasius. In the sequel we letF ≡ 0
since it has no influence on the convergence. We also setc = 1 and thusκ = c2/γ = 1. If Re is not too
low and the Mach number,U∞/c, is not too high, our linear model problem approximates very well the
solution to the Navier–Stokes equations (2.1) for the subsonic flow over a flat plate.

3. Space discretization.The domain0 ≤ x ≤ 1 and0 ≤ y ≤ 1 is subdivided intoM × N cells.
Along thex-axis there is a flat plate and the other boundaries are open. We only consider rectangular cells,
but the time-stepping methods we study can be used for cells with arbitrary shape as long as the mesh is
structured. In they-direction the grid is stretched by

y(ζ) =
exp αζ − 1
expα− 1

,(3.1)

whereα is a constant,ζ = j/N andj = 0, 1, . . . , N . This gives a constant stretching factor∆yj+1/∆yj =
1 + θ, whereθ = exp (α/N)− 1.

A standard technique to discretize the Navier–Stokes equations in space is the cell centered finite
volume method described in [6]. The discretization of the linearized Navier–Stokes equations can be
performed in a similar manner. Applying (2.1) on integral form to each cell we obtain

dWi,j

dt
+ Ri,j = 0, Ri,j =

1
Si,j

(Qi,j −Di,j),(3.2)

whereWi,j is an approximation of the flow quantityW at the center of cell(i, j), Ri,j is the residual and
Si,j is the area of the cell with edges of lengths∆xi and∆yj . In the calculation of the physical flux,
Qi,j , the values at the cell faces are computed by taking the average of the values in the centers of the two
adjacent cells.
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Artificial dissipation is introduced as fluxes

Di,j = di+1/2,j − di−1/2,j + di,j+1/2 − di,j−1/2,

di+1/2,j = −ε · αi+1/2,j(Wi+2,j − 3Wi+1,j + 3Wi,j −Wi−1,j)

di,j+1/2 = −ε · αi,j+1/2(Wi,j+2 − 3Wi,j+1 + 3Wi,j −Wi,j−1),

(3.3)

whereε is a small constant. For explicit Runge–Kutta schemes we set

αi+1/2,j = λI = ∆y(|u|+ c) αi,j+1/2 = λJ = ∆x(|v| + c)

according to thescalar anisotropic modelin [9]. However, for the semi-implicit schemes this may lead
to an excessive amount of damping and therefore bothα-factors are scaled byλI , which improves the
accuracy of the numerical solution in boundary layers whereλJ � λI .

Finally boundary conditions are introduced by using two layers of ghost cells around the computational
domain. At the solid wall the non slip condition is imposed and open boundaries are taken care of by using
Riemann invariants; see, e.g., [5].

4. Time integration. Applying the space discretization above to the linearized Navier–Stokes equa-
tions we obtain a linear system of ODEs

dW

dt
+ AW = b,(4.1)

whereW is the vector of the flow variables,A is the discretization matrix andb is the right hand side vector
with contributions from the boundary conditions. We seek the stationary solution

AW = b.(4.2)

In computational fluid dynamics this has traditionally been done with an explicitm-stage Runge–Kutta
scheme (ERK) as in [6]:

W (0) = Wn

W (1) = W (0) + α1∆t(b−AW (0))
W (2) = W (0) + α2∆t(b−AW (1))

...
W (m) = W (0) + αm∆t(b−AW (m−1))
Wn+1 = W (m),

(4.3)

where∆t is a diagonal matrix.
Another approach is to apply a semi-implicit time-integration technique. Consider the splittingAW =

(B + C)W , where

A2
∂W

∂y
−B2

∂2W

∂y2

discretization=⇒ BW

A1
∂W

∂x
−B1

∂2W

∂x2
−B3

∂2W

∂x∂y
discretization=⇒ CW

(4.4)

with the matricesA1, A2, B1, B2 andB3 given by (2.7). We finally add the dissipative flux (3.3) toCW . If
we copy (4.3), but placeBW on the implicit side, we obtain asemi-implicit Runge–Kutta scheme(SIRK):
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W (0) = Wn

(I + α1∆tB)W (1) = W (0) + α1∆t(b− CW (0))
(I + α2∆tB)W (2) = W (0) + α2∆t(b− CW (1))

...
(I + αm∆tB)W (m) = W (0) + αm∆t(b− CW (m−1))

Wn+1 = W (m).

(4.5)

In each stageM block tri-diagonal systems of equations, each with3N unknowns, have to be solved. It is
also possible to define blends of (4.3) and (4.5), e.g. the following two-stage scheme

W (0) = Wn

(I + α1∆tB)W (1) = W (0) + α1∆t(b− CW (0))
W (2) = W (0) + α2∆t(b− (B + C)W (1))

Wn+1 = W (2).

(4.6)

which we call anexplicit semi-implicit Runge–Kutta scheme(ESIRK).
The schemes (4.5) and (4.6) both belong to a class of methods that in [1] and [2] is calledadditive

Runge–Kutta schemes. These schemes are not equivalent to the well-known alternating direction implicit
(ADI) schemes, where an approximate factorization is performed and one system of equation is solved
for each spatial direction. Instead we treat one direction, where the computational cells are very thin,
implicitly and the rest explicitly. It is also clear that the schemes (4.5) and (4.6) are not equivalent to the
line Gauss–Seidel method.

5. Convergence analysis.

5.1. Time step restrictions for a scalar model problem.Let us study a simplescalarPDE,

∂u

∂t
+ c1

∂u

∂x
+ c2

∂u

∂y
= a

∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
,(5.1)

wherec1, c2, a, b andc are real constants. Discretizing (5.1) by centered differences, applying a Fourier
transformation and separatingx-, xx- andxy-derivatives fromy- andyy-derivatives according to (4.4), we
obtain the test equation

dû

dt
= λû,(5.2)

with λ = λEx + λIm and

λIm = −ic2
sin ωy∆y

∆y
− c

4 sin2 ωy∆y
2

∆y2

λEx = −ic1
sin ωx∆x

∆x
− a

4 sin2 ωx∆x
2

∆x2
− b

sinωx∆x

∆x
· sin ωy∆y

∆y
.

(5.3)

Applying a Runge–Kutta scheme to (5.2), one time-step can be written

ûn+1 = p(z1, z2)ûn,(5.4)

where we have the two complex parametersz1 = ∆tλEx and z2 = ∆tλIm. For SIRK and ESIRK,
p(z1, z2) is a rational function, whereas for ERK it is a polynomial inz = z1 + z2.
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In [14] we gave stability restrictions for the Runge–Kutta schemes when applied to the test equation
(5.2). For the explicit scheme this is straightforward; we numerically compute the domain in the complex
plane where|p(z1, z2)| ≤ 1. For the semi-implicit schemes, things are a little bit more complicated since
we want our time step to be based solely onλEx and not onλIm. In [14] we therefore derived a closed set,
Ω, in the complex plane, so that the scheme isA-stablein z2 if z1 ∈ Ω. In other words

z1 ∈ Ω and <(z2) ≤ 0 ⇒ |p(z1, z2)| ≤ 1,

i.e., we have to choose∆t such thatz1 = ∆tλEx ∈ Ω. Here we make the reasonable assumption that
c ≥ 0.

In Fig.5.1 we plot the stability domainΩ for the schemes (4.5) and (4.6), where we have(α1, α2) =
(1, 1). We also give the stability domain in thez-plane for the corresponding explicit scheme (4.3).
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ℑ
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FIG. 5.1.Stability regions for ERK, SIRK and ESIRK, when(α1, α2) = (1, 1)

As in [11] time step restrictions are found by cutting out a rectangular area

Ω = {z : −ΩCFL ≤ =(z) ≤ ΩCFL,−ΩRK ≤ <(z) ≤ 0}

of the stability domains in Fig.5.1 and choosing

∆t = min (∆tinviscid, ∆tviscous).(5.5)

For SIRK and ESIRK we have

∆tinviscid ≤
ΩCFL

max |=(λEx)| ,

∆tviscous ≤
ΩRK

max |<(λEx)| ,

max |=(λEx)| = |c1|
∆x

,

max |<(λEx)| = 4|a|
∆x2

+
|b|

∆x∆y

(5.6)

and for ERK

∆tinviscid ≤
ΩCFL

max |=(λ)| ,

∆tviscous ≤
ΩRK

max |<(λ)| ,

max |=(λ)| = |c1|
∆x

+
|c2|
∆y

,

max |<(λ)| = 4|a|
∆x2

+
|b|

∆x∆y
+

4|c|
∆y2

.

(5.7)

Note that the stability domain for SIRK is not attached to the imaginary axis. However, since we are solving
a viscous problem this does not cause any instability problems.
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5.2. Wave propagation for a scalar model problem.Consider the Runge–Kutta smoothers ERK,
SIRK and ESIRK, defined by (4.3), (4.5) and (4.6). We set(α1, α2) = (1, 1), so that the stability regions
in Fig.5.1 can be used. For problems with dominant first derivatives, the convergence process of an iterative
method of Runge–Kutta type is a combination of propagation of smooth error modes out of the compu-
tational domain and damping of oscillatory modes [3]. Let us analyze the schemes with respect to wave
propagation and damping as proposed in [3]. As a model problem we take the hyperbolic part of (5.1),

∂u

∂t
+ c1

∂u

∂x
+ c2

∂u

∂y
= 0,(5.8)

on a two-dimensional grid with step sizes∆x and∆y, where(x, y) = (∆xµ, ∆yν). We assume that
∆x � ∆y, which is typical for a boundary layer region. The two non-negative constantsc1 andc2 are of
the same order. The Fourier representation of the grid functionuµν is

uµν = u(∆xµ, ∆yν) =
∫
D exp

(
i(ωx∆xµ + ωy∆yν)

)
û(ω)dω,

ω = (ωx, ωy)T , D = [−π/∆x, π/∆x]× [−π/∆y, π/∆y].
(5.9)

Discretization by centered difference approximations gives

(Au)µν =
∫
D Â exp

(
i(ωx∆xµ + ωy∆yν)

)
û(ω)dω,

Â = −i

(
c1

sin ωx∆x

∆x
+ c2

sinωy∆y

∆y

)
,

(5.10)

whereÂ is the Fourier transform of the difference operatorA. One iteration with the smoothers can be
written ûn+1 = p(z1, z2)ûn, where

p(z1, z2) = 1 + (z1 + z2) + (z1 + z2)2 for ERK,

p(z1, z2) = ((1− z2)(1− z2))−1(1 + z1 + z1
2 − z2) for SIRK,

p(z1, z2) = (1− z2)−1(1 + z1 + z1
2 + z1z2) for ESIRK.

(5.11)

Let us split the grid function in one smooth and one oscillatory part

un+1
µν = (un+1

µν )S + (un+1
µν )O

=
∫
D0

exp
(

ln p(z1, z2) + i(ωx∆xµ + ωy∆yν)
)
ûn(ω)dω+

∫
D1

p(z1, z2) exp
(
i(ωx∆xµ + ωy∆yν)

)
ûn(ω)dω.

(5.12)

Correspondingly the wave number domainD is divided in two partsD0 andD1. The oscillatory part
(un+1
µν )O is damped out if|p(z1, z2)| < 1 for ω ∈ D1.

We now study the smooth part. For small wave numbers, i.e.ω ∈ D0, we expand the logarithm of
p(z1, z2) in a Taylor series, which for all three schemes gives
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ln p(z1, z2) = z1 + z2 + 0.5(z1 + z2)2 +O(h3)

= −i∆t

(
c1

sinωx∆x

∆x
+ c2

sin ωy∆y

∆y

)
−

0.5∆t2
(

c1
sin ωx∆x

∆x
+ c2

sin ωy∆y

∆y

)2

+O(h3)

= −i∆t(c1ωx + c2ωy)− 0.5∆t2(c1ωx + c2ωy)2 +O(h3),

(5.13)

wherew ∈ D0 andh = max (∆x, ∆y). Exploiting (5.13) the smooth part can be written

exp
(

ln p(z1, z2) + i(ωx∆xµ + ωy∆yν)
)

= exp
(
i

((
−c1

∆t

∆x
+ µ

)
ωx∆x +

(
−c2

∆t

∆y
+ ν

)
ωy∆y

)
−

0.5∆t2 (c1ωx + c2ωy)2 +O(h3)
)
.

(5.14)

The time step∆t is restricted by the stability conditions (5.5)–(5.7), where we chooseΩCFL = 0.7 for
SIRK and ESIRK andΩCFL = 1.0 for ERK. Inserting the maximum time steps into (5.14) and assuming
small enough space steps yields

exp
(

ln p(z1, z2) + i(ωx∆xµ + ωy∆yν)
)

≈ exp
(
i

((
− c1∆y

c2∆x
·ΩCFL + µ

)
ωx∆x + (−ΩCFL + ν) ωy∆y

)
−

0.5 ·Ω2
CFL ·∆y2

(
c1

c2
ωx + ωy

)2 )
,

(5.15)

for ERK and correspondingly

exp
(

ln p(z1, z2) + i(ωx∆xµ + ωy∆yν)
)

≈ exp

(
i

(
(−ΩCFL + µ) ωx∆x +

(
−c2∆x

c1∆y
· ΩCFL + ν

)
ωy∆y

)
−

0.5 · Ω2
CFL ·∆x2

(
ωx +

c2

c1
ωy

)2
)

,

(5.16)

for SIRK and ESIRK. Inserting (5.15) and (5.16) in (5.12) we obtain

(
un+1
µν

)
S
≈
(
unµ−ΩCFL·(c1∆y)/(c2∆x),ν−ΩCFL

)
S

,(5.17)

for ERK and

(
un+1
µν

)
S
≈
(
unµ−ΩCFL,ν−ΩCFL·(c2∆x)/(c1∆y)

)
S

,(5.18)
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for SIRK and ESIRK, i.e., in one iteration smooth waves are transported a distance

(xdist, ydist) = ΩCFL ·∆y · (c1/c2, 1) by ERK,

(xdist, ydist) = ΩCFL ·∆x · (1, c2/c1) by SIRK and ESIRK.
(5.19)

Since∆x� ∆y smooth waves are transported faster out of the computational domain by the semi-implicit
schemes.

Taylor expansion of the functions in (5.11) for smallz1 andz2 yields

|p(z1, z2)| = 1−O(∆y2) for ERK,

|p(z1, z2)| = 1−O(∆x2) for SIRK and ESIRK,
(5.20)

i.e., smooth waves are better damped by the semi-implicit schemes.

5.3. The linearized Navier–Stokes equations.We here derive time-step restrictions for the lin-
earized Navier–Stokes equations in the same way as we did for the scalar model problem in Section 5.1.
Discretizing (2.6) by centered differences and applying the Fourier transformation we obtain an ODE,

dŴω

dt
+ AωŴω = b,(5.21)

whereAω = Bω + Cω and

Bω = iA2
sin ωy∆y

∆y
+ B2

4 sin2 ωy∆y
2

∆y2

Cω = iA1
sin ωx∆x

∆x
+ B1

4 sin2 ωx∆x
2

∆x2
+ B3

sinωx∆x

∆x
· sin ωy∆y

∆y
;

(5.22)

cf. (4.4). We proceed by splitting the matrices into one inviscid and one viscous part, e.g.,Aω = Ainviscid
ω +

Aviscous
ω . Thereby the time step for ERK can be chosen according to (5.5), where

∆tinviscid ≤ ΩCFL

max λ(Ainviscid
ω )

∆tviscous ≤ ΩRK

max λ(Aviscous
ω )

(5.23)

are based on the following estimates of the spectral radii

max λ(Ainviscid
ω ) =

|U |
∆x

+
|V |
∆y

+ c

(
1

∆x2
+

1
∆y2

)1/2

max λ(Aviscous
ω ) =

4
3
ν

(
4

∆x2
+

4
∆y2

)
.

(5.24)

Correspondingly we have for semi-implicit schemes

∆tinviscid ≤ ΩCFL

max λ(Cinviscid
ω )

∆tviscous ≤ ΩRK

max λ(Cviscous
ω )

,

(5.25)
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and

max λ(Cinviscid
ω ) =

|U |
∆x

+
c

∆x

max λ(Cviscous
ω ) =

4
3
ν

(
4

∆x2
+

1
4∆x∆y

)
.

(5.26)

In [13] the stability restrictions (5.23) and (5.25) were studied for the flow over a flat plate. Assuming a
reasonable refinement in the boundary layer region, the inviscid condition proved to be the more restrictive.
We also assume that the grid is refined so that the truncation error is of the same order for allRe. Since
the boundary layer thickness isO(Re−1/2) according to (2.5), we have a typical cell size∆x = O(1) and
∆y = O(Re−1/2) in the boundary layer. Relation (5.19) thus says that smooth waves are transported a
distanceO(Re−1/2) in one ERK iteration and correspondinglyO(1) in one SIRK or ESIRK iteration. The
number of iterations before smooth error modes are outside the computational domain is therefore

#iter = O(Re1/2) for ERK,

#iter = O(1) for SIRK and ESIRK,
(5.27)

indicatingRe-independent convergence for the semi-implicit schemes.

6. Multigrid. Since only a linear problem is considered, we use the following linear formulation of
the multigrid method:

procedure MG(l, u, f);
if (l = 0) then u = S(ν1+ν2) (u, f) ;
else begin

u = S(ν1) (u, f) ;
d = r ∗ (Llu− f) ;
v = 0;
for i = 1(1)γ do MG(l − 1, v, d);
u = u− p ∗ v;
u = S(ν2) (u, f) ;

end;

(6.1)

given in [4] for solvingLlul = fl, cf. the linear system (4.2). As smoother,S, we use the Runge–Kutta
schemes (4.3), (4.5) and (4.6). The type of cycle is determined by the parameterγ and the number of pre-
and post smoothing steps are given byν1 andν2. On the coarsest level we have no exact solver, but instead
ν1 + ν2 smoothing iterations. In all experiments below we haveν1 = ν2 = 1.

To transfer grid functions between two levels we use a prolongation operator,p, and a restriction
operator,r, which are both based on second order interpolation. On the finest grid level there areM ×N
cells. If there areM/2 × N/2 cells on the second finest level etc. we havefull coarsening. Another
possibility is to usesemi-coarsening, as suggested in [10], where the grid is refined in one direction at a
time.

7. Numerical experiments. Here we solve the linearized Navier–Stokes equations (2.6) on the unit
square, where there is a flat plate aty = 0 and the other boundaries are open. The iterations are terminated
when the norm

‖Rn‖2 =
∑
i,j

∆xi∆yj

(
Wn+1
i,j −Wn

i,j

∆ti,j

)2

(7.1)
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of the initial residual has been decreased a factor105. As an initial guess we setu = U∞ = 0.1, v = 0 and
ρ = ρ∞ = 1. The dissipation parameter is hereε = 0.02.

Let us first study a flow whereRe = 100 on a uniform grid withM = N and perform a grid refinement
study for the multigrid method (6.1) with full coarsening andγ = 2, which gives a W-cycle. The smoother
is the three-stage ERK (4.3) with
(α1, α2, α3) = (0.6, 0.6, 1), ΩCFL = 1.5 andΩRK = 0.8. This is a more efficient smoother than the
two-stage ERK in Fig.5.1. In Table 7.1 we see that more or less grid independent convergence is achieved
by increasing the number of grid levels as the grid is refined, which is in agreement with theory in [8]. But
introducing more grid levels is not always possible, especially in more complex flow simulations where
one can seldom define more than three or four grid levels.

TABLE 7.1
Grid refinement study for full coarsening MG.

N 16 32 64 128 256
# grid levels 2 3 4 5 6

# cycles 73 51 48 49 67

We continue with an experiment whereRe is varied by changingν in (2.3). Here the grid is designed
to give sufficient accuracy for allRe rather than impressive convergence rates for the multigrid method.
The number of cells in the body-normal direction,N , is increased withRe according to Table 7.2 so that
there are approximately 25 cells in the boundary layer atx = 0.6. The other parameters,M = 64 and
θ = 0.05 are fixed, i.e., the stretching parameter in (3.1) is given byα = N · ln (1 + θ).

TABLE 7.2
Number of cells for various Reynolds numbers.

N 56 80 104 128
Re 103 104 105 106

The multigrid method (6.1) is used for 1, 2 and 3 grid levels. Full coarsening is applied and we haveγ = 1
yielding a V-cycle. In Fig.7.1 we see that the number of cycles grows approximately asRe1/2 when ERK
is the smoother, i.e., the same kind of behavior as in the single grid case, cf. (5.27). But with the ESIRK
scheme (4.6) as smoother, the result is more or lessRe-independent convergence.
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FIG. 7.1.Number of full coarsening MG cycles for 1 (∗), 2 (o), and 3 (×) grid levels

We now change to semi-coarsening and repeat the experiment above. Coarsening is applied only in the
body normal direction. Since we thereby improve the aspect ratio of cells in the boundary layer on coarser
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levels, the stiffness is hopefully alleviated and the convergence rate is increased for highRe. However,
in Fig.7.2 we see that the number of iterations is almost the same as for full coarsening when ERK is
the smoother, and with ESIRK as smoother the number of iterations is actually increased from the full
coarsening experiment. Moreover, theRe-dependency seems to be very similar no matter what coarsening
strategy is used, i.e., the key factor in order to obtainRe-independent convergence proves to be the choice
of smoother.
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FIG. 7.2.Number of semi-coarsening MG cycles for 1 (∗), 2 (o), and 3 (×) grid levels

We let our f90-code run on a Digital AlphaServer 8200 with a EV5/300 MHz processor. In Fig.7.3
we plot the CPU-time in seconds for the MG algorithm with three grid levels, both for full coarsening
and semi-coarsening. Since we are solving a linear problem, the CPU-time may be decreased by LU-
factorizing the systems in (4.6) once and in each iteration just back substitute. However, this has been
avoided since it would give ESIRK an unfair advantage over ERK. After all, our interest is primarily in
non linearproblem. Of course ESIRK requires more operations than ERK, for instance in the experiment
whereRe = 106 one MG cycle with ESIRK is roughly 40 % more expensive. Nevertheless, since the
number of iterations is drastically decreased we gain as much as one order of magnitude in CPU-time by
switching from ERK to ESIRK. Finally note that semi-coarsening gives rise to more work on coarser grid
levels than full coarsening, and therefore it proves to be slower than full coarsening in all our experiments.

8. Concluding remarks. In [13] we solved the Navier–Stokes equations (2.1) and the linearized
equations (2.6) on a single grid. In both cases the convergence rate was substantially improved by switching
from an explicit to a semi-implicit Runge–Kutta scheme. Here we have solved the linearized equations and
obtained similar results for the multigrid method. Thus, there are strong reasons to believe that the semi-
implicit scheme also works well as a smoother in a non linear multigrid method. In [15] it has been shown
that this is indeed the case.
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