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ACCELERATION OF IMPLICIT SCHEMES FOR LARGE SYSTEMS OF
NONLINEAR ODE S∗

MOUHAMAD AL SAYED ALI † AND MILOUD SADKANE†

Abstract. Implicit integration schemes for large systems of nonlinear ODEs require, at each integration step,
the solution of a large nonlinear system. Typically, the nonlinear systems are solved by an inexact Newton method
that leads to a set of linear systems involving the Jacobian matrix of the ODE which are solved by Krylov subspace
methods. The convergence of the whole process relies on the quality of initial solutions for both the inexact Newton
iteration and the linear systems. To improve global convergence, line search and trust region algorithms are used to
find effective initial solutions. The purpose of this paper is to construct subspaces of small dimension where descent
directions for line search and trust region algorithms and initial solutions for each linear system are found. Only
one subspace is required for each integration step. This approach can be seen as an improved predictor, leading to
a significant saving in the total number of integration steps. Estimates are provided that relate the quality of the
computed initial solutions to the step size of the discretization, the order of the implicit scheme and the dimension
of the constructed subspaces. Numerical results are reported.
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1. Introduction. Consider the system of ODEs:

ẏ(t) = f(t, y(t)), t0 ≤ t ≤ T, y(t0) = y(0),(1.1)

wherey(t) ∈ R
n andn is large.

A class of implicit schemes for solving (1.1) is given by

Gi(yi) = yi − ai − βhf(ti, yi) = 0, i = q + 1, . . . , N,(1.2)

wherey0 = y(0) andy1, . . . , yq are assumed to be known,q ≪ N , yi is an approximation to
y(ti) with ti = t0 + ih, h = T−t0

N
, β is a scalar andai is a vector depending onyi−k and

f(ti−k, yi−k), 1 ≤ k ≤ q +1. Most standard implicit schemes such as implicit Euler, Crank-
Nicolson, Adams-Moulton and BDF methods can be written as in(1.2); see, for example,
[15, 16].

These schemes have good stability properties, but necessitate the solution of the large
system (1.2) at each integration step. The case whenf is an affine function of the form
f(t, y(t)) = Ay(t)+b(t) leads to linear systems. This case has been considered in [1]. In the
present paper we assume thatf is a nonlinear function. The Newton method can be used to
solve (1.2), but to keep the storage and computational cost low, the inexact Newton method
is preferred [9, 11]. It is given by the following process:

Choosey
(0)
i as initial guess foryi

For k = 0, 1, . . . , until convergence do:

Solve inexactly G′
i(y

(k)
i )s

(k)
i = −Gi(y

(k)
i )(1.3)

Set y
(k+1)
i = y

(k)
i + s̃

(k)
i(1.4)

whereG′
i(y

(k)
i ) is the Jacobian matrix ofGi at y(k)

i and s̃
(k)
i is an approximate solution to

(1.3). Krylov subspace methods [20], for example GMRES [21], can be used to find̃s(k)
i
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in the affine subspacês(k)
i + K

(k)
i , whereŝ

(k)
i is an initial guess for the exact solution and

K
(k)
i is a Krylov subspace constructed with the matrixG′

i(y
(k)
i ) and the initial residual vector

G′
i(y

(k)
i )ŝ

(k)
i + Gi(y

(k)
i ). One generally asks thats̃

(k)
i satifies

‖G′
i(y

(k)
i )s̃

(k)
i + Gi(y

(k)
i )‖ ≤ ǫ

(k)
i ‖Gi(y

(k)
i )‖(1.5)

with some tolerance thresholdǫ(k)
i . The results in [9] indicate howǫ

(k)
i must be chosen to

ensure local convergence of the inexact Newton method.
Krylov subspace methods have been used, for example, in [9, 2, 5, 6] in the context of

Newton’s method and in [13, 3, 4, 12, 7, 17, 19] in the context of ODEs. They have the
advantage of requiring only the multiplication of the Jacobian matrixG′

i(y
(k)
i ) by a vector,

the Jacobian matrix need not be formed explicitly. Also, good convergence can be expected
provided an efficient preconditioner and/or a good initial guesŝs(k)

i is available. In this paper
we concentrate our effort on the latter possibility.

Like Newton’s method, the inexact Newton method is locally convergent: it converges
rapidly provided the initial guessy(0)

i is close enough toyi. Traditionally,y(0)
i is found with

the aid of a predictor, usually an explicit scheme applied to(1.1). The drawback is that often
the Newton method does not converge with such a predictor; see Section4.2. For this reason,
the line search backtracking and trust region techniques have been used to improve global
convergence [5, 6, 11] from any initial guessy(0)

i . These techniques generate a sequence
of vectors that converge under some conditions to a local minimum or a saddle point of
the functionhi(y) = 1

2‖Gi(y)‖2. Here and throughout the paper, the symbol‖ ‖ denotes
the Euclidean norm. Each vector is obtained from the preceding one by adding a descent
direction, on which the effectiveness of these techniques strongly depends. Of particular
importance from an algorithmic point of view is the paper [5], where the solution of (1.3)
and line search and trust region algorithms all use Krylov subspaces. This results in a method
that is effective for nonlinear equations, but rather expensive for ODEs since the nonlinear
equation (1.2) must be solvedN − q times.

Our aim is to show that the subspace

Vi = span{f(ti−1, yi−1), . . . , f(ti−r, yi−r)}, r ≪ n(1.6)

and some modifications thereof (namely whenyi−1, . . . , yi−r are replaced by approxima-
tions) contain a good approximation toyi − ai; see Theorems2.1and2.2. As a consequence,
the subspaceVi can be used to findy(0)

i andŝ
(k)
i , k ≥ 0.

More precisely, we will see that good descent directions forline search and trust region
algorithms and a good initial guessŝ

(k)
i of the exact solutions(k)

i can be found fromVi and

the Petrov-Galerkin process. When applied to (1.3), this process findŝs(k)
i in the subspace

−y
(k)
i + ai + Vi, such that

G′
i(y

(k)
i )ŝ

(k)
i + Gi(y

(k)
i ) ⊥ G′

i(y
(k)
i )Vi.

This means that̂s(k)
i is the best least squares solution to (1.3) in the subspace−y

(k)
i +ai +Vi.

Onceŝ
(k)
i is obtained as above, very few iterations by a Krylov subspace method are needed

to satisfy (1.5). The subspaceVi does not depend onk and the main advantage here is that
only one subspace of small dimension is required for each iterationi of the implicit scheme.
The approach thus obtained leads to a significant saving in the total number of integration
steps.
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The paper is organized as follows. In Section2 we describe the subspace of approxima-
tion Vi and provide estimates for the error between exact and approximate solutions of (1.2)
in terms of the step sizeh, the order of the implicit scheme and the dimensionr of Vi. In
Section3 we briefly review the line search and trust region algorithmsand explain how these
algorithms can be used, in conjunction withVi and the Petrov-Galerkin process, to compute
good descent directions and good initial guesses for each linear system of the form (1.3). In
Section4 we discuss the algorithmic aspect of the proposed approach and show numerically
its effectiveness on a very stiff problem. The Krylov subspace method used throughout the
paper is GMRES.

2. Approximation of the initial guess. In practice we can only hope for an approxima-
tion ỹi to the exact solutionyi of (1.2). Therefore we replace (1.2) by

‖G̃i(ỹi)‖ ≤ ε, i = q + 1, , . . . , N,(2.1)

whereG̃i(x) = x − ãi − βhf(ti, x), the vector̃ai is obtained by replacing theyj ’s in the
expression ofai by theỹj ’s andε is some tolerance threshold.

Throughout this section we assume thatf is Lipschitz with respect to the second variable.
We also assume that the scheme (1.2) is stable and of orderp and that fori = 1, . . . , q, ỹi is
computed with ani-step scheme such that

max
0≤i≤q

‖ỹi − yi‖ = O(ε/h).(2.2)

Then, there exists a constantC0 such that (see, e.g., [18, Chap. 8])

max
q+1≤i≤N

‖ỹi − yi‖ ≤ C0



 max
0≤i≤q

‖ỹi − yi‖ +

N
∑

i=q+1

‖G̃i(ỹi)‖





≤ C0

(

max
0≤i≤q

‖ỹi − yi‖ + (N − q) ε

)

= O(ε/h).

The following theorem shows that the subspace

Vi = span{f(ti−k, ỹi−k), 1 ≤ k ≤ r}(2.3)

contains a good approximation tõyi − ãi.
THEOREM 2.1. Assume thatg(t) = f(t, y(t)) ∈ Cr([t0, T ]) and f is continuously

differentiable on[t0, T ] × R
n. LetVi be the subspace defined in (2.3). Then, there exists ãy

in ãi + Vi such that fori = q + 1, . . . , N,

‖ỹi − ỹ‖ = O(hp+1) + O(hr+1) + O(ε),

‖G̃i(ỹ)‖ = O(hp+1) + O(hr+1) + O(ε).

Proof. Sinceg is r-times continuously differentiable, from the Lagrange interpolation
formula (see, e.g., [8, Chap. 3]), there exist constantsαl, 1 ≤ l ≤ r, such that

‖g(ti) −

r
∑

l=1

αlg(ti−l)‖ = O(hr).(2.4)

From (2.4) and the fact that the scheme (1.2) is stable and of orderp andf is Lipschitz, we
have

‖f(ti, ỹi) −
r

∑

l=1

αlf(ti−l, ỹi−l)‖ = O(hp) + O(hr) + O(ε/h).(2.5)
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Now let ỹ = ãi + hβ
∑r

l=1 αlf(ti−l, ỹi−l) ∈ ãi + Vi. Then

ỹi − ỹ = ỹi − ãi − hβ

r
∑

l=1

αlf(ti−l, ỹi−l)

= G̃i(ỹi) + hβ(f(ti, ỹi) −

r
∑

l=1

αlf(ti−l, ỹi−l))

which, with (2.1) and (2.5), gives

‖ỹi − ỹ‖ = O(hp+1) + O(hr+1) + O(ε).

Now we have

‖G̃i(ỹ)‖ ≤ ‖G̃i(ỹ) − G̃i(ỹi)‖ + ‖G̃i(ỹi)‖

= ‖ỹ − ỹi + hβ(f(ti, ỹi) − f(ti, ỹ))‖ + ‖G̃i(ỹi)‖

≤ ‖ỹ − ỹi‖ + h|β|‖f(ti, ỹ) − f(ti, ỹi)‖ + ε.

Hence,

‖G̃i(ỹ)‖ = O(hr+1) + O(hp+1) + O(ε).

To reduce the cost in the Petrov-Galerkin process and in GMRES, we modify the sub-
spaceVi by keeping only the last vectors whose computations necessitate the use of GMRES
to satisfy (1.5). For example, suppose that at iterationi the Petrov-Galerkin process was
enough to find̂s(k)

i such thaty(k+1)
i = y

(k)
i + ŝ

(k)
i with ‖G̃i(y

k+1
i )‖ ≤ ε. In this case we set

s̃
(k)
i = ŝ

(k)
i , ỹi = y

(k+1)
i and use the same subspaceVi for the next iteration.

Let us denote, again, by

Vi = span{f(ti−j , ỹi−j), j = i1, i2, . . . , is}(2.6)

the subspace associated with the lasts vectorsỹi−i1 , ỹi−i2 , . . . , ỹi−is
with i1 < . . . < is,

whose computations necessitate the use of GMRES to satisfy (1.5), and by

Wi = span{f(ti−j , ỹi−j), j = 1, 2, . . . , i1 − 1},(2.7)

the set associated with the other vectors such that

‖G̃i−j(ỹi−j)‖ ≤ ε, ỹi−j ∈ ãi−j + Vi.

Such a situation is encountered in practice; see steps (TR3)and (N1.1) of Algorithm4.1.
Then we have the following theorem.

THEOREM 2.2. Assume thatg(t) = f(t, y(t)) ∈ Cr([t0, T ]) with r = s + i1 − 1 and
f continuously differentiable on[t0, T ] × R

n. LetVi be the subspace defined in (2.6). Then
there exists̃y in ãi + Vi such that fori = q + 1, . . . , N,

‖ỹi − ỹ‖ = O(hp+1) + O(hr+1) + O(ε),

‖G̃i(ỹ)‖ = O(hp+1) + O(hr+1) + O(ε).

Proof. From Theorem2.1we know that there existz1 ∈ ãi + Vi, z2 ∈ Wi, such that

‖ỹi − (z1 + z2)‖ = O(hp+1) + O(hr+1) + O(ε).(2.8)
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Let us writez2 = βh
∑i1−1

j=1 γjf(ti−j , ỹi−j) and definẽy = z1 +
∑i1−1

j=1 γj(ỹi−j − ãi−j).
Note thatỹ ∈ ãi + Vi and

ỹi − ỹ = (ỹi − (z1 + z2)) +

i1−1
∑

j=1

γj (hβf(ti−j , ỹi−j) − (ỹi−j − ãi−j)) ,

‖ỹi − ỹ‖ ≤ ‖(ỹi − (z1 + z2))‖ +

i1−1
∑

j=1

|γj |‖G̃i−j(ỹi−j)‖

= O(hp+1) + O(hr+1) + O(ε).

As in the proof of the previous theorem, we obtain

‖G̃i(ỹ)‖ = O(hp+1) + O(hr+1) + O(ε).

REMARK 2.3.
1. In the sequel we will essentially work with the subspaceVi defined in (2.6).
2. In practice,r > p; for example, the numerical tests are carried out withr = 20 and

p = 1 or 2. Thus,‖ỹi − ỹ‖ and‖G̃i(ỹ)‖ behave likeO(hp+1) + O(ε).

3. Line search and trust region algorithms. Line search and trust region algorithms
are two simple iterative methods for finding a local minimum of a function. They are based
on the notion of descent directions that move the iterates towards a local minimum. More
precisely, let

hi(u) =
1

2
‖Gi(u)‖2, u ∈ R

n.(3.1)

A vectorp ∈ R
n is a descent direction ofGi atu if

∇hi(u)T p < 0.(3.2)

This inequality guarantees that, for small positiveδ,

hi(u + δp) < hi(u).(3.3)

In fact, inequality (3.2) allows thathi decreases with a rate proportional to∇hi(u)T p.
In the next two subsections we briefly explain how these algorithms can be used to find a

good initial guess for the nonlinear system (1.2). More details on these algorithms can found,
for example, in [10].

3.1. Backtracking line search algorithm. The line search algorithm computes a se-
quence of vectorsu(k)

i such that

u
(k+1)
i = u

(k)
i + λkp

(k)
i ,(3.4)

wherep
(k)
i is a descent direction ofGi at u

(k)
i , and λk is a scalar chosen to satisfy the

Goldstein-Armijo condition:

hi(u
(k+1)
i ) ≤ hi(u

(k)
i ) + αλk∇hi(u

(k)
i )T p

(k)
i ,(3.5)

whereα ∈ (0, 1/2) is a parameter typically set to10−4.
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Under some conditions, the sequence(u
(k)
i )k≥0 converges to a local minimum ofhi or

the sequence∇hi(u
(k)
i ) converges to0. Moreover, for each descent directionp(k)

i , Theo-
rem 6.3.2 in [10] shows the existence ofλk, such that (3.5) is satisfied.

The scalarλk is computed by the backtracking method. This method starts with λk = 1

and repeatedly reducesλk until an acceptable iterateu(k+1)
i , satisfying (3.5), is found. When

λk = 1, the natural question is which descent directionp
(k)
i leads approximately to (3.5) and

u
(k+1)
i ≈ yi. These conditions translate to

0 /
1

2
‖Gi(u

(k)
i )‖2 + αGi(u

(k)
i )T G′

i(u
(k)
i )p

(k)
i .(3.6)

It turns out that the Newton direction

p
(k)
i = −(G′

i(u
(k)
i ))−1Gi(u

(k)
i )(3.7)

guarantees (3.6). However, this direction is expensive to compute. Therefore, using GMRES,
we look for an approximatioñp(k)

i to p
(k)
i that satisfies

‖G
′

i(u
(k)
i )p̃

(k)
i + Gi(u

(k)
i )‖ ≤ η

(k)
i ‖Gi(u

(k)
i )‖,(3.8)

with some tolerance thresholdη(k)
i > 0. Then we have

∇hi(u
(k)
i )T p̃

(k)
i = −‖Gi(u

(k)
i )‖2 + Gi(u

(k)
i )T

(

G
′

i(u
(k)
i )p̃

(k)
i + Gi(u

(k)
i )

)

≤ (η
(k)
i − 1)‖Gi(u

(k)
i )‖2.

In particular, ifη(k)
i ≪ 1, thenp̃

(k)
i is a good descent direction.

In conclusion, wheñp(k)
i satisfies (3.8) with 0 < η

(k)
i ≪ 1 , then p̃

(k)
i is a descent

direction that satisfies, or almost satisfies, (3.5) with λk = 1. In the latter case, the backtrack-
ing method will rapidly find a scalarλk that satisfies (3.5) and the sequenceu(k)

i converges

to yi. As we have mentioned,̃p(k)
i is obtained with GMRES. To accelerate the computation,

we start GMRES witĥp(k)
i , obtained by the Petrov-Galerkin process applied to the subspace

−u
(k)
i + ãi + Vi. With this initial solution, only a few iterations, and sometimes no iteration,

of GMRES are needed to satisfy (3.8); see Tables4.1and4.2.
One drawback of the line search algorithm is that even when the condition (3.5) is not

satisfied, the descent direction is still kept unchanged. Only the scalarλk is updated us-
ing a one-dimensional quadratic or cubic model. The trust region algorithm overcomes this
drawback, at the price of increasing the computational cost.

3.2. Trust region algorithm. The trust region algorithm generates a sequence of vec-
torsu

(k)
i , such thatu(k+1)

i = u
(k)
i + d

(k)
i , whered

(k)
i is the solution of

min
‖d‖≤δ

(k)
i

Ψ
(k)
i (d),(3.9)

and whereδ(k)
i > 0 andΨ

(k)
i is given by the quadratic model

Ψ
(k)
i (d) =

1

2
‖Gi(u

(k)
i ) + G′

i(u
(k)
i )d‖2

= hi(u
(k)
i ) + ∇hi(u

(k)
i )T d +

1

2
dT B

(k)
i d(3.10)
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with B
(k)
i = G′

i(u
(k)
i )T G′

i(u
(k)
i ).

SinceB
(k)
i is symmetric and positive definite, the solution of (3.9) is given by

d
(k)
i =











−(B
(k)
i )−1∇hi(u

(k)
i ) if ‖(B(k)

i )−1∇hi(u
(k)
i )‖ ≤ δ

(k)
i ,

−(B
(k)
i + µ

(k)
i In)−1∇hi(u

(k)
i ) if ‖(B(k)

i )−1∇hi(u
(k)
i )‖ > δ

(k)
i ,

whereµ
(k)
i ≥ 0 solves

‖(B
(k)
i + µ

(k)
i In)−1∇hi(u

(k)
i )‖ = δ

(k)
i .(3.11)

Note thatd(k)
i is a descent direction ofGi at u(k)

i and coincides with the Newton direction

(3.7) when‖(B(k)
i )−1∇hi(u

(k)
i )‖ ≤ δ

(k)
i .

To compute the scalarµ(k)
i that approximately satisfies (3.11), we will use two methods:

the locally constrained optimal hook step method, and the dogleg step method. The former
finds µ

(k)
i , such that ‖(B

(k)
i + µ

(k)
i In)−1∇hi(u

(k)
i )‖ ∼= δi

(k), and takes

u
(k+1)
i = u

(k)
i − (B

(k)
i + µ

(k)
i In)−1∇hi(u

(k)
i ). The latter uses a piecewise linear approx-

imation of the curveµ → u
(k)
i − (B

(k)
i + µIn)−1∇hi(u

(k)
i ) and takesu(k+1)

i as the point

on this approximation, such that‖u(k+1)
i − u

(k)
i ‖ = δ

(k)
i . Note that both methods, as well

as the computation ofd(k)
i , necessitate the solution of large linear systems. To reduce the

cost, we proceed as in [5] and replace the full quadratic model (3.10) by the following lower-
dimensional one,

Φ
(k)
i (c) = hi(u

(k)
i ) + ∇hi(u

(k)
i )T Vic +

1

2
cT (V T

i B
(k)
i Vi)c,(3.12)

whereVi is ann×p matrix whose columns form an orthonormal basis ofVi. SinceV T
i B

(k)
i Vi

is symmetric positive definite, the next iterateu
(k+1)
i is given byu(k)

i + Vic
(k)
i , wherec

(k)
i is

the solution of

min
‖c‖≤δ

(k)
i

Φ
(k)
i (c).(3.13)

Note thatc(k)
i is not expensive to compute and thatVic

(k)
i is a descent direction ofGi atu(k)

i .

The condition for acceptingu(k+1)
i is the one written in (3.5), namely,

hi(u
(k+1)
i ) ≤ hi(u

(k)
i ) + α∇hi(u

(k)
i )T (u

(k+1)
i − u

(k)
i ),(3.14)

whereα ∈ (0, 1
2 ). If u

(k+1)
i does not satisfy (3.14), then we reduceδ(k)

i and return to (3.13)

to computec(k)
i by the hook step or the dogleg step method. Ifu

(k+1)
i satisfies (3.14), then

one must decide whetherδ
(k+1)
i should be increased, decreased, or kept the same for the next

stepk + 1; see [10].

4. Algorithmic aspect. In this section we write, in an informal way, an algorithm that
computes the sequence(ỹi) defined in (2.1). The initial guess for each nonlinear system is
obtained with a backtracking line search (part3.1) or trust region (part3.2), and the approx-
imate solutioñyi is obtained with the inexact Newton method (part3.3). The parametersr,
ε(1)

LS
, ε(2)

LS
, ε, kmax

LS
andkmax

IN
should be fixed by the user.
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4.1. The algorithm.
ALGORITHM 4.1.
1. Assume that fork = 1, . . . , q, the approximatioñyk is either given or is computed

with ank-step scheme such thatmax1≤k≤q ‖ỹk − yk‖ = O(ε/h).
Seti = q + 1.

2. LetRi be the matrix formed by the lastk0 vectorsf(ti−k, ỹi−k), 1 ≤ k ≤ k0, where
k0 = min(q + 1, r). Orthonormalize the columns ofRi in Vi.

3. Repeat untili = N

3.0 Compute an initial solutionu(0)
i (e.g., by an explicit method applied to (1.1))

3.1 Line Search:Repeat until

‖G̃i(u
(k)
i )‖ ≤ ε(1)

LS
or

∣

∣

∣‖G̃i(u
(k+1)
i )‖ − ‖G̃i(u

(k)
i )‖

∣

∣

∣ ≤ ε(2)
LS

or k > kmax
LS

(LS1) Compute an initial solution̂p(k)
i of (3.7) by applying the Petrov-Galerkin

process to−u
(k)
i + ãi + range(Vi).

· If p̂
(k)
i satisfies(3.8), then set̃p(k)

i = p̂
(k)
i .

· Otherwise, compute an approximate solutioñp(k)
i of (3.7) by

GMRES, so that(3.8) holds, starting witĥp(k)
i .

(LS2) Compute the scalarλk by the backtracking method, so that (3.5) holds.
(LS3) Setu(k+1)

i = u
(k)
i + λk p̃

(k)
i , k := k + 1, y

(0)
i = u

(k)
i .

3.2 Trust Region:replace the steps (LS1), (LS2), and (LS3) above by
(TR1) Compute an approximationc(k)

i to (3.13) by the hook step or the dogleg
step.

(TR2) Compute u
(k+1)
i = u

(k)
i + Vic

(k)
i satisfying (3.14).

Setk := k + 1, y
(0)
i = u

(k)
i .

(TR3) If ‖G̃i(y
(0)
i )‖ ≤ ε, then set̃yi = y

(0)
i , i := i + 1 and go to 3.

3.3 Inexact Newton:Repeat until

‖G̃i(y
(k)
i )‖ ≤ ε or k > kmax

IN

(N1) Compute an approximation̂s(k)
i of the linear system (1.3) by applying the

Petrov-Galerkin process to−y
(k)
i + ãi + range(Vi).

(N1.1) If ‖G̃i(y
(k)
i + ŝ

(k)
i )‖ ≤ ε, setỹi = y

(k)
i + ŝ

(k)
i , i := i+1 and go to 3.

(N1.2) Else, ifŝ(k)
i satisfies (1.5), sety(k+1)

i = y
(k)
i + ŝ

(k)
i , k := k + 1 and

go to3.3.

(N1.3) Else, compute an approximations̃
(k)
i to (1.3) by GMRES, starting

with ŝ
(k)
i . Setŝ(k)

i = s̃
(k)
i , and go to (N1.1).

3.4 Set̃yi = y
(k)
i .

3.5 Letk0 be the number of columns ofRi. If k0 < r, then setRi+1 = [Ri, f(ti, ỹi)],
elseRi = [Si, f(ti, ỹi)], whereSi is the matrix formed by the lastr − 1
columns ofRi. Orthonormalize the columns ofRi+1 in Vi+1

3.6 i := i + 1.

In this algorithm, the subspaceVi = range(Vi) corresponds to the one of Theorem2.2.
If we want to use the subspaceVi of Theorem2.1, then step (TR3) should be replaced by:

If ‖G̃i(y
(0)
i )‖ ≤ ε, setỹi = y

(0)
i , and go to3.5,

and step (N1.1) should be replaced by

If ‖G̃i(y
(k)
i + ŝ

(k)
i )‖ ≤ ε, setỹi = y

(k)
i + ŝ

(k)
i , and go to3.5.
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Note that if step (TR3) or step (N1.1) is satisfied, thenỹi ∈ ãi + Vi. For this reason we
do not change the subspaceVi for the next iterationi + 1.

In step3.4 the orthonormalization ofRi andRi+1 uses an updating QR factorization;
see, e.g., [14, p. 594].

4.2. Numerical results. We now show the behavior of Algorithm4.1on the Robertson
chemical reaction with one-dimensional diffusion [17]:

∂u

∂t
= −0.04 u + 104vw + α

∂2u

∂x2
,

∂v

∂t
= 0.04 u − 104vw − 3 × 107v2 + α

∂2v

∂x2
,

∂w

∂t
= 3 × 107v2 + α

∂2w

∂x2
,

with 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, α = 2 × 10−2 and Neumann boundary conditions
∂u
∂x

= ∂v
∂x

= ∂w
∂x

= 0 atx = 0, 1, and initial values

u(x, 0) = 1 + sin(2π x), v(x, 0) = w(x, 0) = 0.

The second partial derivative is discretized on a uniform grid of 5×103 points and the bound-
ary conditions atx = 0 (resp.x = 1) are discretized by forward (resp. backward) differences.
We thus obtain an ODE system of the form (1.1) of sizen = 15× 103. This system is known
to be very stiff.

Recall that our aim is to show that the subspaceVi helps to find good initial solutions
y
(0)
i andŝ

(k)
i . The implicit schemes used in (1.2) are implicit Euler and Crank-Nicolson. The

numerical tests are carried out with the following parameters: q = 0, r ≡ dim(Vi) = 20,
h = 1/100. The parameterε in the inexact Newton method is given by10−5. The threshold

parametersǫ(k)
i andη

(k)
i , used in the computation of̃s(k)

i in (1.5) andp̃
(k)
i in (3.8), are fixed

at10−2. Note that the choice of a constantǫ
(k)
i implies that the convergence of the sequence

(y
(k)
i )k≥0 is linear [9]. In steps (LS1) and (N.1.3), the computations ofp̃

(k)
i and s̃

(k)
i are

carried out by GMRES(20), i.e., restarted GMRES with restart value20. We say that GMRES
fails to converge when the stopping criterion is not satisfied within a total number of iterations
(i.e., number of matrix-vector multiplies) fixed at104. The parameterskmax

IN
, kmax

LS
,

ε(1)
LS

andε(2)
LS

are given by15, 15, 10−2 and10−6, respectively. The initial solutionu(0)
i in

step 3.0 is given by explicit Euler, i.e.,u
(0)
i = ỹi−1 + hf(ti−1, ỹi−1).

We also compare the proposed approach with some ”standard predictor schemes” where
the initial solutions to (1.3) and to line search are obtained with explicit Euler, explicit Runge-
Kutta of order4, or Adams-Bashforth of orderr. Specifically, we remove steps2 and3.5

from Algorithm 4.1 and replaceu(0)
i in step 3.0,p̂(k)

i in step (LS1) and̂s(k)
i in step (N1),

respectively, by

u
(0)
i = y

(e)
i , p̂

(k)
i = −u

(k)
i + y

(e)
i andŝ

(k)
i = −y

(k)
i + y

(e)
i ,

where

y
(e)
i+1 = ỹi + hf(ti, ỹi)

for explicit Euler,

y
(e)
i+1 = ỹi +

h

6
(k1 + 2k2 + 2k3 + k4)
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for Runge-Kutta 4 withk1 = f(ti, ỹi), k2 = f(ti + h/2, ỹi + hk1/2),
k3 = f(ti + h/2, ỹi + hk2/2), k4 = f(ti+1, ỹi + hk3), and

y
(e)
i+1 = ỹi + h

r−1
∑

k=0

βk∇
kf(ti, ỹi)

for Adams-Bashforth withβk =
∫ 1

0

∏k−1
j=0 (j + s)ds/k!, ∇0f(ti, ỹi) = f(ti, ỹi) and

∇k+1f(ti, ỹi) = ∇kf(ti, ỹi) −∇kf(ti−1, ỹi−1).

Figures4.1-4.3 show the residual norm‖G̃i(y
(0)
i )‖, wherey

(0)
i is the initial solution

computed by line search or trust region algorithm.
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FIG. 4.1. Line search.
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FIG. 4.2.Trust region (dogleg step).

Tables4.1 and4.2 show some computational details when the inexact Newton method
is used along with the line search algorithm. The second column of these tables shows
‖G̃i(y

(k)
i + ŝ

(k)
i )‖, wherey

(k)
i is thek-th Newton iterate for computingyi and ŝ

(k)
i is the

initial guess ofs(k)
i , obtained fromVi and the Petrov-Galerkin process. The third column

shows the number of iterations required by GMRES to computes̃
(k)
i , starting withŝ

(k)
i , such

that (1.5) holds. For example, wheni = 1, Table4.1 shows that4329 + 5440 = 9769
iterations of GMRES have been used to satisfy the condition in step 3.3 of Algorithm4.1,
while 2320 iterations were sufficient wheni = 10. Columns 4, 5, and 6 of these tables show
analogous information for the line search (step 3.1 of Algorithm 4.1).
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FIG. 4.3. Trust region (hook step).

From these tables, we see that at iterationi = 1, the number of iterations required by
GMRES is large and that the initial solutionsŝ

(k)
i and p̂

(k)
i are not good enough. This is

because the subspaceVi contains only one vector. Asdim(Vi) increases, the relative residual

associated witĥp(k)
i decreases, especially when the Crank-Nicolson scheme is used. As a

consequence, fewer iterations, and sometimes no iteration, of GMRES, are needed to compute
p̃
(k)
i . This allows the line search algorithm to compute a good initial solutiony

(0)
i ; see also

Figure 4.1. Similar comments apply when inexact Newton is used with trust region; see
Tables4.3-4.4and Figures4.2-4.3.

Table4.5 shows the behavior of Algorithm4.1 when the explicit Euler scheme is used
as explained above. In this test GMRES did not converge. The norm ‖G̃i(y

(k)
i + ŝ

(k)
i )‖

stagnated around104. The algorithm did not perform better when explicit Runge-Kutta 4 and
Adams-Bashforth were used. With Runge-Kutta,‖G̃i(y

(k)
i + ŝ

(k)
i )‖ stagnated around1024

for i = 1, k = 0, . . . , 12, and at iteration(i, k) = (1, 13), GMRES failed to computẽs(k)
i .

With Adams-Bashforth,‖G̃i(y
(k)
i + ŝ

(k)
i )‖ stagnated around104 for i = 1, k = 0, 1 and

i = 2, k = 0, . . . , 5. At iteration(i, k) = (2, 6), GMRES failed to computẽs(k)
i .

TABLE 4.1
Algorithm4.1with line search - Implicit Euler is used in (1.2).

Inexact Newton Line search

iteration ‖G̃i(y
(k)
i

+ ŝ
(k)
i

)‖ # iter. iteration
‖G̃

′

i
(u

(k)
i

)p̂
(k)
i

+G̃i(u
(k)
i

)‖

‖G̃i(u
(k)
i

)‖
# iter.

(i,k) GMRESs̃
(k)
i

(i,k) GMRESp̃
(k)
i

(1,0) 6,2976 4329 (1,0) 1, 8881 × 10−4 0
(1,1) 6,2976 5440 (1,1) 9, 9999 × 10−1 1192
(10,0) 4, 9076 × 10−3 2320 (1,2) 1,6321 557
(20,0) 2, 6774 × 10−3 1760 (1,3) 2, 1002 × 101 2641
(30,0) 2, 1495 × 10−3 1620 (1,4) 9, 8262 × 101 3393
(40,0) 1, 9993 × 10−3 893 (10,0) 2, 0496 × 10−1 910
(40,1) 1, 9993 × 10−3 1600 (20,0) 2, 4655 × 10−1 793
(50,0) 1, 6472 × 10−3 536 (30,0) 1, 4118 × 10−1 520
(50,1) 1, 6472 × 10−3 940 (90,0) 6, 8481 × 10−2 130
(90,0) 1, 2606 × 10−3 900
(100,0) 1, 3811 × 10−3 201
(100,1) 1, 3811 × 10−3 1000

5. Conclusion. The purpose of this paper was to show one possibility for improving
convergence of the linear and nonlinear systems that arise when solving large nonlinear sys-
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TABLE 4.2
Algorithm4.1with line search - Crank-Nicolson is used in (1.2).

Inexact Newton Line search

iteration ‖G̃i(y
(k)
i + ŝ

(k)
i )‖ # iter. iteration

‖G̃
′

i
(u

(k)
i

)p̂
(k)
i

+G̃i(u
(k)
i

)‖

‖G̃i(u
(k)
i

)‖
# iter.

(i,k) GMRESs̃
(k)
i

(i,k) GMRESp̃
(k)
i

(1,0) 6,2969 2347 (1,0) 2, 5662 × 10−4 0
(1,1) 6,2969 2800 (1,1) 9, 9999 × 10−1 642
(10,0) 1, 6742 × 10−2 1540 (1,2) 1,8962 760
(20,0) 4, 9327 × 10−3 817 (1,3) 6,5812 890
(20,1) 4, 9327 × 10−3 1220 (1,4) 2, 7293 × 101 1405
(30,0) 2, 8972 × 10−3 676 (1,5) 1, 3141 × 102 1837
(30,1) 2, 8972 × 10−3 940 (10,0) 9, 6104 × 10−6 0
(50,0) 3, 2204 × 10−3 815 (10,1) 5, 2984 × 10−1 728
(50,1) 3, 2204 × 10−3 1100 (20,0) 6, 3566 × 10−7 0
(80,0) 2, 8631 × 10−3 686 (60,0) 8, 6954 × 10−8 0
(80,1) 2, 8631 × 10−3 960 (80,0) 9, 3942 × 10−8 0
(100,0) 1, 8893 × 10−3 547 (90,0) 7, 4865 × 10−8 0
(100,1) 1, 8893 × 10−3 700 (100,0) 6, 2467 × 10−8 0

TABLE 4.3
Algorithm4.1with trust region - Implicit Euler is used in (1.2).

iteration Inexact Newton& dogleg step Inexact Newton& hook step
(i,k) ‖G̃i(y

(k)
i

+ ŝ
(k)
i

)‖ # iter. GMRESs̃
(k)
i

‖G̃i(y
(k)
i

+ ŝ
(k)
i

)‖ # iter. GMRESs̃
(k)
i

(1,0) 6,2976 1192 6,2976 1192
(1,1) 6,2976 1057 6,2976 1057
(1,2) 6,2976 1318 6,2976 1317
(1,3) 6,2976 2393 6,2976 2393
(1,4) 6,2976 3157 6,2976 3157
(1,5) 6,2976 4007 6,2976 4007
(1,6) 6,2976 5292 6,2976 5292
(1,7) 6,2976 5440 6,2976 5440
(10,0) 4, 9086 × 10−3 910 4, 9072 × 10−3 1361
(10,0) 4, 9086 × 10−3 2320 4, 9072 × 10−3 2320
(20,0) 3, 3623 × 10−3 1022 2, 4509 × 10−3 762
(20,1) 3, 3623 × 10−3 2040 2, 4509 × 10−3 1640
(30,0) 2, 1081 × 10−3 1016 1, 9199 × 10−3 766
(30,1) 2, 1081 × 10−3 1960 1, 9199 × 10−3 1720
(40,0) 1, 3871 × 10−3 435 2, 6895 × 10−3 1100
(40,1) 1, 3871 × 10−3 900 2, 6895 × 10−3 2080
(50,0) 1, 8442 × 10−3 1007 1, 4765 × 10−3 640
(50,1) 1, 8442 × 10−3 2080 1, 4765 × 10−3 1600
(60,0) 2, 1950 × 10−3 481 2, 1745 × 10−3 836
(60,1) 2, 1950 × 10−3 1320 2, 1745 × 10−3 1560
(70,0) 2, 5777 × 10−3 1282 1, 9232 × 10−3 780
(70,1) 2, 5777 × 10−3 2140 1, 9232 × 10−3 1440
(80,0) 1, 7480 × 10−3 633 2, 4491 × 10−3 769
(80,1) 1, 7480 × 10−3 980 2, 4491 × 10−3 1640
(90,0) 1, 4131 × 10−3 433 1, 3438 × 10−3 502
(90,1) 1, 4131 × 10−3 1020 1, 3438 × 10−3 980
(100,0) 1, 7451 × 10−3 791 1, 7411 × 10−3 381
(100,1) 1, 7451 × 10−3 1520 1, 7411 × 10−3 1060

tems of ODEs by implicit schemes.
The nonlinear systems are solved by the Inexact Newton (IN) method and the linear

systems that arise in IN are solved by GMRES. The convergenceof both IN and GMRES can
greatly be improved if good initial solutions are available. To this end, we have developed a
strategy that allows the extraction of good initial solutions for IN and for the linear systems in
IN. The strategy uses, at iterationi of the implicit scheme, a subspaceVi of small dimension
that contains information on the lastr iterates, the line search LS or trust region TR algorithm,
and the Petrov-Galerkin process.
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TABLE 4.4
Algorithm4.1with trust region - Crank-Nicolson is used in (1.2).

iteration Inexact Newton& dogleg step Inexact Newton& hook step
(i,k) ‖G̃i(y

(k)
i

+ ŝ
(k)
i

)‖ # iter. GMRESs̃
(k)
i

‖G̃i(y
(k)
i

+ ŝ
(k)
i

)‖ # iter. GMRESs̃
(k)
i

(1,0) 6,2969 642 6,2969 642
(1,1) 6,2969 760 6,2969 760
(1,2) 6,2969 890 6,2969 890
(1,3) 6,2969 1405 6,2969 1405
(1,4) 6,2969 1837 6,2969 1837
(1,5) 6,2969 2347 6,2969 2347
(1,6) 6,2969 2800 6,2969 2800
(10,0) 1, 6748 × 10−2 877 1, 6748 × 10−2 877
(10,1) 1, 6748 × 10−2 1540 1, 6748 × 10−2 1540
(20,0) 4, 8107 × 10−3 839 4, 8091 × 10−3 839
(20,1) 4, 8107 × 10−3 1220 4, 8091 × 10−3 1220
(30,0) 3, 3681 × 10−3 707 3, 3973 × 10−3 701
(30,1) 3, 3681 × 10−3 1020 3, 3973 × 10−3 1020
(40,0) 2, 9851 × 10−3 807 2, 6970 × 10−3 825
(40,1) 2, 9851 × 10−3 1100 2, 6970 × 10−3 1080
(50,0) 2, 7778 × 10−3 846 3, 3073 × 10−3 832
(50,1) 2, 7778 × 10−3 1100 3, 3073 × 10−3 1120
(60,0) 3, 0731 × 10−3 829 2, 3479 × 10−3 846
(60,1) 3, 0731 × 10−3 1060 2, 3479 × 10−3 1040
(70,0) 2, 4460 × 10−3 634 2, 3183 × 10−3 613
(70,1) 2, 4460 × 10−3 820 2, 3183 × 10−3 760
(80,0) 3, 1872 × 10−3 552 2, 6765 × 10−3 482
(80,1) 3, 1872 × 10−3 760 2, 6765 × 10−3 660
(90,0) 2, 7831 × 10−3 667 1, 8703 × 10−3 471
(90,1) 2, 7831 × 10−3 940 1, 8703 × 10−3 600
(100,0) 2, 6554 × 10−3 559 2, 2800 × 10−3 262
(100,1) 2, 6554 × 10−3 780 2, 2800 × 10−3 720

TABLE 4.5
Explicit Euler with line search - Crank-Nicolson is used in (1.2).

Inexact Newton Line search

(i,k) ‖G̃i(y
(k)
i

+ ŝ
(k)
i

)‖ # iter. (i,k)
‖G̃

′

i
(u

(k)
i

)p̂
(k)
i

+G̃i(u
(k)
i

)‖

‖G̃i(u
(k)
i

)‖
# iter.

GMRESs̃
(k)
i

GMRESp̃
(k)
i

(1,0) 3, 1434 × 104 1956 (1,0) 1 10
(1,1) 3, 1434 × 104 2140 (1,1) 1, 0511 × 102 80

(1,2) 1, 0465 × 104 524
(1,2) 1, 0465 × 104 1076
(1,4) 1, 2660 × 106 1425
(2,0) 1 10
(2,1) 1, 0621 × 102 424
(2,2) 7, 2056 × 103 13508
(2,3) 3, 5319 × 104 *

∗ The number of matrix-vector multiplies in GMRES largely exceeds104.

The efficiency of LS depends mainly on the quality of the descent directions. The Newton
direction (3.7) is known to be a good descent direction but necessitates thesolution of linear
systems. The fact that the proposed strategy allows the construction of a good initial solution
p̂
(k)
i to (3.7), facilitates the task of GMRES. The resulting method is cheap and efficient. The

TR algorithm uses a large quadratic model, which, after projection ontoVi, leads to several
small linear systems. This algorithm is also efficient but can be more expensive than LS if the
latter uses a good descent direction.

Numerical tests with the approach, where the initial solutions (to (1.3) and to LS) are
obtained with explicit methods, have been carried out. Thisapproach lead to a stagnation of
GMRES at early iterations of the implicit scheme.
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