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ACCELERATION OF IMPLICIT SCHEMES FOR LARGE SYSTEMS OF
NONLINEAR ODE s*

MOUHAMAD AL SAYED ALl f AND MILOUD SADKANE

Abstract. Implicit integration schemes for large systems of nonlin®@®Es require, at each integration step,
the solution of a large nonlinear system. Typically, thelm@ar systems are solved by an inexact Newton method
that leads to a set of linear systems involving the Jacobiammixmof the ODE which are solved by Krylov subspace
methods. The convergence of the whole process relies orutiligygof initial solutions for both the inexact Newton
iteration and the linear systems. To improve global coreecg, line search and trust region algorithms are used to
find effective initial solutions. The purpose of this papeta construct subspaces of small dimension where descent
directions for line search and trust region algorithms amitlal solutions for each linear system are found. Only
one subspace is required for each integration step. Thi®app can be seen as an improved predictor, leading to
a significant saving in the total number of integration stefstimates are provided that relate the quality of the
computed initial solutions to the step size of the discatitim, the order of the implicit scheme and the dimension
of the constructed subspaces. Numerical results are ezport
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1. Introduction. Consider the system of ODEs:

(1.1) g(t) = ft,y@®), to<t<T, ylto)=y",

wherey(t) € R™ andn is large.
A class of implicit schemes for solving (1) is given by

wherey, = y© andy;, ... ,yq are assumed to be knowp N, y; is an approximation to
. o . o T*to . . .
y(t;) with t; = to + ih, h = ~°, (3 is a scalar and; is a vector depending ogy . and

fi—k,yi—k), 1 <k < g+ 1. Most standard implicit schemes such as implicit Eulern&ra
Nicolson, Adams-Moulton and BDF methods can be written a@lif); see, for example,
[15, 16].

These schemes have good stability properties, but neatestite solution of the large
system [.2) at each integration step. The case whfers an affine function of the form
ft,y(t)) = Ay(t)+b(t) leads to linear systems. This case has been considergd In fhe
present paper we assume ttfas a nonlinear function. The Newton method can be used to
solve (1.2), but to keep the storage and computational cost low, theacteNewton method
is preferred §, 11]. Itis given by the following process:

Choosey(o) as initial guess foy;

%

For k =0,1,...,until convergence do
(1.3) Solve inexactly G/ (y*)s" = —a;(y?)
(1.4) Set y D = B 4 50

whereGg(ygk)) is the Jacobian matrix of/; at yfk) andégk) is an approximate solution to

(2.3). Krylov subspace method&(], for example GMRESZ1], can be used to fin@f.k)
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in the affine subspa&ék) + ICgk), Where§§k) is an initial guess for the exact solution and
K™ is a Krylov subspace constructed with the ma@’l@(ygk)) and the initial residual vector

K2

G (3% + Gy(yF). One generally asks thaf" satifies

(9 IG5 + G < €G]

*) must be chosen to

with some tolerance threshohﬁk). The results in §] indicate hOWeE
ensure local convergence of the inexact Newton method.

Krylov subspace methods have been used, for examplé, i) b, 6] in the context of
Newton’s method and in13, 3, 4, 12, 7, 17, 19 in the context of ODEs. They have the
advantage of requiring only the multiplication of the Jaiembmatrix G, (y§k>) by a vector,
the Jacobian matrix need not be formed explicitly. Also,djoonvergence can be expected
provided an efficient preconditioner and/or a good initiaégségk) is available. In this paper
we concentrate our effort on the latter possibility.

Like Newton’s method, the inexact Newton method is locatiywergent: it converges
rapidly provided the initial gues,@(o) is close enough tg;. Traditionally,yfo) is found with
the aid of a predictor, usually an explicit scheme applie¢ltd). The drawback is that often
the Newton method does not converge with such a predicterSsetiond.2. For this reason,
the line search backtracking and trust region techniquee baen used to improve global
convergenceq, 6, 11] from any initial guessygo). These techniques generate a sequence
of vectors that converge under some conditions to a localrmim or a saddle point of
the functionh;(y) = 1|/G;(y)||*>. Here and throughout the paper, the sympd] denotes
the Euclidean norm. Each vector is obtained from the prexedne by adding a descent
direction, on which the effectiveness of these techniquesgly depends. Of particular
importance from an algorithmic point of view is the papB8}, where the solution of¥.3)
and line search and trust region algorithms all use Kryldwspaces. This results in a method
that is effective for nonlinear equations, but rather exgpenfor ODESs since the nonlinear
equation {.2) must be solvedv — ¢ times.

Our aim is to show that the subspace

(16) Vi = Spar{f(ti—la yi—l)a LR f(ti—rayi—T)}a r<n

and some modifications thereof (namely whgn,, ..., y;_,. are replaced by approxima-
tions) contain a good approximationgp— a;; see Theorem®.1and2.2. As a consequence,

the subspac¥; can be used to finglgo) andégk), k> 0.

More precisely, we will see that good descent directiondifer search and trust region
algorithms and a good initial gueﬁg) of the exact squtiomf.k) can be found fronV; and
the Petrov-Galerkin process. When applied1d3), this process findégk) in the subspace
_yl(k) + a; + V;, such that

GyMe® + Gy L Gy

This means thaigk) is the best least squares solutiondd in the subspaceygk) +a;+V;.

Onceégk) is obtained as above, very few iterations by a Krylov subspaethod are needed
to satisfy (L.5). The subspac¥®; does not depend ohand the main advantage here is that
only one subspace of small dimension is required for eachtiten: of the implicit scheme.
The approach thus obtained leads to a significant savingeindtal number of integration
steps.
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The paper is organized as follows. In Sectibwe describe the subspace of approxima-
tion V; and provide estimates for the error between exact and appade solutions of1.2)
in terms of the step sizk, the order of the implicit scheme and the dimensioof V;. In
Section3 we briefly review the line search and trust region algorittamd explain how these
algorithms can be used, in conjunction withand the Petrov-Galerkin process, to compute
good descent directions and good initial guesses for eaehiisystem of the formL(3). In
Section4 we discuss the algorithmic aspect of the proposed appraatitzow numerically
its effectiveness on a very stiff problem. The Krylov sulspaethod used throughout the
paper is GMRES.

2. Approximation of the initial guess. In practice we can only hope for an approxima-
tion g; to the exact solution; of (1.2). Therefore we replacel(2) by

(2.1) |Gi(@)] <e, i=q+1,,...,N,

whereéi(:c) =z —a; — Bhf(t;,x), the vectorq, is obtained by replacing thg;’s in the
expression ofi; by theg;’s ande is some tolerance threshold.

Throughout this section we assume tfidgd Lipschitz with respect to the second variable.
We also assume that the scherh&)is stable and of order and that fori = 1,...,q, 3; IS
computed with an-step scheme such that

(2.2) Qax [[g: = will = Oe/h).

Then, there exists a constari such that (see, e.g18, Chap. 8])

N
<
q+r1n§ai)éNHyl yz” Co (max Hyz yZ” + Z ||G |>

i=q+1
< G o 15—l + (V= ) ) = Oe/m),
The following theorem shows that the subspace

(2.3) Vi =spad f(ti—k, Ji—k), L <k <7}
contains a good approximationge — a;.

THEOREM 2.1. Assume thay(t) = f(t,y(t)) € C"([to,T]) and f is continuously
differentiable ortg, T'] x R™. LetV; be the subspace defined ). Then, there exists @
ina; +V; suchthatfori =¢+1,..., N,

19: — gl = O(P*) + O(F"*) + Oe),
IGi(@)| = O(hP*H) + O("™+) + O(e).
Proof. Sinceg is r-times continuously differentiable, from the Lagrangeenpblation
formula (see, e.g.8 Chap. 3]), there exist constants 1 <! < r, such that

(2.4) lg(ti Zazg i)l = o).

From 2.4) and the fact that the schemkZ2) is stable and of order and f is Lipschitz, we
have

(2.5) I1f (£, i) Zazf i1, Gi-1)|[| = O(h?) + O(h") + O(e/h).



ETNA

Kent State University
http://etna.math.kent.edu

ACCELERATION OF IMPLICIT SCHEMES FOR LARGE SYSTEMS OF NONWEAR ODEs 107

Now |et2j =a; + hﬂ Z;:l Ozlf(ti,l, gifl) € a; +V;. Then

Ji—§=10i—ai—hB>_ af(titfi-1)

=1

= Gi(@i) + hB(f (b, 5) = > cuf (tivs, Gi1))
=1

which, with 2.1) and @.5), gives
15: — gl = O(hP*1) + O(R") + O(e).
Now we have
1G: @) < 1Gi () — Ga(@a)|l + |G (@) i
=17 = 9 + hB(f(ti, ) — fE ) + 1Gi(Fa)l
<G = gall +hIBIS (i, §) — £ (i 7a)l| + €.
Hence,
IGi(@)] = O™ + O(h*T) + O(e). O

To reduce the cost in the Petrov-Galerkin process and in G8|RE modify the sub-
spaceV; by keeping only the last vectors whose computations ndeésshe use of GMRES
to satisfy (L.5). For example, suppose that at iteratiothe Petrov-Galerkin process was
enough to find'™ such thay* ™) = 4™ 1 3™ with || G;(y**")|| < e. In this case we set
51(.’“) = §§k), Ui = yfk“) and use the same subspagdor the next iteration.

Let us denote, again, by

(26) Vi = Spar{f(ti—ja gi—j)a j = Z'17 7;21 e aiS}

the subspace associated with the lasectorsy; i, , Gi—iy, - - -, Ji—i, With i3 < ... < i,
whose computations necessitate the use of GMRES to satigy &énd by

(2.7) Wi =spar f(ti—j, i—j), j = 1,2,...,i1 — 1},

the set associated with the other vectors such that
G @imj)|| <&y Fimj € @iy + Vi

Such a situation is encountered in practice; see steps (@RBYN1.1) of Algorithm4.1
Then we have the following theorem.

THEOREM 2.2. Assume thay(t) = f(t,y(t)) € C"([to,T]) withr = s +i; — 1 and
f continuously differentiable ofty, T] x R™. LetV; be the subspace defined ib§. Then
there existgy in a; + V; suchthatfori = ¢+ 1,..., N,

I3 = gl = O("™) + O(h™) + O(e),
IG: @)l = OB *) + O(R™1) + O(e).

Proof. From Theoren?.1we know that there exist; € a; + V;, 2o € W;, such that

(2.8) i — (21 + 22)|| = O(hWPTH) + O(R™T1) + O(e).



ETNA

Kent State University
http://etna.math.kent.edu

108 M. SAYED ALI AND M. SADKANE

Let us writez, = ﬁh 231:711 ij(tifja gifj) and Clel:lﬂeJ~ = z1 + 231:711 Vg (gifj — &ifj)-
Note thatj € a; + V; and '
i1—1
Gi— 5= — (214 22)) + > v (BBt Giy) = (G — dij) s
j=1
i1—1 _
15 = Gl < 1@ = (1 + 22l + D Il Gimy (i)
j=1

= O(hPTH) + O(h" ) 4+ O(e).
As in the proof of the previous theorem, we obtain
1G:(@)| = OB + O™+ + Oe). O

REMARK 2.3.
1. In the sequel we will essentially work with the subspeceefined in £.6).
2. In practicey > p; for example, the numerical tests are carried out with 20 and
p =1or2. Thus,||§; — 7| and||G;(7)| behave likeD(h*+1) + O(e).

3. Line search and trust region algorithms. Line search and trust region algorithms
are two simple iterative methods for finding a local minimuf@adunction. They are based
on the notion of descent directions that move the iteratesrs a local minimum. More
precisely, let

(3.1) hi(w) = 5GP, w e B
A vectorp € R" is a descent direction @f; atw if

(3.2) Vhi(u)'p < 0.

This inequality guarantees that, for small positive

(3.3) hi(u + 0p) < hi(u).

In fact, inequality 8.2) allows thath; decreases with a rate proportionaNid; (u)” p.

In the next two subsections we briefly explain how these #lgois can be used to find a
good initial guess for the nonlinear systeind). More details on these algorithms can found,
for example, in L]

3.1. Backtracking line search algorithm. The line search algorithm computes a se-
quence of vectoragk) such that
(3.4) WP = (B )\kp(-k)
wherepgk) is a descent direction of/; at «
Goldstein-Armijo condition:

(k

4

), and )\, is a scalar chosen to satisfy the

(3.5) hi (Y < By (ul) + ad, Vi (u) TP

2

wherea € (0,1/2) is a parameter typically set td) .
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Under some conditions, the sequer@og“) k>0 converges to a local minimum &f; or

the sequenc&h;(u; (k) ) converges td). Moreover, for each descent dwectmﬁ“) Theo-
rem 6.3.2in O] shows the existence of;, such that$.5) is satisfied.

The scalar\; is computed by the backtracking method. This method statts\y = 1
and repeatedly reduceg until an acceptable iteraték“), satisfying B8.5), is found. When
A = 1, the natural question is which descent direct;ifg’ﬁ leads approximately t8(5) and

Y ~ ~ y;. These conditions translate to

(36) 05 S IG )P +0G: ()T Gy
It turns out that the Newton direction
(3.7) p = =G M) Gi(u)

guarantees3.6). However, this direction is expensive to compute. Thewfosing GMRES,
we look for an approximatioﬁgk) to pgk) that satisfies

(3.8) 1G; (u{™B + Gi(u™) | < 0 1Ga(i)],
with some tolerance thresho;leik) > 0. Then we have

Vhi(uP) 5 = G + G (61w + Giul))
<" = D)Gi M),

In particular, |f77Z <1, thenpl *)is a good descent direction.

In conclusion, Wherpi satisfies 8.8) with 0 < ngk) <1, thenf)z(.k) is a descent
direction that satisfies, or almost satisfies5( with A, = 1. In the latter case, the backtrack-
ing method will rapidly find a scalak, that satisfies3.5) and the sequenoék) converges
to y;. As we have mentioneqlf,f.k) is obtained with GMRES. To accelerate the computation,
we start GMRES Withﬁgk), obtained by the Petrov-Galerkin process applied to thesate
—uz(.k) + a; + V;. With this initial solution, only a few iterations, and sorimeg¢s no iteration,
of GMRES are needed to satisfy.); see Tableg.1and4.2

One drawback of the line search algorithm is that even wherttimdition 8.5) is not
satisfied, the descent direction is still kept unchangedly @e scalar)\; is updated us-
ing a one-dimensional quadratic or cubic model. The trugiorealgorithm overcomes this
drawback, at the price of increasing the computational cost

3.2. Trust region algorithm. The trust region algorithm generates a sequence of vec-
tOI’SuZ(-k), such thauz(.k“) = ugk) + dz(.k), Wheredl(k) is the solution of

(3.9 min \I/( )(d)
lld|j<6®

and whereSl(k) >0 and\IJl(.k) is given by the quadratic model

1
vY(d) = 211G + Gi(u)d|?

3

(3.10) = i) + Vhi(u)d+ Sd" B
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with B® = @ ("7 (u).
SinceBi(k) is symmetric and positive definite, the solution 8f9) is given by

w | BRI T R < 6,
d;” =

—(BY + pV 1) R (M) it [[(B) TV h(u)]| > 61,
whereul(.k) > 0 solves

(3.11) I(B® + 1M 1,) ' Vh ()] = 6%

2

Note thatdgk) is a descent direction df; at ul(.k) and coincides with the Newton direction
(3.7 when|(B{") " Vhi(u") | < 5"

To compute the scala:(ik) that approximately satisfie8.(L1), we will use two methods:
the locally constrained optimal hook step method, and thgedpstep method. The former
finds /LZ(-k), such that ||(BZ.(’“) + Mg’“)In)*lvm(ug’“))n =~ 5% and takes
uz(.’”l) = ugk) - (BZ-(’“) + ugk)ln)*Vh (u (k)) The latter uses a piecewise linear approx-
imation of the curveu — u§k) - (B( ) 4 pln) "V h (u; (k )) and takemgk“) as the point
on this approximation, such thﬁuz(.“l) Z(.k)H = 5§k). Note that both methods, as well

as the computation afl(.k), necessitate the solution of large linear systems. To edue
cost, we proceed as iB][and replace the full quadratic modé&.L0 by the following lower-
dimensional one,

(3.12) 3™ (¢) = hy(ul®) + Vhi(u (k))TVc—i— TV TBRV)e,

whereV; is ann x p matrix whose columns form an orthonormal basiypfSinceVTB(k)V
is symmetric positive definite, the next |teralt,5éch is given byu + Vc(k) wherec(k) is

the solution of

(3.13) min @Ek) (c)
(BRI

Note thatcgk) is not expensive to compute and th@tgk) is a descent direction af; atuz(.k).

The condition for acceptinggk“) is the one written ing.5), namely,

(3.14) hi(u§k+l)) < hi(uz(-k)) +thi(ul(k))T(u§k+1) _ uz(-k)),

wherea € (0, 3). If u(k“) does not satisfy3.14), then we reducé ) and return t08.13
to computec( ) by the hook step or the dogleg step methodu, f‘ﬁ satisfies 8.14), then

one must decide whethé/" ™" should be increased, decreased, or kept the same for the next
stepk + 1; see [L0].

4. Algorithmic aspect. In this section we write, in an informal way, an algorithmttha
computes the sequen¢g ) defined in 2.1). The initial guess for each nonlinear system is
obtained with a backtracking line search (paft) or trust region (par8.2), and the approx-
imate solutiony; is obtained with the inexact Newton method (p&aft). The parameters,
el @) ¢ kmax, , andkmaz,, should be fixed by the user.

Ls’
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4.1. The algorithm.
ALGORITHM 4.1.
1. Assume that fok = 1, ..., q, the approximatior is either given or is computed

with ank-step scheme such thabxi << |7k — Yk || = O(e/h).
Seti =g+ 1.

2. LetR; be the matrix formed by the lagg vectorsf (¢t;—r, Ji—x), 1 < k < ko, where

ko = min(q + 1, 7). Orthonormalize the columns &t; in V;.
3. Repeatuntii = N

3.0 Compute an initial solutiongo) (e.g., by an explicit method applied tb.{))
3.1 Line SearchRepeat until

A (0 (F) (g, (RED) (0 (F)
1Gi(ui ) < e or 1Gs(u™ )| = 1Giu; )H’ < e ork > kmaz,

(LS1) Compute an initial solutioﬁl(.k) of (3.7) by applying the Petrov-Galerkin
process to—ugk) + a; + rang€V;).
- If ]51(.'“) satisfieg3.8), then selﬁgk) = ﬁgk).
- Otherwise, compute an approximate squtiﬁﬁC) of (3.7) by
GMRES, so thaf3.8) holds, starting withﬁz(.k).
(LS2) Compute the scalav; by the backtracking method, so th&t%) holds.
(Ls3) Setul* ™ = ul® 4 \p | k= k41, o0 = ul.
3.2 Trust Regionreplace the steps (LS1), (LS2), and (LS3) above by
(TR1) Compute an approximatiojﬁk) to (3.13 by the hook step or the dogleg
step.
(TR2) Compute v*™ = ¥ 4+ VP satisfying (3.14).
Setk =k +1, ygo) = ugk).
(TR3) If ||Gi(y§0))|\ < ¢, then setj; = yio), i:=i+1landgoto 3.
3.3 Inexact NewtonRepeat until

IGi ()]l < & ork > kmaz,

(N1) Compute an approximati(ﬁﬁk) of the linear systeml(.3) by applying the
Petrov-Galerkin process teyfk) + a; + rang€V;).
(N1.1) If Héi(yfk) +§§k))|| <e,sety;, = ygk) +§§k), i:=1i+1landgoto 3.
(N1.2) Else, ifs\") satisfies {.5), sety!* ™) = y* 4+ 5" k= k + 1 and
goto3.3.
(N1.3) Else, compute an approximati@‘ﬁ) to (1.3 by GMRES, starting
with s§k> Setél(.k) = 51(.'“), and go to (N1.1).
3.4 Setj, =y,
3.5 Letky be the number of columns &;. If ko < r, thenseR; 1 = [R;, f(t:, :)]s

elseR; = [S;, f(t:,3:)], whereS; is the matrix formed by the last — 1
columns ofR;. Orthonormalize the columns @t; .1 in V; 1
36i:=7+1.

In this algorithm, the subspadg = rang€V;) corresponds to the one of Theorén?.
If we want to use the subspat® of Theorenm?2.1, then step (TR3) should be replaced by:

It |G ()| < e, setj; = 4!”, and go ta3.5,
and step (N1.1) should be replaced by

1F Gy + 57| < e, setg; = y™ + 3%, and go ta3.5.
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Note that if step (TR3) or step (N1.1) is satisfied, thigre a; + V;. For this reason we
do not change the subspaggfor the next iteratiori + 1.

In step3.4 the orthonormalization of; and R;; uses an updating QR factorization;
see, e.g., 14, p. 594].

4.2. Numerical results. We now show the behavior of Algorithih 1 on the Robertson
chemical reaction with one-dimensional diffusidrv];

du 1 0%u
5 —0.04 u + 10%vw + OZW,
2

% =0.04 u — 10%w — 3 x 10702 + a%,

dw 79 0w

E =3 x 10" —+ Oéw,
with 0 < =z < 1,0 < t < 1, a = 2 x 1072 and Neumann boundary conditions
u — dv _ dw _ () gty = 0,1, and initial values

u(z,0) =1+sin(2r z), v(z,0)=w(x,0)=0.

The second partial derivative is discretized on a uniforid gf 5 x 102 points and the bound-
ary conditions at = 0 (resp.z = 1) are discretized by forward (resp. backward) differences.
We thus obtain an ODE system of the forini) of sizen = 15 x 103. This system is known

to be very stiff.

Recall that our aim is to show that the subsp¥edelps to find good initial solutions
y§0> andégk). The implicit schemes used ifi.@) are implicit Euler and Crank-Nicolson. The
numerical tests are carried out with the following paramsete = 0, » = dim(V;) = 20,

h = 1/100. The parameter in the inexact Newton method is given b9—°. The threshold

parameters(k) andngk), used in the computation @fk) in (1.5 andﬁgk) in (3.8), are fixed

at10~2. Note that the choice of a constaﬁf) implies that the convergence of the sequence
(ygk))kzo is linear P]. In steps (LS1) and (N.1.3), the computation@{ff) and §§k) are
carried out by GMRES(20), i.e., restarted GMRES with réstalue20. We say that GMRES
fails to converge when the stopping criterion is not satisfiethin a total number of iterations
(i.e., number of matrix-vector multiplies) fixed &b*. The parametersmaz,,, kmaz, ,

() ande(?) are given byl5, 15, 1072 and10~°, respectively. The initial solution” in
step 3.0 is given by explicit Euler, i.mgo) =Gi—1+hf(ti—1,Gi—1)-

We also compare the proposed approach with some "standeditfor schemes” where
the initial solutions to1.3) and to line search are obtained with explicit Euler, expRuinge-
Kutta of order4, or Adams-Bashforth of order. Specifically, we remove stegsand3.5
from Algorithm 4.1 and replacmgo) in step 3.0,131(’“) in step (LS1) antﬁz(.k) in step (N1),
respectively, by
u§0) _ yl(e)’ ﬁ(k> _ _u§k> + yZ(e) andégk) _ _y(k) + y(e)’

where
l/z(i)l =i +hf(ti, U:)
for explicit Euler,

o . h
y§+)1 =7+ g(kl + 2ko + 2k3 + ka)
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for Runge-Kutta 4 withky = f(t;,9:), ko = f(t; + h/2,9; + hk1/2),
ks = f(ti +h/2,5; + hk2/2), ka = f(tit1,9: + hks), and

r—1
U =G+ h Y BV (k)
k=0

for Adams-Bashforth with3, = j;Jl Hf;é(j + s)ds/k!, V°f(ti, ;) = f(t:,9;) and
VR f (b, 5:) = VFf(ti, 5i) — ka(ti—lagi—lz-

Figures4.1-4.3 show the residual normiG;(y'”)||, wherey " is the initial solution
computed by line search or trust region algorithm.

|

20

10~

——
—

10°

Residual norm
e
5
Residual norm

. . 10 . . . .
60 80 100 [ 20 40 60 80 100
Iteration i of implicit Euler scheme Iteration i of Crank-Nicolson scheme

FIG. 4.1. Line search.
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10°
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Residual norm
.
5
Residual norm

FIG. 4.2.Trust region (dogleg step).

Tables4.1 and4.2 show some computational details when the inexact Newtomhadet
is used along with the line search algorithm. The secondneolof these tables shows
||C~¥i(y§k) + §§k))||, Whereygk) is the k-th Newton iterate for computing; andégk) is the
initial guess ofsgk), obtained fromy; and the Petrov-Galerkin process. The third column
shows the number of iterations required by GMRES to coms‘)ﬁfe starting withéf.k), such
that (L.5 holds. For example, wheh = 1, Table4.1 shows thatt329 + 5440 = 9769
iterations of GMRES have been used to satisfy the conditiostép 3.3 of Algorithma.1,
while 2320 iterations were sufficient whein= 10. Columns 4, 5, and 6 of these tables show
analogous information for the line search (step 3.1 of Altpon 4.1).
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FIG. 4.3. Trust region (hook step).

From these tables, we see that at iteratioa 1, the number of iterations required by
GMRES is large and that the initial solutioﬁg) andﬁf.k) are not good enough. This is
because the subspa¥econtains only one vector. Alim(V;) increases, the relative residual
associated Witlﬁz(-k) decreases, especially when the Crank-Nicolson schemests Uss a
consequence, fewer iterations, and sometimes no iterati @GMRES, are needed to compute

155.’“). This allows the line search algorithm to compute a goocﬂaihi;olutionygo); see also
Figure4.1 Similar comments apply when inexact Newton is used witlsttregion; see
Tables4.34.4and Figuregt.2-4.3

Table4.5 shows the behavior of Algorithm.1 when the explicit Euler scheme is used

as explained above. In this test GMRES did not converge. 'ﬂnmrﬂéi(yfk) + §§k))||
stagnated arount)?. The algorithm did not perform better when explicit Rungetd 4 and

Adams-Bashforth were used. With Runge-Kutta; (4" + §*))| stagnated arount*
fori =1,k =0,...,12, and at iteratior(i, k) = (1, 13), GMRES failed to computéz(.k).
With Adams-BashforthHG‘l-(yfk) + ,§Z(.k))|| stagnated arouni0* fori = 1, k = 0,1 and

i=2,k=0,...,5. Atiteration(i, k) = (2,6), GMRES failed to computégk).
TABLE 4.1
Algorithm 4.1 with line search - Implicit Euler is used i1.(2).
Inexact Newton Line search
= k), (F) | ~ k
teration | |G (v + sy # iter. iteration 16 )fpg )JfGi(ug Dl # iter.
: : 16, )

(i.k) GMRES3™ (i.k) GMRESH®
(1,0) 6,2976 4329 (1,0) 1,8881 x 10~ * 0
1,1) 6,2976 5440 1) 9,9999 x 1071 1192
(10,0 4,9076 x 103 2320 1,2) 1,6321 557
(20,0) 2,6774 x 1073 1760 (1,3 2,1002 x 10* 2641
(30,0 2,1495 x 1073 1620 1,4) 9,8262 x 10* 3393
(40,0) 1,9993 x 1073 893 (10,0) 2,0496 x 10~* 910
(40,1) 1,9993 x 1073 1600 (20,0) 2,4655 x 1071 793
(50,0) 1,6472 x 1073 536 (30,0) 1,4118 x 107 ¢ 520
(50,1) 1,6472 x 1073 940 (90,0) 6,8481 x 10~ 2 130
(90,0) 1,2606 x 1073 900

(100,0) 1,3811 x 1073 201

(100,1) 1,3811 x 1073 1000

5. Conclusion. The purpose of this paper was to show one possibility for owjrg
convergence of the linear and nonlinear systems that ati@®wolving large nonlinear sys-
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TABLE 4.2
Algorithm4.1with line search - Crank-Nicolson is used ih ).

Inexact Newton Line search
=7 k . (k = k
iteration | |G (y™ + 5%y 4 iter. teration | 19504 >3p§ J 46w # iter.
: : 16, )
(i,k) GMRES3®) (i.k) GMRESH®)
(1,0) 6,2969 2347 (1,0) 2,5662 x 101 0
(1,1) 6,2969 2800 1) 9,9999 x 10~1 642
(10,0) 1,6742 x 1072 1540 1,2) 1,8962 760
(20,0) 4,9327 x 1073 817 (1,3) 6,5812 890
(20,1) 4,9327 x 1073 1220 (1,4) 2,7293 x 10" 1405
(30,0 2,8972 x 1073 676 (1,5) 1,3141 x 102 1837
(30,1) 2,8972 x 10732 940 (10,0 9,6104 x 10~ 0
(50,0) 3,2204 x 1073 815 (10,1) 5,2984 x 1071 728
(50,1) 3,2204 x 1072 1100 (20,0) 6,3566 x 107 0
(80,0) 2,8631 x 1072 686 (60,0) 8,6954 x 10~8 0
(80,1) 2,8631 x 1073 960 (80,0) 9,3942 x 1078 0
(100,0) 1,8893 x 1072 547 (90,0) 7,4865 x 1078 0
(100,1) 1,8893 x 1073 700 (100,0) 6,2467 x 1078 0
TABLE 4.3
Algorithm 4.1 with trust region - Implicit Euler is used irL(2).

iteration Inexact Newtor&: dogleg step Inexact Newtor& hook step

(i,k) 1G: (™ + 35| T #iter. GMRESZ™ | |Gi(y™ + 87| | # iter. GMRESZ™)
(1,0) 6,2976 1192 6,2976 1192

1,2) 6,2976 1057 6,2976 1057

1,2) 6,2976 1318 6,2976 1317

1,3) 6,2976 2393 6,2976 2393

(1,4) 6,2976 3157 6,2976 3157

(1,5) 6,2976 4007 6,2976 4007

(1,6) 6,2976 5292 6,2976 5292

1,7 6,2976 5440 6,2976 5440

(10,0) 4,9086 x 1073 910 4,9072 x 1073 1361

(10,0) 4,9086 x 1073 2320 4,9072 x 1073 2320

(20,0) 3,3623 x 1073 1022 2,4509 x 1073 762

(20,1) 3,3623 x 1073 2040 2,4509 x 1073 1640

(30,0 2,1081 x 1073 1016 1,9199 x 1073 766

(30,1) 2,1081 x 1073 1960 1,9199 x 1073 1720

(40,0) 1,3871 x 1072 435 2,6895 x 1073 1100

(40,1) 1,3871 x 1072 900 2,6895 x 1073 2080

(50,0) 1,8442 x 1073 1007 1,4765 x 1073 640

(50,1) 1,8442 x 1073 2080 1,4765 x 1073 1600

(60,0) 2,1950 x 1073 481 2,1745 x 1073 836

(60,1) 2,1950 x 103 1320 2,1745 x 1073 1560

(70,0) 2,5777 x 1073 1282 1,9232 x 1073 780

(70,1) 2,5777 x 1073 2140 1,9232 x 1073 1440

(80,0) 1,7480 x 1073 633 2,4491 x 1073 769

(80,1) 1,7480 x 1073 980 2,4491 x 1073 1640

(90,0) 1,4131 x 1072 433 1,3438 x 1073 502

(90,1) 1,4131 x 1073 1020 1,3438 x 1073 980

(100,0) 1,7451 x 1073 791 1,7411 x 1073 381

(100,1) 1,7451 x 1072 1520 1,7411 x 1073 1060

tems of ODEs by implicit schemes.

The nonlinear systems are solved by the Inexact Newton (IBthod and the linear
systems that arise in IN are solved by GMRES. The convergeftoeth IN and GMRES can
greatly be improved if good initial solutions are availabl® this end, we have developed a
strategy that allows the extraction of good initial solagdor IN and for the linear systems in
IN. The strategy uses, at iteratioof the implicit scheme, a subspareof small dimension
that contains information on the lasiterates, the line search LS or trust region TR algorithm,
and the Petrov-Galerkin process.
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TABLE 4.4
Algorithm 4.1 with trust region - Crank-Nicolson is used if.p).
iteration Inexact Newtor&z dogleg step Inexact Newtor&z hook step
(i,k) Gy + 37| | #iter. GMRESZ™ | |G, (v + 37| [ # iter. GMRES5(™
(1,0) 6,2969 642 6,2969 642
(1,1) 6,2969 760 6,2969 760
1,2) 6,2969 890 6,2969 890
(1,3) 6,2969 1405 6,2969 1405
(1,4) 6,2969 1837 6,2969 1837
(1,5) 6,2969 2347 6,2969 2347
(1,6) 6,2969 2800 6,2969 2800
(10,0 1,6748 x 102 877 1,6748 x 10~2 877
(10,1) 1,6748 x 1072 1540 1,6748 x 1072 1540
(20,0) 4,8107 x 1073 839 4,8091 x 1073 839
(20,1) 4,8107 x 107° 1220 4,8091 x 1073 1220
(30,0 3,3681 x 1073 707 3,3973 x 1072 701
(30,1) 3,3681 x 1073 1020 3,3973 x 1073 1020
(40,0 2,9851 x 1073 807 2,6970 x 1072 825
(40,1) 2,9851 x 1073 1100 2,6970 x 1072 1080
(50,0) 2,7778 x 1073 846 3,3073 x 1073 832
(50,1) 2, 7778 x 1073 1100 3,3073 x 1072 1120
(60,0) 3,0731 x 1073 829 2,3479 x 1073 846
(60,1) 3,0731 x 1073 1060 2,3479 x 1073 1040
(70,0 2, 4460 x 1073 634 2,3183 x 1072 613
(70,1) 2, 4460 x 1073 820 2,3183 x 1072 760
(80,0) 3,1872 x 1073 552 2,6765 x 1073 482
(80,1) 3,1872 x 103 760 2,6765 x 1072 660
(90,0) 2,7831 x 1073 667 1,8703 x 1073 471
(90,1) 2,7831 x 1073 940 1,8703 x 1073 600
(100,0) 2,6554 x 1073 559 2,2800 x 1072 262
(100,1) 2,6554 x 1073 780 2,2800 x 1073 720
TABLE 4.5

Explicit Euler with line search - Crank-Nicolson is used inZ).

Inexact Newton Line search
N 7w F) L, (P
6 | IGw® +sDl | e | i | SR I e
AT
GMRES3™™ GMRESH*)
(1,0) 3, 1434 x 107 1956 (1,0) 1 10
(1,1) 3,1434 x 10* 2140 (1,1) 1,0511 x 102 80
1,2) 1,0465 x 10% 524
1,2) 1,0465 x 10% 1076
1,4) 1,2660 x 10° 1425
(2,0) 1 10
2,1) 1,0621 x 102 424
(2,2) 7,2056 x 10° 13508
(2.3) 3,5319 x 10* *

* The number of matrix-vector multiplies in GMRES largely erds10?.

The efficiency of LS depends mainly on the quality of the dasd&ections. The Newton
direction @3.7) is known to be a good descent direction but necessitatesolnéon of linear
systems. The fact that the proposed strategy allows thdrootion of a good initial solution
ﬁgk) to (3.7), facilitates the task of GMRES. The resulting method isaghand efficient. The
TR algorithm uses a large quadratic model, which, aftergmiopn ontoV;, leads to several
small linear systems. This algorithm is also efficient but ba more expensive than LS if the
latter uses a good descent direction.

Numerical tests with the approach, where the initial solusi(to (L.3) and to LS) are
obtained with explicit methods, have been carried out. @pjgroach lead to a stagnation of
GMRES at early iterations of the implicit scheme.
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