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IMPROVED PREDICTOR SCHEMES FOR LARGE SYSTEMS OF LINEAR ODE S∗

MOUHAMAD AL SAYED ALI † AND MILOUD SADKANE‡

Abstract. When solving linear systems of ordinary differential equations (ODEs) with constant coefficients by
implicit schemes such as implicit Euler, Crank-Nicolson, or implicit Runge-Kutta, one is faced with the difficulty
of correctly solving the repeated linear systems that arise in the implicit scheme. These systems often have the
same matrix but different right-hand sides. When the size of thematrix is large, iterative methods based on Krylov
subspaces can be used. However, the effectiveness of these methods strongly depends on the initial guesses. The
closer the initial guesses are to the exact solutions, the faster the convergence. This paper presents an approach
that computes good initial guesses to these linear systems. Itcan be viewed as an improved predictor method. It
is based on a Petrov-Galerkin process and multistep schemes and consists of building, throughout the iterations, an
approximation subspace using the previous computations, where good initial guesses to the next linear systems can
be found. It is shown that the quality of the computed initial guess depends only on the stepsize of the discretization
and the dimension of the approximation subspace. The approachcan be applied to most of the common implicit
schemes. It is tested on several examples.
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1. Introduction. Consider the linear system of ODEs

ẏ(t) = Ay(t) + f(t), ∀t ∈ [t0, T ],

y(t0) = y(0),
(1.1)

which results, for example, from the method of lines appliedto a linear time-dependent partial
differential equation [15]. We assume thatA is a real, largen×n matrix andf : [t0, T ] → R

n

is a sufficiently smooth function.
The system (1.1) is subsequently discretized in time. Using an implicit scheme over a

uniform mesh,ti = t0 + ih, i = 0, . . . , N, with h = T−t0
N

and denoting byyi an approxima-
tion of y(ti), the system (1.1) becomes

yi+1 = yi + hzi, i = q, q + 1, . . . , N − 1,

y0 = y(0),
(1.2)

wherezi is the solution of the linear system

(1.3) Czi = bi

with C = In − β−1hA andbi is given by

(1.4) bi = β−1Ayi + γ−1f(ti+1) +

q
∑

k=0

(βkAyi−k + γkf(ti−k)) ,

whereβk andγk are given constants. The vectorsy1, . . . , yq are either given or computed by
another scheme.
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Most standard implicit methods can be formulated as (1.2)–(1.4) and satisfy these as-
sumptions. For example, the implicit Euler method corresponds toβ−1 = γ−1 = 1 and
βk = γk = 0, k ≥ 0. The Crank-Nicolson method corresponds to the choice of param-
etersβ−1 = β0 = γ−1 = γ0 = 1/2 andβk = γk = 0, k ≥ 1. The Adams-Moulton method
corresponds toβk = γk, k ≥ −1. For more details on the properties of these methods see
[12, 13, 14].

These methods have good stability properties, but the main difficulty and computational
bottleneck is the numerical solution of the system (1.3), which must be solved at each step-
size. Sincen is large, it is common to use iterative solvers based on Krylov subspaces [22].
However, unless a very good preconditioner is available, the effectiveness of these methods
strongly depends on the initial guesses. The closer the initial guess is to the exact solution,
the faster the convergence. Classically, to calculate an initial guess, we use a predictor that is
an explicit scheme applied to the ODE. In this paper, we propose to go beyond this approach
and employ a projection method of Petrov-Galerkin type to extract a better initial guesŝzi to
(1.3) from the preceding solutionszi−1, zi−2, . . . . In other words, we find̂zi in the subspace

(1.5) Vi = Span{zi−1, zi−2, . . . , zi−r}, r ≪ n.

We will also consider another subspace which stems naturally from the fact that a general
class of explicit schemes applied to (1.1), such as Adams-Bashforth, is of the form

yi+1 = yi + h
r−1
∑

k=0

βi,k,r(Ayi−k + f(ti−k)),

where the coefficientsβi,k,r = 1
h

∫ ti+1

ti
Πr−1

j=0,j 6=k

t−ti−j

ti−k−ti−j
dt, k = 0, . . . , r − 1, are chosen

so thatyi is an approximation ofy(ti). This suggests that̂zi may be found in

(1.6) Vi = Span{Ayi + f(ti), Ayi−1 + f(ti−1), . . . , Ayi−r+1 + f(ti−r+1)}, r ≪ n.

We will show that these subspaces contain a good initial guess. In practice however, we can
only hope for an approximation ofzi and yi and hence only for an approximation ofVi.
We show that a good initial guess can still be found in the approximation subspaces. A
preconditioned Krylov subspace method, started with this initial guess, is then used to solve
(1.3). In general, only a few iterations are needed to obtain an accurate solution.

There are of course several alternatives to solving (1.3): a natural one is to factorizeC
once by a sparse direct method and use the same factorizationfor each iteration. However,
for largen, such a factorization may not be feasible. Moreover, this approach does not ex-
ploit the fact that good initial guesses are available (see the numerical tests in Section4)
and clearly should not be used in case of a non-uniform mesh. The method proposed in
[5] and the block approaches proposed, for example, in [20, 22, 24] necessitate the simul-
taneous availability of all right-hand sides, which is not the case in the present work. The
idea of using a subspace spanned by the previously computed solutions to generate a good
initial guess for the next linear system is not new but has been used, for example, in [10].
In [17], the subspace of previously computed solutions augmentedwith Ritz vectors or an
approximate invariant subspace corresponding to the smallest eigenvalues for the solution of
the first right-hand side is used to compute initial guesses for the remaining right-hand sides.
In [9], the Krylov subspace generated from the first linear systemwith the conjugate gradient
method (CG) is recycled to accelerate the convergence of thesubsequent systems. In [23],
the approximate eigenvectors corresponding to eigenvalues close to zero computed by CG
for solving the first linear systems are used in a deflation procedure to solve the subsequent
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systems. Analogous strategies are developed, for example,in [4, 8, 6, 19, 21] for multiple
and single right-hand sides with the main idea that retaining selected approximate invariant
subspaces or Ritz/harmonic vectors during restarts helps to eliminate those eigenvalues that
slow down the convergence of the corresponding linear system.

The acceleration of implicit schemes for solving linear ODEs is treated, for example,
in [3, 16, 18]. In [3, 16], the boundary value method is used to approximate the solution
of (1.1). This method leads to a very large system of a “Toeplitz plusa small perturbation”
structure, solved by GMRES with a circulant-block preconditioner. Here the effort is put on
the preconditioner rather than on the initial guess. In [18], an algorithm based on the implicit
Runge-Kutta scheme is used to compute an accurate approximation of yN by reducing the
number of linear systems in this scheme. The algorithm is highly efficient for computingyN

but is not so for all theyi.
The approach taken in the present paper is close to the one in [10] in the sense that the

initial guess in [10] is formed by a linear combination of previous approximate solutions.
However, the approximation subspace is not the same (see thecomparisons in Section4). We
use the Petrov-Galerkin method to extract the best initial guesŝzi from (a modification of)Vi

and we prove that‖bi − Cẑi‖ = O(hr) wherer is the number of vectors in the subspaceVi

and‖ ‖ denotes the 2-norm. An extension of this work to nonlinear ODEs can be found in [2].
This paper is organized as follows. In Section2, we briefly review the projection method

of Petrov-Galerkin type and describe the proposed approachfor computing a good initial
guess to the linear system (1.3). The estimates thus obtained show that the accuracy of the
initial guessẑi depends on the stepsizeh and on the number of vectorsr in the subspaceVi,
but not on the order of the implicit scheme used. The application of an implicit Runge-Kutta
scheme deserves a special treatment and is considered in Section 3. The algorithmic aspect of
the proposed approach and comparisons with standard predictor schemes are discussed and
illustrated numerically in Section4. Comparisons with the approach in [10] and when the
systems in (1.3) are solved exactly are also presented in Section4. A conclusion is given in
Section5.

2. Acceleration of implicit schemes.The subspaces (1.5) and (1.6) require the exact
calculation ofzi−k andyi−k, which we want to avoid since the sizen of C is supposed to
be large. In what follows, we will use an approximationỹi−k of yi−k, which leads to the
following analogue of (1.2)

ỹi+1 = ỹi + hz̃i, for i = q, q + 1, . . . , N − 1,

ỹ0 = y(0),
(2.1)

wherez̃i is an approximation tozi such that

(2.2)
∥

∥

∥
b̃i − Cz̃i

∥

∥

∥
≤ ε

with some tolerance thresholdε and wherẽbi is obtained by replacingyj in (1.4) by the
corresponding values̃yj . We assume that the sequence(ỹi) is bounded.

The subspaces (1.5) and (1.6) will therefore be replaced by

(2.3) Vi = Span{z̃i−1, z̃i−2, . . . , z̃i−r}, r ≪ n

and

(2.4) Vi = Span{Aỹi + f(ti), Aỹi−1 + f(ti−1), . . . , Aỹi−r+1 + f(ti−r+1)}, r ≪ n.
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We will use these subspaces along with the Petrov-Galerkin process to extract a good
initial guessẑi, which can be viewed as an improved predictor for the scheme (2.1). This
initial solution will, in turn, be used as an initial guess for a Krylov solver for computing̃zi.
As we will see, the use of̂zi results in considerable savings both in the total number of
iterations and CPU time, especially when the Krylov solver is combined with preconditioning.

The Petrov-Galerkin process applied to (1.3) allows us to find̂zi such that

ẑi ∈ Vi, and b̃i − Cẑi ⊥ CVi.

An important reason for choosing this process is thatẑi satisfies the minimization property

(2.5)
∥

∥

∥
b̃i − Cẑi

∥

∥

∥
= min

z∈Vi

∥

∥

∥
b̃i − Cz

∥

∥

∥
.

In other words, the Petrov-Galerkin approximationẑi is the best least squares solution in the
subspaceVi. Here and throughout this paper‖ ‖ denotes the 2-norm for vectors, matrices and
functions. To computêzi, let Vi be ann × m matrix, with m ≤ r, whose columns form a
basis ofVi. Thenẑi is given byVixi wherexi is the solution of the low order linear system

(

(CVi)
T CVi

)

xi = (CVi)
T

b̃i.

An algorithm for computingVi, ẑi and hencẽzi andỹi is given in Section4.

2.1. Use of the subspaceVi in (2.3). We begin with the subspaceVi defined in (2.3).
In the next theorems, we show that this subspace and some modifications of it contain a good
initial guessẑi. But first we need the following lemmas. The first one simply results from
Lagrange’s interpolation formula; see, e.g., [7].

LEMMA 2.1. We have

(2.6)

∥

∥

∥

∥

∥

f(ti) −

r
∑

k=1

αk,rf(ti−k)

∥

∥

∥

∥

∥

≤ max
t∈[t0,T ]

∥

∥

∥
f (r)(t)

∥

∥

∥
hr

with αk,r = (−1)k−1 r!
k!(r−k)! .

LEMMA 2.2. The sequence(ỹi), i ≥ q, satisfies

(2.7)

∥

∥

∥

∥

∥

ỹi −
r

∑

k=1

αk,rỹi−k

∥

∥

∥

∥

∥

= O(hr) + O(hε).

Proof. We prove (2.7) by induction onr. Note that (2.2) can be written as
∥

∥

∥
ỹi − ỹi−1 − h(X̃i−1 + β−1Aỹi)

∥

∥

∥
≤ hε,

whereX̃i =
∑q

k=0 βkAỹi−k +
∑q

k=−1 γkf(ti−k). Hence, (2.7) is satisfied withr = 1.
Assume that it holds forr − 1. Using1 + α1,r−1 = r = α1,r, αk,r−1 − αk−1,r−1 = αk,r,
andαr−1,r−1 = (−1)r = −αr,r, we have

ỹi −

r
∑

k=1

αk,rỹi−k = ỹi − ỹi−1 −

r−1
∑

k=1

αk,r−1(ỹi−k − ỹi−k−1)

= h(X̃i−1 −
r−1
∑

k=1

αk,r−1X̃i−1−k) + hβ−1A(ỹi −
r−1
∑

k=1

αk,r−1ỹi−k) + O(hε).

(2.8)
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Finally, the induction hypothesis and (2.6) yield

X̃i−1 −
r−1
∑

k=1

αk,r−1X̃i−1−k =

q
∑

l=0

βlA

(

ỹi−1−l −
r−1
∑

k=1

αk,r−1ỹi−1−l−k

)

+

q
∑

l=−1

γl

(

f(ti−1−l) −

r−1
∑

k=1

αk,r−1f(ti−1−l−k)

)

= O(hr−1) + O(hε).

THEOREM 2.3. Let Vi = Span{z̃i−k, 1 ≤ k ≤ r} be the subspace obtained by the
scheme (2.1). Then there exists az in Vi such that fori = q, . . . , N − 1

‖z̃i − z‖ = O(hr) + O(ε).

Proof. The vectorz =
∑r

k=1 αk,r z̃i−k is in Vi and satisfies

z̃i − z =
1

h

(

ỹi+1 − ỹi −
r

∑

k=1

αk,r(ỹi+1−k − ỹi−k)

)

.

Then, by (2.8), we have

z̃i − z = (X̃i −

r
∑

k=1

αk,rX̃i−k) + β−1A(ỹi+1 −

r
∑

k=1

αk,rỹi+1−k) + O(ε),

which, as in the proof of Lemma2.2, gives

‖z̃i − z‖ = O(hr) + O(ε).

REMARK 2.4. From(2.5) and Theorem2.3 it follows that the Petrov-Galerkin approxi-
mationẑi satisfies

∥

∥

∥
b̃i − Cẑi

∥

∥

∥
≤

∥

∥

∥
b̃i − Cz

∥

∥

∥
≤

∥

∥

∥
b̃i − Cz̃i

∥

∥

∥
+ ‖C(z̃i − z)‖

and hence
∥

∥

∥
b̃i − Cẑi

∥

∥

∥
= O(hr) + O(ε).

All the estimates in this paper are actually stated in a way similar to Theorem2.3; only the
subspaceVi and its dimensionr in O(hr) will change.

In practice, it may happen that the Petrov-Galerkin approximation ẑi directly satisfies
(2.2). In such a case, we takẽzi = ẑi and use the same subspaceVi for the next iteration.
This reduces the computational cost in the proposed approach and leads us to redefine

(2.9) Vi = Span{z̃i−(k+m), 1 ≤ k ≤ r},

wherem is the number of the last consecutive vectors whose computation do not necessitate
the use of an iterative method to satisfy (2.2). Such a subspace contains a good initial guessẑi,
as it its shown by the following theorem.

THEOREM 2.5. LetVi be the subspace defined in (2.9). Then there exists az in Vi such
that for i = q, . . . , N − 1

‖z̃i − z‖ = O(hr+m) + O(ε).

Proof. Sincez̃i−l = ẑi−l ∈ Vi for 1 ≤ l ≤ m, the spaceVi is the subspace spanned by
z̃i−k, 1 ≤ k ≤ r + m, and the result follows from Theorem2.3.
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2.2. Use of the subspaceVi in (2.4). Throughout this subsection we assumeβ−1 = γ−1

and write the scheme (1.2) in the equivalent form

yi+1 = ai + hzi, for i = q, q + 1, . . . , N − 1,

y0 = y(0),
(2.10)

where

(2.11) ai = yi + h

q
∑

k=0

(βkAyi−k + γkf(ti−k))

and

zi = β−1(Ayi+1 + f(ti+1))

is the solution of the linear system

Czi = bi

with C = In − β−1hA and

(2.12) bi = β−1(Aai + f(ti+1)).

Such a scheme is sufficiently general to include, for example, the implicit Euler, the Crank-
Nicolson and the Adams-Moulton methods. However, the implicit Runge-Kutta method is
not of this form, and for this reason we treat it separately inSection3.

The approximation scheme corresponding to (2.10) is given by

ỹi+1 = ãi + hz̃i, for i = q, q + 1, . . . , N − 1,

ỹ0 = y(0),
(2.13)

wherez̃i satisfies

(2.14)
∥

∥

∥
b̃i − Cz̃i

∥

∥

∥
≤ ε

andãi andb̃i are obtained from (2.11) and (2.12) by replacingyj with ỹj . Then we have the
following result.

THEOREM 2.6. Let Vi = Span{Aỹi+1−k + f(ti+1−k), 1 ≤ k ≤ r} be the subspace
obtained by the scheme (2.13). Then there exists az in Vi such that fori = q, . . . , N − 1

‖z̃i − z‖ = O(hr) + O(ε).

Proof. The vectorz = β−1

∑r
k=1 αk,r(Aỹi+1−k + f(ti+1−k)) is in Vi and satisfies

‖z̃i − z‖ = ‖(z̃i − β−1(Aỹi+1 + f(ti+1))) + (β−1(Aỹi+1 + f(ti+1)) − z)‖ .

From (2.14) we have

(2.15) ‖z̃i − β−1(Aỹi+1 + f(ti+1))‖ ≤ ε

and from Lemma2.1we obtain as in the proof of Theorem2.3

‖β−1(Aỹi+1 + f(ti+1)) − z‖ = O(hr) + O(hε).
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A situation analogous to the one mentioned in Theorem2.5may occur with the scheme
(2.13), namely that the Petrov-Galerkin approximationẑi satisfies (2.14). Then we take
z̃i = ẑi and use the same subspaceVi for the next iteration. Such a favorable situation leads
to a decrease in the computational cost, provided we redefineVi as the subspace spanned only
by the last vectors that necessitate the use of an iterative method to satisfy (2.14):

(2.16) Vi = Span{Aỹi+1−(k+m) + f(ti+1−(k+m)), 1 ≤ k ≤ r}

and Aỹi−l + f(ti−l), 0 ≤ l ≤ m − 1 are the last vectors whose computations do not
necessitate the use of an iterative method becausez̃i−l−1 = ẑi−l−1 ∈ Vi, 0 ≤ l ≤ m − 1.
Then we have the following theorem.

THEOREM 2.7. LetVi be the subspace defined in (2.16). Then there exists az in Vi such
that for i = q, . . . , N − 1

‖z̃i − z‖ = O(hr+m) + O(ε).

Proof. LetRi be the subspace spanned byAỹi+1−k +f(ti+1−k), 1 ≤ k ≤ r+m. From
Theorem2.6, we can findw ∈ Ri such that

(2.17) ‖z̃i − w‖ = O(hr+m) + O(ε).

Let us decomposew asw1 +w2, wherew1 ∈ Vi andw2 =
∑m−1

l=0 αl(Aỹi−l + f(ti−l)) with
some scalarsαl. Then the vectorz = w1 + 1

β
−1

∑m−1
l=0 αlz̃i−1−l is in Vi and satisfies

‖z̃i − z‖ =

∥

∥

∥

∥

∥

(z̃i − w) −

(

1

β−1

m−1
∑

l=0

αlz̃i−1−l − w2

)
∥

∥

∥

∥

∥

.

Using (2.17) and (2.15) we obtain

‖z̃i − z‖ = O(hr+m) + O(ε).

3. Use of implicit Runge-Kutta scheme.Recall that ans-stage implicit Runge-Kutta
(IRK) scheme applied to the system (1.1) is given by (see, e.g., [13])

yi+1 = yi + h(d ⊗ A)zi + h(d ⊗ In)Fi, for i = 0, 1, . . . , N − 1,

y0 = y(0),

wherezi is the solution of thesn × sn system

(3.1) Czi = bi

with

C = Isn − h(A0 ⊗ A), bi = (1s ⊗ yi) + h (A0 ⊗ In)Fi, A0 = (aij)1≤i,j≤s,

d = (d1, . . . , ds), Fi =
(

f(ti + c1h)T , . . . , f(ti + csh)T
)T

.

The Runge-Kutta coefficients are given by the vectorsdT , c = (c1, . . . , cs)
T and the ma-

trix A0. The symbol⊗ denotes the Kronecker product and1s = (1, . . . , 1)
T
∈ R

s.
Since (3.1) is of large size, we compute an approximationz̃i of zi such that

(3.2)
∥

∥

∥
b̃i − Cz̃i

∥

∥

∥
≤ ε,
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whereb̃i = (1s ⊗ ỹi) + h (A0 ⊗ In)Fi and the sequence(ỹi) is given by

ỹi+1 = ỹi + h(d ⊗ A)z̃i + h(d ⊗ In)Fi, for i = 0, 1, . . . , N − 1,

ỹ0 = y(0)
(3.3)

and is assumed to be bounded.
Our aim is to show that the subspace spanned byz̃i−k, 1 ≤ k ≤ r, contains a vectorz

such that

‖z̃i − z‖ = O(hr) + O(ε).

We begin with the following lemma, which is the analogue of Lemma2.2.
LEMMA 3.1. The sequence(ỹi) defined in (3.3) satisfies

(3.4)

∥

∥

∥

∥

∥

ỹi −

r
∑

k=1

αk,rỹi−k

∥

∥

∥

∥

∥

= O(hr) + O(hε).

Proof. We prove (3.4) by induction onr. From (3.3) we see that (3.4) holds withr = 1.
Assume it holds withr − 1. Then, from (3.2), we have

z̃i = 1s ⊗ ỹi + h(A0 ⊗ In)Fi + h(A0 ⊗ A)z̃i + O(ε),

and by inserting this expression into (3.3) we obtain

ỹi+1 − ỹi = h(d ⊗ In)Fi + h(d1s ⊗ Aỹi) + h2(dA0 ⊗ A)Fi + h2(dA0 ⊗ A2)z̃i + O(hε).

Applying the same process tõzi, we easily obtain

ỹi+1 − ỹi =

r−1
∑

k=1

hk
(

(dAk−1
0 ⊗ Ak−1)Fi + (dAk−1

0 1s ⊗ Akỹi)
)

+hr(dAr−1
0 ⊗ Ar−1)Fi + hr(dAr−1

0 ⊗ Ar)z̃i + O(hε)

and

ỹi+1 − ỹi −

r−1
∑

l=1

αl,r−1(ỹi+1−l − ỹi−l)

=

r−1
∑

k=1

hk

(

(dAk−1
0 ⊗ Ak−1)(Fi −

r−1
∑

l=1

αl,r−1Fi−l)

)

+

r−1
∑

k=1

hk

(

dAk−1
0 1s ⊗ Ak(ỹi −

r−1
∑

l=1

αl,r−1ỹi−l)

)

+O(hr) + O(hε).

From this, the induction hypothesis, and Lemma2.1we obtain
∥

∥

∥

∥

∥

ỹi+1 − ỹi −

r−1
∑

l=1

αl,r−1(ỹi+1−l − ỹi−l)

∥

∥

∥

∥

∥

= O(hr) + O(hε),

which is exactly (3.4).
THEOREM 3.2. Let Vi = Span{z̃i−k, 1 ≤ k ≤ r} be the subspace obtained by the

vectors satisfying (3.2)–(3.3). Then there exists az in Vi such that fori = 0, . . . , N − 1

‖z̃i − z‖ = O(hr) + O(ε).
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Proof. From (3.2) we have

z̃i = b̃i + h(A0 ⊗ A)z̃i + O(ε)

= b̃i + h(A0 ⊗ A)b̃i + h2(A2
0 ⊗ A2)z̃i + O(ε)

and more generally

z̃i =

r−1
∑

k=0

hk(Ak
0 ⊗ Ak)b̃i + O(hr) + O(ε).

The vectorz =
∑r

k=1 αk,r z̃i−k belongs toVi and satisfies the requirement of the theorem
since

z̃i − z =
r−1
∑

k=0

hk(Ak
0 ⊗ Ak)

(

b̃i −
r

∑

l=1

αl,r b̃i−l

)

+ O(hr) + O(ε),

and from Lemmas2.1and3.1we have

b̃i −

r
∑

l=1

αl,r b̃i−l = 1s ⊗

(

ỹi −

r
∑

l=1

αl,rỹi−l

)

+ h(A0 ⊗ In)

(

Fi −

r
∑

l=1

αl,rFi−l

)

= O(hr) + O(hε).

As in Theorems2.5 and2.7, we can reduce the amount of computations in the Petrov-
Galerkin process with the subspace defined in Theorem3.2 in the case when some Petrov-
Galerkin approximations satisfy (3.2). Let

(3.5) Vi = Span{z̃i−(k+m), 1 ≤ k ≤ r},

wherez̃i−l, 1 ≤ l ≤ m, are the last vectors whose computations do not require the use of an
iterative method becausẽzi−l = ẑi−l ∈ Vi, 1 ≤ l ≤ m. Then we have the following theorem
whose proof is similar to the one of Theorem2.5.

THEOREM 3.3. LetVi be the subspace defined in (3.5). Then there exists az in Vi such
that for i = 0, . . . , N − 1

‖z̃i − z‖ = O(hr+m) + O(ε).

In the numerical experiments, we will consider the3-stage IRK scheme of order6
(IRK6), defined by

A0 =











5
36

2
9 −

√
15

15
5
36 −

√
15

30

5
36 +

√
15

24
2
9

5
36 −

√
15

24

5
36 +

√
15

30
2
9 +

√
15

15
5
36











, dT =











5
18

4
9

5
18











, and c =











1
2 −

√
15

10

1
2

1
2 +

√
15

10











.

4. Computational considerations.We begin with an algorithm written in a formal way
that summarizes the computational aspect of the sequence(ỹi) defined in (2.1), (2.13) or (3.3).
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Algorithm AIS. [Accelerated Implicit Scheme]
1. Assume that fork = 1, . . . , q, ỹk is either given or computed with ank−step

scheme.
Seti = q.

2. Let Ri be the matrix formed by the lastk0 vectorsz̃i−k, 1 ≤ k ≤ k0, where
k0 = min(q, r). Orthonormalize the columns ofRi into Vi. ComputeLi = CVi,
Ci = LT

i Li andb̃i.
3. Repeat untili = N − 1

(a) Compute the initial guesŝzi = ViCi
−1LT

i b̃i.
(b) If ‖b̃i − Cẑi‖ ≤ ε‖b̃i‖, then set̃yi+1 = ỹi + hẑi, Ri+1 = Ri, Vi+1 = Vi,

Ci+1 = Ci, Li+1 = Li, computẽbi+1, seti = i + 1 and go to(a).
(c) Otherwise, compute an approximationz̃i to C−1b̃i with ‖b̃i − Cz̃i‖ ≤ ε‖b̃i‖

by an iterative method starting witĥzi.
(d) Setỹi+1 = ỹi + hz̃i and computẽbi+1.
(e) Let Ri+1 be the matrix formed by the lastr vectorsz̃i−k, 0 ≤ k ≤ r − 1.

Orthonormalize the columns ofRi+1 into Vi+1.
(f) ComputeLi+1 = CVi+1 andCi+1 = LT

i+1Li+1.
(g) i = i + 1.

We have used the scheme (2.1) in steps 3(b) and 3(d). It is very easy to modify the
algorithm if the scheme (2.13) is used instead. Also, in this algorithm, the subspaceVi

corresponds to the one of Theorem2.5. If the subspaceVi of Theorem2.3 is used, then
step 3(b) should be replaced by

3(b1) If
∥

∥

∥
b̃i − Cẑi

∥

∥

∥
≤ ε

∥

∥

∥
b̃i

∥

∥

∥
, setz̃i = ẑi, and go to3(d).

If the subspaceVi of Theorem2.7(or Theorem2.6) is used, then in step 3(e) the vectorsz̃i−k

should be replaced byAỹi+1−k + f(ti+1−k) (and step 3(b) should be replaced by3(b1)).
Finally, if the subspaceVi of Theorem3.3(or Theorem3.2) is used, then step 3(d) should be
replaced by

3(d1) ỹi+1 = ỹi + h(d ⊗ A)z̃i + h(d ⊗ In)Fi, and computẽbi+1

(and in step 3(b),̃yi+1 is given byỹi+1 = ỹi + h(d ⊗ A)ẑi + h(d ⊗ In)Fi).
In steps 2 and 3(e), the orthonormalization ofRi andRi+1 uses an updated QR factor-

ization (see, e.g., [11, p. 594]), and in step 3(f), the matricesLi+1 andCi+1 are updated from
Li, Ci and the QR factorization ofRi+1.

The cost of each iterationi is essentially dominated by the cost of steps 3(c), 3(e), and
3(f). For example, if GMRES is used in step 3(c) and if we denote bykgmres the number of
GMRES iterations needed in this step and bynz the number of nonzero elements inC, then
each iterationi requiresO(kgmresnz + (k2

gmres + r)n) operations.

4.1. Numerical tests.All the numerical tests are run on an Intel processor c6100 with
2.66 Ghz. We user = 20, a constant time steph = 1

100 , andε = 10−8.
We refer to AIS1 for the variant of the algorithm which uses the subspaceVi of The-

orem2.5 or Theorem3.3 for IRK, and to AIS2 for the one which uses the subspaceVi of
Theorem2.7. We compare these variants with other approaches, where theinitial guess to
(1.3) is obtained with some classical predictors such as explicit Euler, Adams-Bashforth of
orderr, the second-order and fourth-order Runge-Kutta methods, and the approach [10] men-
tioned in Section1. More precisely, for these approaches, we replace step 2 of algorithm AIS
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FIG. 4.1.Test1. Use of implicit Euler. Left: initial residual norms. Right: number of GMRES iterations.
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FIG. 4.2.Test1. Use of implicit Euler. CPU time in seconds.

TABLE 4.1
Test1. Use of implicit Euler. Total CPU time in minutes and total number of GMRES iterations.

Time (min.) GMRES iter.
AIS1 131.9 4409
AIS2 55.9 4507
Euler 161.1 6520
AB20 227.5 8700
RK4 172.1 15744

by: ”Computẽbi” and remove steps 3(e) and 3(f) and replace step 3(a) by

z
(e)
i = (y

(e)
i+1 − ỹi)/h,

where

y
(e)
i+1 = ỹi + h(Aỹi + f(ti))

for explicit Euler,

y
(e)
i+1 = ỹi + h

r−1
∑

k=0

βi,k,r(Aỹi−k + f(ti−k))

for Adams-Bashforth of orderr,

y
(e)
i+1 = ỹi +

h

2
(k1 + k2)
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FIG. 4.3.Test1. Use of Crank-Nicolson. Left: initial residual norms. Right: number of GMRES iterations.
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FIG. 4.4.Test1. Use of Crank-Nicolson. CPU time in seconds.

TABLE 4.2
Test1. Use of Crank-Nicolson. Total CPU time in minutes and total number of GMRES iterations.

Time (min.) GMRES iter.
AIS1 34.5 2476
AIS2 116.6 3254

FISCHER 127.4 8521
Euler 218.8 8498
RK2 308.7 11900
AB2 251.3 8697
RK4 483.0 18900
AB20 205.2 12354

for Runge-Kutta 2, with

k1 = Aỹi + f(ti), k2 = A(ỹi + hk1) + f(ti+1),

y
(e)
i+1 = ỹi +

h

6
(l1 + 2l2 + 2l3 + l4)

for Runge-Kutta 4, with

l1 = Aỹi + f(ti), l2 = A(ỹi + hl1/2) + f(ti + h/2),

l3 = A(ỹi + hl2/2) + f(ti + h/2), l4 = A(ỹi + l3) + f(ti+1),
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FIG. 4.5.Test1. Use of implicit Runge-Kutta. Left: initial residual norms. Right: number of GMRES iterations.

0 20 40 60 80 100
0

500

1000

1500

Iteration of implicit Runge−Kutta scheme

T
im

e

 

 

AIS 1
EULER
RK4
AB20

FIG. 4.6.Test1. Use of implicit Runge-Kutta. CPU time in seconds.

TABLE 4.3
Test1. Use of implicit Runge-Kutta. Total CPU time in minutes and total number of GMRES iterations.

Time (min.) GMRES iter.
AIS1 331.4 4995
Euler 1238.7 18899
AB20 2434.8 27722
RK4 2629.2 40492

and finallyy
(e)
i+1 is the approximate solution computed by [10, Method 1].

These approaches will be referred to as Euler, ABr, RK2, RK4,and FISCHER, respec-
tively.

4.2. Test 1. We consider equation (1.1) whereA andf are obtained by a spatial dis-
cretization of the two-dimensional heat equation∂tu − ∆u = 0 in (−1, 1)2, 0 < t ≤ 1,
using the finite volume method with Dirichlet boundary conditions u(x, y, t) = t (t + 1),
0 ≤ t ≤ 1. The k-th component ofy(0) is given by

(

y(0)
)

k
= sin (2πk/(n + 1)). The

matrixA is of ordern = 517396, with ‖A‖∞ ≈ 2.66 × 107 and‖f‖∞ ≈ 1.07 × 105.
In step 3(c) of algorithm AIS, we use the restarted preconditioned GMRES. The restarted

value is20 and the preconditioner is obtained from an incomplete LU factorization with a
drop tolerance fixed at10−3.

Figures4.1 and4.2 show the results when the test problem is solved using the implicit
Euler scheme. Figure4.1 (left) shows the relative preconditioned residual norm correspond-
ing to the initial guess computed by some of the approaches defined above. The horizontal
axis shows the number of iterationsi at which the residuals are evaluated. For eachi, Fig-
ure4.1(right) shows the number of iterations required by GMRES forcomputingz̃i starting
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FIG. 4.7.Test2. Use of implicit Euler. Left: initial residual norms. Right: number of GMRES iterations.
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FIG. 4.8.Test2. Use of implicit Euler. CPU time in seconds.

TABLE 4.4
Test2. Use of implicit Euler. Total CPU time in minutes and total number of GMRES iterations.

Time (min.) GMRES iter.
AIS1 1337.5 84903
AIS2 809.4 45735
Euler 3948.2 250034
AB20 4492.1 268032
RK4 4655.5 256536

with ẑi for AIS1 and AIS2 and withz(e)
i for Euler, AB20 and RK4. Figure4.2 shows the

running time required for each approach. Table4.1shows the total CPU time and total num-
ber of GMRES iterations for the five approaches. The figures and the table clearly show that
AIS1 and AIS2 always provide the best results. Note that at the beginning AIS1 and AIS2
require more iterations and time since the corresponding approximation subspacesVi do not
contain enough vectors.

The results given by the Euler, AB20, and RK4 approaches are not satisfactory, which
is due to the fact that the initial guessz

(e)
i itself is not satisfactory. One reason is that the

expressions forz(e)
i contain, for Euler and ABr, a small and large linear combination of

Aỹi−k + f(ti−k) and for RK4 a linear combination off(ti−k) and powers ofA timesyi−k.
The large values of‖A‖ and‖f‖ necessarily introduce errors inz(e)

i , leading to a significant
increase in the number of GMRES iterations and CPU time. Analogous results are reported
in Figures4.3and4.4and Table4.2when the Crank-Nicolson scheme is used instead of the
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FIG. 4.9.Test2. Use of Crank-Nicolson. Left: initial residual norms. Right: number of GMRES iterations.
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FIG. 4.10.Test2. Use of Crank-Nicolson. CPU time in seconds.

TABLE 4.5
Test2. Use of Crank-Nicolson. Total CPU time in minutes and total number of GMRES iterations.

Time (min.) GMRES iter.
AIS1 7.4 276
AIS2 41.7 1567

FISCHER 201.6 5909
Euler 343.2 5914
RK2 92.9 5974
AB2 106.1 5907
RK4 204.4 7733

AB20 235.1 5898

implicit Euler together with other predictors and in Figures 4.5 and4.6 and Table4.3 when
the implicit Runge Kutta (IRK6) is used.

4.3. Test 2.We consider the advection diffusion system

∂tu − 1
Pe∆u + a.∇u = 0 in Ω = (−1, 1) × (0, 1),

u = (1 − tanh(Pe)) t(t + 1) onΓ0,

u = 1 + tanh ((2x + 1)Pe) t(t + 1) onΓin,
∂u
∂n

= 0 onΓout,

where the convective term is given bya(x, y) =

[

2y(1 − x2)
−2x(1 − y2)

]

and the boundary is split

into ∂Ω = Γin ∪ Γout ∪ Γ0 with Γin := [−1, 0] × {0}, Γout := [0, 1] × {0} andΓ0 is the
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FIG. 4.11.Test2. Use of implicit Runge-Kutta. Left: initial residual norms. Right: number of GMRES iterations.
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FIG. 4.12.Test2. Use of implicit Runge-Kutta. CPU time in seconds.

TABLE 4.6
Test2. Use of implicit Runge-Kutta. Total CPU time in minutes and total number of GMRES iterations.

Time (min.) GMRES iter.
AIS1 494.2 3326
Euler 1493.0 11599
RK4 2416.6 20045

AB20 770.4 9697

remaining part. A description of this system is given in [1, 25]
The Ṕeclet number Pe is fixed at10. We discretize the system in space with the finite

volume method and obtain a problem of the form (1.1) of sizen = 775790. The norms of
the matrixA and functionf in (1.1) are estimated as1.59 × 106 and1.78 × 107. The initial
solution of the differential equation is the same as in Test 1.

In step 3(c) of algorithm AIS, we use the preconditioned restarted GMRES with the same
parameter as in Test 1. The comparisons are shown in Figures4.7–4.12and Tables4.4–4.6.
Again similar comments apply as in Test 1.

Figure4.13and Table4.7 show how the performance of AIS1 depends on the dimen-
sionr of the approximation subspace. The table indicates that a moderate value ofr should
be used, sor = 20 seems a plausible choice for our experiments.

Now, we discretize the advection-diffusion system using a triangulation mesh of smaller
sizen = 62277 so that an exact LU decomposition ofC is feasible. The decomposition
is done once and used for each iteration of the Crank-Nicolson scheme. Figure4.14shows
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FIG. 4.13.Test2. Use of Crank-Nicolson. Performance of AIS1 for different values ofr.

TABLE 4.7
Test2. Use of Crank-Nicolson. Performance of AIS1 for different values ofr.

r Time(min.) GMRES iter.
1 109.4 1662

10 37.8 768
20 7.4 276
30 30.4 900
40 49.4 935
50 41.0 935
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FIG. 4.14.Test2. Use of Crank-Nicolson. Left: initial residual norms. Right: CPU time in seconds.

the relative residual norm of the exact solutionzi of the linear systems to be solved in the
Crank-Nicolson scheme and the corresponding running time.The total time can be estimated
from the figure on the right as approximately100 × 13 = 1300 s≈ 21.6 min. For this case,
the approaches AIS1 and AIS2 require1.01 min and1.35 min, respectively.

5. Conclusion. The purpose of this paper is to improve the initial guesses for the itera-
tive solutions of large linear systems that arise in implicit schemes for large systems of linear
ODEs. The improvement, summarized in algorithm AIS, is based on the Petrov-Galerkin
process applied at iterationi to a subspaceVi of small dimensionr built from previous
computations. We have proposed two subspaces. The first one is spanned by the solutions
z̃i−k, 1 ≤ k ≤ r, computed at previous iterations. The second one is spanned by the vectors
Aỹi−k + f(ti−k), 0 ≤ k ≤ r − 1, also computed at previous iterations. The theory shows
that these subspaces contain good approximation toz̃i at iterationi and that the quality of the
approximation depends only on the stepsizeh, the dimensionr, and the toleranceε at which
the linear systems are solved. It is possible to use such approximation directly in the implicit
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scheme or continue to improve it via a preconditioned Krylovsubspace method before adding
it to the implicit scheme. We recommend the second option. Both subspaces lead to good
numerical results with some advantage for the first one. Thisadvantage is also observed with
other numerical test examples not reported here. Future work includes devising a theory and
an implementation when the time step sizes are not uniform.

Acknowledgment. We would like to thank the referees for their comments and con-
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