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IMPROVED PREDICTOR SCHEMES FOR LARGE SYSTEMS OF LINEAR ODE s*

MOUHAMAD AL SAYED ALI T AND MILOUD SADKANE ¥

Abstract. When solving linear systems of ordinary differential equagi¢ODESs) with constant coefficients by
implicit schemes such as implicit Euler, Crank-Nicolson, orlioipRunge-Kutta, one is faced with the difficulty
of correctly solving the repeated linear systems that aristae implicit scheme. These systems often have the
same matrix but different right-hand sides. When the size ofrtatix is large, iterative methods based on Krylov
subspaces can be used. However, the effectiveness of thésedsistrongly depends on the initial guesses. The
closer the initial guesses are to the exact solutions, thierfahe convergence. This paper presents an approach
that computes good initial guesses to these linear systenean Ibe viewed as an improved predictor method. It
is based on a Petrov-Galerkin process and multistep schedeasists of building, throughout the iterations, an
approximation subspace using the previous computationgevgu®d initial guesses to the next linear systems can
be found. Itis shown that the quality of the computed initiaégs depends only on the stepsize of the discretization
and the dimension of the approximation subspace. The apprzacbe applied to most of the common implicit
schemes. It is tested on several examples.
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1. Introduction. Consider the linear system of ODEs

g(t) = Ay(t) + f(t), Vit € [to, T],

(0)

1.1
- y(to) =y,

which results, for example, from the method of lines applcea linear time-dependent partial
differential equation]5]. We assume that is a real, large: x n matrix andf : [to, 7] — R”
is a sufficiently smooth function.

The system1.1) is subsequently discretized in time. Using an implicitestle over a
uniform mesh¢; = to +ih,i =0,..., N,with h = % and denoting by; an approxima-
tion of y(¢;), the system.1) becomes

yi-‘rl:yi_'_hzia ZZQ7q+175N_1a

(1.2)
Yo = y(O)a

wherez; is the solution of the linear system

with C' = I,, — B_1hA andb; is given by

q
(1.4) bi = B_1Ay; +v-1f(tiv1) + > (BeAyik + S (tiok))
k=0

wheref;, and~y;, are given constants. The vectafs. . ., y, are either given or computed by
another scheme.
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Most standard implicit methods can be formulated BQ)(1.4) and satisfy these as-
sumptions. For example, the implicit Euler method corresisoto5_; =~v_; =1 and
Br = v = 0, k > 0. The Crank-Nicolson method corresponds to the choice dcrpar
etersf_1 = By =v-1 =y = 1/2andf; = v = 0, k > 1. The Adams-Moulton method
corresponds t@, = ., kK > —1. For more details on the properties of these methods see
[12, 13, 14].

These methods have good stability properties, but the mfficutty and computational
bottleneck is the numerical solution of the systen8), which must be solved at each step-
size. Sincen is large, it is common to use iterative solvers based on Krgldospaces?p).
However, unless a very good preconditioner is availabke effectiveness of these methods
strongly depends on the initial guesses. The closer thialigiiess is to the exact solution,
the faster the convergence. Classically, to calculateitinliguess, we use a predictor that is
an explicit scheme applied to the ODE. In this paper, we mepo go beyond this approach
and employ a projection method of Petrov-Galerkin type toaet a better initial guess to
(1.3) from the preceding solutions_1, z;_», ... . In other words, we find; in the subspace

(1.5) Vi, = Span{z;_1,2i—2,..., Zi—r}, T KN

We will also consider another subspace which stems naguiralin the fact that a general
class of explicit schemes applied th J), such as Adams-Bashforth, is of the form

r—1
Yit1 =yi+h Z Bike,r(AYi—k + f(ti-k))s
k=0
where the coefficients,; ;. , = + [tt_i“ Hg:é #k%dt, k=0,...,r — 1, are chosen
L Jt, =V, bi—k —li—j

so thaty; is an approximation of(¢;). This suggests th@; may be found in

(1.6) V; =Span{Ay; + f(t;), Ayi—1 + f(ti=1), -, AYi—ri1 + [(tizri1)}, 7 << 0.

We will show that these subspaces contain a good initialgguespractice however, we can
only hope for an approximation of, andy; and hence only for an approximation uf.
We show that a good initial guess can still be found in the exipration subspaces. A
preconditioned Krylov subspace method, started with thitgal guess, is then used to solve
(1.3). In general, only a few iterations are needed to obtain anrate solution.

There are of course several alternatives to solving){ a natural one is to factoriz€
once by a sparse direct method and use the same factorifatieach iteration. However,
for largen, such a factorization may not be feasible. Moreover, thig@gch does not ex-
ploit the fact that good initial guesses are available (beentumerical tests in Sectiof)
and clearly should not be used in case of a non-uniform megte rethod proposed in
[5] and the block approaches proposed, for example2@n 2, 24] necessitate the simul-
taneous availability of all right-hand sides, which is no¢ tase in the present work. The
idea of using a subspace spanned by the previously compoligtibss to generate a good
initial guess for the next linear system is not new but hasihesed, for example, inlp).

In [17], the subspace of previously computed solutions augmeniddRitz vectors or an
approximate invariant subspace corresponding to the sst@igenvalues for the solution of
the first right-hand side is used to compute initial guessethe remaining right-hand sides.
In [9], the Krylov subspace generated from the first linear systéimthe conjugate gradient
method (CG) is recycled to accelerate the convergence afubsequent systems. 183,
the approximate eigenvectors corresponding to eigensallsese to zero computed by CG
for solving the first linear systems are used in a deflatiorgalare to solve the subsequent
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systems. Analogous strategies are developed, for examp]é, 8, 6, 19, 21] for multiple
and single right-hand sides with the main idea that retgisiglected approximate invariant
subspaces or Ritz/harmonic vectors during restarts helpBrinate those eigenvalues that
slow down the convergence of the corresponding linear syste

The acceleration of implicit schemes for solving linear GDE treated, for example,
in [3, 16, 18]. In [3, 1€], the boundary value method is used to approximate theisalut
of (1.1). This method leads to a very large system of a “Toeplitz plgsnall perturbation”
structure, solved by GMRES with a circulant-block precdinder. Here the effort is put on
the preconditioner rather than on the initial guess.1Bj,[an algorithm based on the implicit
Runge-Kutta scheme is used to compute an accurate apptoxinod y by reducing the
number of linear systems in this scheme. The algorithm isligfficient for computingyy
but is not so for all they,.

The approach taken in the present paper is close to the od€)im[the sense that the
initial guess in [L0] is formed by a linear combination of previous approximad&igons.
However, the approximation subspace is not the same (seemgarisons in Sectiof). We
use the Petrov-Galerkin method to extract the best initiakgz; from (a modification of);
and we prove thatb, — Cz;|| = O(h") wherer is the number of vectors in the subspage
and|| || denotes the 2-norm. An extension of this work to nonlineaE®Pan be found ir].

This paper is organized as follows. In Sectiynve briefly review the projection method
of Petrov-Galerkin type and describe the proposed appré@mcbomputing a good initial
guess to the linear systerh.§). The estimates thus obtained show that the accuracy of the
initial guessz; depends on the stepsizeand on the number of vectoran the subspac¥®;,
but not on the order of the implicit scheme used. The apjdinaif an implicit Runge-Kutta
scheme deserves a special treatment and is considerediorScl he algorithmic aspect of
the proposed approach and comparisons with standard fmedahemes are discussed and
illustrated numerically in Sectiod. Comparisons with the approach ih0] and when the
systems in 1.3) are solved exactly are also presented in SectioA conclusion is given in
Sectionb.

2. Acceleration of implicit schemes.The subspaced (5) and (L.6) require the exact
calculation ofz;_, andy;_, which we want to avoid since the sizeof C' is supposed to
be large. In what follows, we will use an approximatign ;. of y;_x, which leads to the
following analogue of1.2)

j’]ilzgi—"_h’gh foriZQaQ+1a"'7N_17
2.1) C
Yo=Y,

wherez; is an approximation te; such that

(2.2) bi —Czl| <e

with some tolerance thresholdand whereb, is obtained by replacing; in (1.4) by the
corresponding valueg;. We assume that the sequerigg) is bounded.
The subspaced (5) and (L.6) will therefore be replaced by

(23) V;, = Span{éifl,éifg, - ,Zifr}, r<n
and

(24) V; = Span{Ag]i + f(ti), Agi,1 + f(ti,1)7 . ,A’gi,rJrl + f(tifrjtl)}; r << n.
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We will use these subspaces along with the Petrov-Galenkioggs to extract a good
initial guessz;, which can be viewed as an improved predictor for the scheéhig. (This
initial solution will, in turn, be used as an initial guess &Krylov solver for computing;.

As we will see, the use of; results in considerable savings both in the total number of
iterations and CPU time, especially when the Krylov solgsexdmbined with preconditioning.

The Petrov-Galerkin process applied 103) allows us to finc; such that

eV, and b —C% L OV,
An important reason for choosing this process is thaatisfies the minimization property
(2.5) b — C%

= min
z€V;

In other words, the Petrov-Galerkin approximatigns the best least squares solution in the
subspace’;. Here and throughout this paggt| denotes the 2-norm for vectors, matrices and
functions. To computé;, let V; be ann x m matrix, withm < r, whose columns form a
basis of);. Thenz; is given byV;z; wherez; is the solution of the low order linear system

(CV)TeVi) z; = (CVi)" b

An algorithm for computing/;, 2; and hence; andgy; is given in Sectiont.

2.1. Use of the subspac¥®; in (2.3). We begin with the subspad¢ defined in .3).
In the next theorems, we show that this subspace and somdicatidns of it contain a good
initial guessz;. But first we need the following lemmas. The first one simplyules from
Lagrange’s interpolation formula; see, e.@], [

LEMMA 2.1.We have

(2.6) Hf(tz) - Z g f(ti-k) h"
k=1

< sl
*ten[ff(ﬂ’f (t)

with g = (—1)F ! ey,

LEMMA 2.2.The sequencgy; ), i > ¢, satisfies

s
Ui — E g rYik
k=1

Proof. We prove 2.7) by induction onr. Note that 2.2) can be written as

where X; = S0 BrAGi—, + S0_ v f(ti_i). Hence, R.7) is satisfied withr = 1.
Assume that it holds for — 1. Usingl + a1 =7 = Q1 5y Qkpe1 — Qh—1,7—1 = Ok s
andoy,—1,-1 = (—1)" = —a,., we have

2.7) — O(h") + O(he).

Ui — Jio1 — h(Xi_1 + B_1AG) || < he,

T r—1
gi - Zak,rgifk = ’gl — :lji71 — Z ak,’l“fl(gifk — gifk‘fl)
(2.8) b=t k=1

r—1

r—1
=h(Xio1 =Y ke 1 Xio1k) +hB A = Y ko afiik) + O(he).
k=1 k=1
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Finally, the induction hypothesis and.¢) yield

r—1 q r—1
Xia=> apraXian=)» BA <Z7i11 - Zak,r1§i1zk>
k=1 1=0 k=1
q r—1
+ Z ol (f(ti—l—l) - Z ak,r—lf(ti—l—l—k)>
k=1

l=—1
=0 )+ 0(he). O

THEOREM 2.3. LetV; = Span{z;_x,1 < k < r} be the subspace obtained by the
schemeZ.1). Then there exists ain V; such thatfori =¢,..., N — 1

12 — 2|l = O(h") 4+ O(e).

Proof. The vectorz = >, _, ax,Zi—i is in}V; and satisfies

. L[ % . .
A=y <y¢+1 —Yi— Zak,r(ywpk - yzk)> .
k=1
Then, by ¢.8), we have

Zi—z2=(X; - Zoék,erek) + 81 AJig1 — Zak,rgwkk) + O(e),
k=1 k=1

which, as in the proof of Lemm2.2, gives
1Zi — 2l = O(h") + O(e). O

REMARK 2.4. From(2.5) and Theoren?2.3it follows that the Petrov-Galerkin approxi-
mationz; satisfies

b, — O3l < b, — C%

+1CGE = 2)|

and hence

All the estimates in this paper are actually stated in a waylai to Theoren?.3; only the
subspac®’; and its dimensiom in O(h") will change.

In practice, it may happen that the Petrov-Galerkin appnation Z; directly satisfies
(2.2). In such a case, we take = Z; and use the same subspagefor the next iteration.
This reduces the computational cost in the proposed appruztleads us to redefine

(29) Vi = Span{é’if(k+m)7 1<k < T},

wherem is the number of the last consecutive vectors whose compntdd not necessitate
the use of an iterative method to satistyd). Such a subspace contains a good initial gigss
as it its shown by the following theorem.

THEOREM2.5. LetV; be the subspace defined ihg). Then there exists ain V; such
thatfori =¢q,...,N — 1

1 — 2] = O(A™™™) + O(e).

Proof. Sincez;_; = z;_; € V; for 1 <[ < m, the space; is the subspace spanned by
Zi—1, 1 <k <r+m, and the result follows from Theoref3. 0
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2.2. Use of the subspack; in (2.4). Throughout this subsection we assufhg = v_;
and write the schemé.(2) in the equivalent form

yi+1:ai+hzi7 fori:q7q+17"'7N_1a

(2.10)
Yo = y(0)7
where
q
(2.11) ai=yi +h Y (BrAyi—k + v f(tir))
k=0
and

zi = B-1(AYit1 + f(tit1))
is the solution of the linear system
Czi = b
withC =1, — f_1hA and

(2.12) bi = B-1(Aa; + f(tiy1))

Such a scheme is sufficiently general to include, for exantpiimplicit Euler, the Crank-
Nicolson and the Adams-Moulton methods. However, the iaifpRunge-Kutta method is
not of this form, and for this reason we treat it separatelgéation3.

The approximation scheme corresponding2d () is given by

gi+1:ai+h2i7 fori:q,q+1,...,N—1,

(0)

(2.13) i
Yo=Y,

wherez; satisfies

(2.14) b — Ozl <e

anda; andb; are obtained from211) and @.12) by replacingy; with ¢;. Then we have the
following result.

THEOREM 2.6. LetV; = Span{Ag;11-r + f(tit1-%),1 < k < r} be the subspace
obtained by the schem@.(3. Then there exists ain V; such thatfori =¢,..., N — 1

1Zi — 2] = O(h") + O(e).
Proof. The vectorz = 81 Y _; k. (AGiy1—k + f(tix1-x)) isinV; and satisfies
2 — 2l = [1(Zi = B-1(AGiz1 + [(tiv1))) + (B-1(AYit1 + f(tiv1)) — 2)| -
From 2.14) we have
(2.15) [12i = B-1(AGit1 + f(ti1))|| < €
and from Lemma.1 we obtain as in the proof of Theore3

18-1(AFi1 + f(tiva)) — 2l = O(R") + O(he). O
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A situation analogous to the one mentioned in TheoPeirmay occur with the scheme
(2.13, namely that the Petrov-Galerkin approximatiénsatisfies 2.14). Then we take
z; = z; and use the same subspagdor the next iteration. Such a favorable situation leads
to a decrease in the computational cost, provided we redgfias the subspace spanned only
by the last vectors that necessitate the use of an iterattbaod to satisfy.14):

(2.16) Vi = Span{ AJis1—(kym) + ftic1—(ham)), 1 <k <71}

and Ag;—; + f(ti—), 0 < I < m — 1 are the last vectors whose computations do not
necessitate the use of an iterative method because; = %,_;,_1 € V;, 0 <1 < m — 1.
Then we have the following theorem.

THEOREM2.7. LetV; be the subspace defined ih16). Then there exists ain V; such
thatfori=¢q,...,N —1

12 — 2]l = O(h™™™) + O(e).

Proof. Let R; be the subspace spanneddy; 1 + f(tiz1-k), 1 <k < r+m.From
Theorem2.6, we can findw € R; such that

(2.17) 12 — w|| = O(h™™) + O(e).

Let us decompose asw; + we, Wherew, € V; andwsy = Z}’;gl ar(Agi— + f(t;—;)) with
some scalarg;. Then the vector = w; + ﬁ z}igl a1Z;_1—1isinY; and satisfies

m—1
(Zi - w) - (511 ; Oéléi—l—l — w2> H .

Using 2.17) and Q.15 we obtain

12 — 2l =

2 — 2|l = O(h"T™) + O(e). a

3. Use of implicit Runge-Kutta scheme.Recall that ars-stage implicit Runge-Kutta
(IRK) scheme applied to the system) is given by (see, e.g.1B])

Yi+1 :yl+h(d®A)Zl+h(d®In)Fla fori:(),l,...,N—l,
Yo :y(0)7

wherez; is the solution of then x sn system

(3.1) Czi = b;

with

C=Iyn—hA®A4), bi=1:0y)+h (A ®I,)F, Ap = (aij)1<i j<ss
d=(di,...,dy), Fi=(fti+aah),. .. f(ts + ch)T) T

The Runge-Kutta coefficients are given by the vecttrsc = (ci,...,cs)? and the ma-

trix Ao. The symbol denotes the Kronecker product ahd= (1,...,1)" € Re.
Since @.1) is of large size, we compute an approximatiQmf z; such that

(3.2)
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whereb; = (1: ® ;) + h (Ap ® I,,) F; and the sequendg;) is given by

gi-‘rl = gl + h’(d ® A)gl + h(d ® I’rL)FL'a fori = 07 1,... 7N -1

(3.3) o

Yo=Yy
and is assumed to be bounded.

Our aim is to show that the subspace spanneé;by, 1 < k < r, contains a vectot
such that

1Zi — 2] = O(h") + O(e).

We begin with the following lemma, which is the analogue ofrirea2.2.
LEMMA 3.1.The sequencgy;) defined in 8.3) satisfies

(3.4) = O(R") + O(he).

Ui — Z(Jék,rﬂi—k

k=1

Proof. We prove 8.4) by induction onr. From (3.3) we see that3.4) holds withr = 1.
Assume it holds with- — 1. Then, from 8.2), we have

Zi =187 + h(Ao ® In)F; + h(Ao ® A)Z; + Oe),

and by inserting this expression int&.§) we obtain
Jiv1 — Ui = WMd @ I,)F; + h(dl, @ Ag;) + h*(dAg @ A)F; + h3(dAg @ A?)Z; + O(he).
Applying the same process #, we easily obtain

r—1
Yit1 — Ui = Z W ((dAS™' @ AM N F + (dAG'1, @ AFy))
k=1
+hT(dA @ AT E + BT (dALTT @ AT)Z + O(he)

and

r—1
Jivr =G = Y a1 (Ji1-1 — Git)
=1

r—1 r—1
= Z h* ((dAﬁ_1 ® AR (F; - Zal,r—lFi—l)>
k=1 =1
r—1 r—1
+ Z hF (dAg_lls ® Ak(:t]i - Z az,r—lﬂi—z))
k=1 =1

+O(R") + O(he).
From this, the induction hypothesis, and Lem&awe obtain

r—1

Tig1 — Ui — Z a1 (Yig1-1 — i—1)
=1

= O(h") + O(he),

which is exactly 8.4). 0
THEOREM 3.2. LetV; = Span{z;_x,1 < k < r} be the subspace obtained by the
vectors satisfying3.2—(3.3). Then there exists ain V; such thatfori =0,..., N — 1

12i = 2| = O(h") + O(e).
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Proof. From 3.2) we have

= b; + h(Ag @ A)b; + h2(A2 @ Az + O(e)

and more generally

r—1
Zi= Y hF(Af @ AF)b; + O(h") + O(e).

k=0

The vectorz = >~ _, au.Z;—i; belongs toV; and satisfies the requirement of the theorem
since

r—1 r
Zi—z=) hFAf @ A¥) (b -3 alvrz}“> + O(h") + O(e),

k=0 =1

and from Lemmag.1and3.1we have

b; — Zal,rl;ifl =1, ® (ﬂz - Zm,ﬂ%z) + h(Ay® I,,) (FZ - Zal,rFil>
=1

=1 =1
= O(h") + O(he). T

As in Theorem.5and?2.7, we can reduce the amount of computations in the Petrov-
Galerkin process with the subspace defined in Thed@ehin the case when some Petrov-
Galerkin approximations satisf3 ). Let

(3.5) Vi = Span{Z;_(p4ym), 1 <k <7},

wherez; _;, 1 <1 < m, are the last vectors whose computations do not require theflian
iterative method becauge ; = 2, _; € V;, 1 <1 < m. Then we have the following theorem
whose proof is similar to the one of Theorén®.

THEOREM 3.3. LetV; be the subspace defined B %). Then there exists ain V; such
thatfori =0,...,N —1

1 — 2] = O(A™"™) + O(e).

In the numerical experiments, we will consider tBestage IRK scheme of order
(IRK®), defined by

5 2 V15 5 /15 5 1 _ V15
36 9 5 36 30 18 2 10
5 V15 2 5 V15 T _ | 4 _ 1
Ay = %-5-7 5 %~ 51 ,dt = 3 ,and c= 3
5 7\/ 2 4 V15 5 5 1 V15
36 T st 1 36 18 5+ 15

4. Computational considerations. We begin with an algorithm written in a formal way
that summarizes the computational aspect of the sequénagefined in 2.1), (2.13 or (3.93).
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Algorithm AIS. [Accelerated Implicit Scheme]
1. Assume that fokk = 1,...,q, g is either given or computed with ak—step
scheme.
Seti = gq.
2. Let R; be the matrix formed by the lagf vectorsz;, ,, 1 < k < ko, where
ko = min(g,r). Orthonormalize the columns d@i; into V;. ComputeL; = C'V;,
3. Repeatuntii =N —1
(a) Compute the initial guesis = V;C; ' LTb;.
(b) If ||b; — Cz| < ellbi]l, then setjir1 = §; + hé;, Riv1 = Ry, Vigr = Vi,
Cit1 =04, Liy1 = L;, computeb; 1, seti = i + 1 and go to(a).
(c) Otherwise, compute an approximatignto C~'b; with ||b; — CZ;|| < el|b;|
by an iterative method starting with.
(d) Setg; 11 = i + hz; and computé; ;.
(e) LetR;1; be the matrix formed by the lastvectorsz; _,, 0 < k < r — 1.
Orthonormalize the columns @, into V4.
(ﬂ ComputeLH_l = O‘/i-‘rl andCH_l = L;-I;LILIL'_;'_L
(9) i=1+1.

We have used the schem2.1) in steps 3(b) and 3(d). It is very easy to modify the
algorithm if the scheme2(13 is used instead. Also, in this algorithm, the subspgge
corresponds to the one of Theoréhb. If the subspace’; of Theorem2.3 is used, then
step 3(b) should be replaced by
bi — C% bi

3(b1) If <e

, setz; = %;, and go to3(d).

If the subspac®; of Theoren2.7 (or Theoren?.6) is used, then in step 3(e) the vectérsy,
should be replaced byg; 1« + f(t;+1-x) (@and step 3(b) should be replaced &, )).
Finally, if the subspac®; of Theorem3.3 (or Theorens.2) is used, then step 3(d) should be
replaced by

3(di)  Gir1 =G +h(d® A)Z + h(d® 1,)F;, and computeb;

(and in step 3(b)y;+1 is given byg; 11 = ¢; + h(d ® A)Z; + h(d ® I,,)F;).

In steps 2 and 3(e), the orthonormalizationffand R;,; uses an updated QR factor-
ization (see, e.g. 1f1, p. 594]), and in step 3(f), the matricés, ; andC; . are updated from
L;, C; and the QR factorization a®; ;.

The cost of each iteratiohis essentially dominated by the cost of steps 3(c), 3(e), and
3(f). For example, if GMRES is used in step 3(c) and if we derimtk;,,.s the number of
GMRES iterations needed in this step andhythe number of nonzero elementsah then
each iteration requiresO (kgmresn> + (k2 + 7r)n) operations.

gmres

4.1. Numerical tests. All the numerical tests are run on an Intel processor c61@0 wi
2.66 Ghz. We use = 20, a constant time stefp= ﬁ, ande = 1078,

We refer to AIS1 for the variant of the algorithm which uses gubspac®’; of The-
orem2.5 or Theorem3.3 for IRK, and to AIS2 for the one which uses the subspacef
Theorem2.7. We compare these variants with other approaches, whetliaittz guess to
(1.3) is obtained with some classical predictors such as exjtigier, Adams-Bashforth of
orderr, the second-order and fourth-order Runge-Kutta methaouktree approacHhld] men-

tioned in Sectiorl. More precisely, for these approaches, we replace steplgaithm AIS
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FIG. 4.1.Testl. Use of implicit Euler. Left: initial residual norms. Rightumber of GMRES iterations.
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FiG. 4.2.Testl. Use of implicit Euler. CPU time in seconds.

TABLE 4.1
Testl. Use of implicit Euler. Total CPU time in minutes and totahmuer of GMRES iterations.

Time (min.) | GMRES iter.
AlS1 131.9 4409
AIS2 55.9 4507
Euler 161.1 6520
AB20 227.5 8700
RK4 172.1 15744

by: "Computeb,” and remove steps 3(e) and 3(f) and replace step 3(a) by
2 = i —9)/h,
where
U = i + h(AT: + £(t:)

for explicit Euler,

r—1
Y =7+ WY B (Afick + f(tiok))
k=0

for Adams-Bashforth of order,

e N h
%(4_)1 =y + §(k1 + k2)
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FIG. 4.3. Testl. Use of Crank-Nicolson. Left: initial residual norms. Righumber of GMRES iterations.
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FIG. 4.4.Testl. Use of Crank-Nicolson. CPU time in seconds.

TABLE 4.2
Testl. Use of Crank-Nicolson. Total CPU time in minutes and totahber of GMRES iterations.

Time (min.) | GMRES iter.

AlIS1 34.5 2476
AlIS2 116.6 3254
FISCHER 127.4 8521
Euler 218.8 8498
RK2 308.7 11900
AB2 251.3 8697
RK4 483.0 18900
AB20 205.2 12354

for Runge-Kutta 2, with

ki = Ag; + f(t;), ko= A(gs + hk1) + f(tiv1),

. )
wh =i + gl T2l + 2l + 1)

for Runge-Kutta 4, with

I = Agi + f(t:), lo = A(gs + hiy/2) + f(t: + h/2),
I3 = A(gi + hla/2) + f(t; + h/2), ly = A(Gs +13) + f(tit1),
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FIG. 4.6.Testl. Use of implicit Runge-Kutta. CPU time in seconds.

TABLE 4.3
Testl. Use of implicit Runge-Kutta. Total CPU time in minutes ami@tnumber of GMRES iterations.

Time (min.) | GMRES iter.

AlS1 331.4 4995
Euler 1238.7 18899
AB20 2434.8 27722
RK4 2629.2 40492

and finallyygfr)1 is the approximate solution computed Y] Method 1].
These approaches will be referred to as Euler, ABr, RK2, Rit#l FISCHER, respec-
tively.

4.2. Test 1. We consider equationL(l) where A and f are obtained by a spatial dis-
cretization of the two-dimensional heat equatiym — Au = 0in (—=1,1)%,0 < t < 1,
using the finite volume method with Dirichlet boundary cdiwhis u(z,y,t) = ¢ (¢t + 1),

0 <t < 1. Thek-th component of)*) is given by (y(*)), = sin (2rk/(n + 1)). The
matrix A is of ordern = 517396, with || A|| &~ 2.66 x 107 and|| f||_ ~ 1.07 x 10°.

In step 3(c) of algorithm AIS, we use the restarted precaomid GMRES. The restarted
value is20 and the preconditioner is obtained from an incomplete LUok@zation with a
drop tolerance fixed at0—3.

Figures4.1 and4.2 show the results when the test problem is solved using thédinp
Euler scheme. Figuré.1 (left) shows the relative preconditioned residual nornrespond-
ing to the initial guess computed by some of the approachi@sedeabove. The horizontal
axis shows the number of iterationst which the residuals are evaluated. For eadfig-
ure4.1 (right) shows the number of iterations required by GMREScfamputingz; starting
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FIG. 4.7. Test2. Use of implicit Euler. Left: initial residual norms. Rightumber of GMRES iterations.
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FIG. 4.8. Test2. Use of implicit Euler. CPU time in seconds.

TABLE 4.4
Test2. Use of implicit Euler. Total CPU time in minutes and totahmoer of GMRES iterations.

Time (min.) | GMRES iter.

AIS1 1337.5 84903
AIS2 809.4 45735
Euler 3948.2 250034
AB20 4492.1 268032
RK4 4655.5 256536

with 2, for AIS1 and AIS2 and with:\) for Euler, AB20 and RK4. Figurd.2 shows the
running time required for each approach. Tableshows the total CPU time and total num-
ber of GMRES iterations for the five approaches. The figurestiae table clearly show that
AIS1 and AIS2 always provide the best results. Note thatattginning AIS1 and AIS2
require more iterations and time since the correspondipgosgmation subspaceg do not
contain enough vectors.

The results given by the Euler, AB20, and RK4 approaches aireatisfactory, which
is due to the fact that the initial gues{,%e) itself is not satisfactory. One reason is that the
expressions forzge) contain, for Euler and ABr, a small and large linear comhorabf
Ag;_x + f(ti—r) and for RK4 a linear combination gf(¢,_,) and powers ofd timesy; .
The large values of A|| and|| f|| necessarily introduce errors hﬁe), leading to a significant
increase in the number of GMRES iterations and CPU time. dgwls results are reported
in Figures4.3and4.4 and Table4.2when the Crank-Nicolson scheme is used instead of the
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FIG. 4.9.Test2. Use of Crank-Nicolson. Left: initial residual norms. Righumber of GMRES iterations.

10"

AIS1
AIS 2

sl |- FISCHER
10 EULER
----- AB2
o N\ — RK2 X
2 1R S SBB I

= RK4 | v T

0 20 40 60 80 100
Iteration of Crank-Nicolson scheme

FIG. 4.10.Test2. Use of Crank-Nicolson. CPU time in seconds.

TABLE 4.5
Test2. Use of Crank-Nicolson. Total CPU time in minutes and totahber of GMRES iterations.

Time (min.) | GMRES iter.

AlS1 74 276
AIS2 41.7 1567
FISCHER 201.6 5909
Euler 343.2 5914
RK2 92.9 5974
AB2 106.1 5907
RK4 204.4 7733
AB20 235.1 5898

implicit Euler together with other predictors and in Figeire5 and4.6 and Table4.3when
the implicit Runge Kutta (IRK6) is used.

4.3. Test 2. We consider the advection diffusion system

du — g Au+a.Vu=0 inQ=(-1,1) x (0,1),
u=(1—tanh(Pe)t(t+1) onTy,
u =1+ tanh ((2z + 1)Pe t(t + 1) onT,,
% =0 on Fouta
. L 2y(1 — 2?) . .
where the convective term is given byz,y) = —2w(1— y?) and the boundary is split

into 9 =T, Ul UT with T, := [—1,0] x {0}, Tpur := [0,1] x {0} andTy is the
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FIG. 4.12.Test2. Use of implicit Runge-Kutta. CPU time in seconds.

TABLE 4.6
Test2. Use of implicit Runge-Kutta. Total CPU time in minutes aoi@tnumber of GMRES iterations.

Time (min.) | GMRES iter.

AIS1 494.2 3326
Euler 1493.0 11599
RK4 2416.6 20045
AB20 770.4 9697

remaining part. A description of this system is giveninZ5|

The Reclet number Pe is fixed af. We discretize the system in space with the finite
volume method and obtain a problem of the formlj of sizen = 775790. The norms of
the matrix4 and functionf in (1.1) are estimated as&59 x 10® and1.78 x 107. The initial
solution of the differential equation is the same as in Test 1

In step 3(c) of algorithm AIS, we use the preconditionedaretl GMRES with the same
parameter as in Test 1. The comparisons are shown in Figuied.12and Tables}.4-4.6.
Again similar comments apply as in Test 1.

Figure4.13and Table4.7 show how the performance of AlS1 depends on the dimen-
sionr of the approximation subspace. The table indicates thatderate value of should
be used, s@ = 20 seems a plausible choice for our experiments.

Now, we discretize the advection-diffusion system usingeagulation mesh of smaller
sizen = 62277 so that an exact LU decomposition 6fis feasible. The decomposition
is done once and used for each iteration of the Crank-Niootsthieme. Figurd.14shows
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FiG. 4.13.Test2. Use of Crank-Nicolson. Performance of AIS1 for differaaities ofr.

TABLE 4.7
Test2. Use of Crank-Nicolson. Performance of AIS1 for differaalties ofr.
Time(min.) | GMRES iter.
1 109.4 1662
10 37.8 768
20 7.4 276
30 30.4 900
40 49.4 935
50 41.0 935
10" 3
Laf Exact solution 183 —— Exact solution
1.2
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S 1
S 0.8 g 131
g £
;); 0.6 F o
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FIG. 4.14.Test2. Use of Crank-Nicolson. Left: initial residual norms. Rig@PU time in seconds.

the relative residual norm of the exact solutignof the linear systems to be solved in the
Crank-Nicolson scheme and the corresponding running firhe.total time can be estimated
from the figure on the right as approximatély0 x 13 = 1300 s~ 21.6 min. For this case,
the approaches AIS1 and AIS2 requiré1 min and1.35 min, respectively.

5. Conclusion. The purpose of this paper is to improve the initial guessethiitera-
tive solutions of large linear systems that arise in impbchemes for large systems of linear
ODEs. The improvement, summarized in algorithm AIS, is Haze the Petrov-Galerkin
process applied at iterationto a subspace’; of small dimension built from previous
computations. We have proposed two subspaces. The firss@panned by the solutions
Zi—r, 1 < k < r, computed at previous iterations. The second one is spannt lvectors
Agi—r + f(ti—k), 0 < k < r — 1, also computed at previous iterations. The theory shows
that these subspaces contain good approximatiénaoiteration; and that the quality of the
approximation depends only on the stepgiz¢éhe dimension, and the tolerance at which
the linear systems are solved. It is possible to use suctorippation directly in the implicit
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scheme or continue to improve it via a preconditioned Kndokispace method before adding
it to the implicit scheme. We recommend the second optiorth Babspaces lead to good
numerical results with some advantage for the first one. déivantage is also observed with
other numerical test examples not reported here. Futurk iwoludes devising a theory and

an implementation when the time step sizes are not uniform.
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