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The Weibull distribution is the standard function used by the wind energy community to model the wind 
speed frequency distribution. In this study, four methods are presented for estimating Weibull 
parameters (Shape and Scale), namely, Maximum likelihood method (MLM), Rank regression method 
(RRM), Mean-standard deviation method (MSD), and Power density method (PDM). To compare the 
methods, a period of 4 years (2001 - 2004) of monthly time series data of Halabja city was considered. 
Two distinct analytical methods are studied to determine the parameter estimation accuracy of these 
methods; coefficient of determination and root mean square error (RMSE) are used as measurement 
tools. The Rank regression and MSDs are recommended to estimate the shape parameter; also the 
Rank regression is recommended for use with our time series wind data to estimate the scale 
parameter. 
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INTRODUCTION 
 
Weibull has been recognized as an appropriate model in 
reliability studies and life testing problems such as time to 
failure or life length of a component or product. Over the 
years, estimation of the shape and scale parameters for a 
Weibull distribution function has been approached 
through Maximum likelihood method (MLM), linear 
method, and several versions of regression analysis. In 
recent years, Weibull distribution has been one of the 
most commonly used, accepted, recommended 
distribution to determine wind energy potential and it is 
also used as a reference distribution for commercial wind 
energy softwares such as Wind Atlas Analysis and 
Application Program (WAsP). The two-parameter Weibull 
distribution function is commonly used to fit the wind 
speed frequency distribution. 

The preferred method of estimating the Weibull 
parameters was a graphical way using the cumulative 
wind speed distribution, plotting it on special Weibull 
graph paper. Estimation of the two-parameter Weibull 
distribution occurs in many real-life problems. The 
Weibull distribution is an important model especially for 
reliability and maintainability analysis. 

Weibull distribution can be used to model the wind 
speed distribution at a particular  site  and  hence,  it  can 

help in wind resource assessment of a site. By 
calculating the two parameters (shape and scale) for 
Weibull distribution the wind speed frequency curve for a 
site can be made (Prasad  et al., 2009) and the key to 
perform wind turbine and wind farm energy calculation. 
Several methods have been proposed to estimate 
Weibull parameters (Marks, 2005; Rider, 1961; Kao, 
1959; Pang et al., 2001; Pandey et al., 2011; Seguro and 
Lambert, 2000; Stevens and Smulders, 1979; 
Bhattacharya and Bhattacharjee, 2010). In literature 
about wind energy, these methods are compared several 
times and in different ways (Akdag and Ali, 2009; Silva et 
al., 2004; Yilmaz et al., 2005; Gupta, 1986; Rahman et 
al., 1994; Lei, 2008; Kantar and Senoglu, 2007), 
however, results and conclusions of the previous studies 
are different. Several of fit tests are used in literature. A 
method for estimating parameters of mixed distributions 
using sample moments has been outlined by Paul (1961) 
who considered compound Poisson, binomial, and a 
special case of the mixed Weibull distribution. A graphical 
method for estimating the mixed Weibull parameters in 
life testing of electron tubes is proposed by John (1959). 
For these reasons, according to the results of the studies, 
it might be concluded that suitability  of  the  method  may  



 
 
 
 
vary with the sample data size, sample data distribution, 
sample data format and goodness of fit test (Akdag and 
Ali, 2009). 

The present work is based on the time series wind data 
collected over a period of 4 years (2001 - 2004) (hourly). 
The location concerned in this study named Halabja is 
situated in east Sulaimani/North Iraq 35° 11' 7" North 
latitude, 45° 58' 42" East longitude and it is at an 
elevation of 692 m above sea level. There is no obstacle 
around wind speed measuring location, the wind data 
recorded from a mechanical cup type anemometer at 
height of 2 m above the ground level. 

In present study, four methods for estimating the 
parameters of the Weibull wind speed distribution are 
presented [MLM, Rank regression method (RRM), Mean-
standard deviation method (MSD), and the Power density 
method (PDM)] by Akdag

'
 and Ali (2009). The aim of this 

work was to select a method that gives more accurate 
estimation for the Weibull parameters at this location in 
order to reduce uncertainties related to the wind energy 
output calculation from any Wind Energy Conversion 
Systems (WECS). 
 
 

WEIBULL DISTRIBUTION 
 

The Weibull distribution is characterized by two parameters, one is 
the scale parameter c (m/s) and the other is the shape parameter k 
(dimensionless). In Weibull distribution, the variations in wind speed 
are characterized by two functions which are the probability density 
function (PDF) and the cumulative distribution function (CDF). The 

PDF, v,k,c indicates the fraction of time (or probability) for which 
the wind is at a given speed V. It is given by Bhattacharya and 
Bhattacharjee (2010) and Weisser (2003). 
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Where ν > 0, and k, c > 0 
The CDF of the speed V gives the fraction of the time (or 
probability) that the wind speed is equal or lower than V, thus, the 

cumulative distribution v,k,c is the integral of the PDF, given by  
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The average wind speed can be expressed as: 
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This can be rearranged as: 
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Taken 
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Equation 5 can be simplified as: 
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This is the form of the standard gamma function, which is given by  
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From Equations 7 and 8, let 
1

1n
k

   the average speed can 

be expressed as: 
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The standard deviation of wind speed V is given by 
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Equating to 
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And putting
2

1n
k

  , then the following equation can be 

obtained. Hence, get the standard deviation 
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METHODS FOR ESTIMATING WEIBULL PARAMETERS 
 
Maximum likelihood method (MLM) 
 
Maximum likelihood technique, with many required features is the 
most widely used technique among parameter estimation 
techniques. The MLM method has many large sample properties 
that make it attractive for use; it is asymptotically consistent, which 
means that as the sample size gets larger, the estimate converges 
to the true values. 

Let ν1,ν2,ν3 …………..νn be a random sample size n drawn from a 
PDF ƒ(ν,θ) where θ is an unknown parameter. The likelihood 
function of this random sample is the joint density of the n random 
variables and is a function of the unknown parameter. Thus, 
(Yilmaz et al., 2005; Nilsen, 2011), 
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The maximum likelihood estimator of   say   is the value of   

that maximizes L  or, equivalent, the logarithm of L . Often but 

not always, the MLM of   is a solution of log
0

d L

d
  .  

Now, we apply the MLM to estimate the Weibull parameters, k and 
c. Consider the Weibull PDF given in Equation 1, then likelihood 
function will be (Yilmaz et al., 2005; Nilsen, 2011): 
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On taken the logarithms of Equation 16, differentiating with respect 
to k and c in turn, and equating to zero, one can obtain the 
estimating equations 
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In eliminating c between Equations 17 and 18 and simplifying, one 
can get 
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This may be solved to get the estimate of k. This can be 
accomplished by the use of standard iterative procedures (that is, 
Newton-Raphson method), which can be written in the form 
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The shape parameter k can be estimated using Equations 21 and 
22 with Equation 20 as: 
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Once k is determined, c can be estimated using Equation 18 as 
follows: 
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Rank regression method (RRM) 
 
The second estimation technique, we shall discuss is known as the 
least squares method. This is, in essence, a more formalized 
method of the manual probability plotting technique, in that it 
provides a mathematical method for fitting a line to plotted failure 
data points. 

It is so commonly applied in engineering and mathematics 
problems that are often not thought of as an estimation problem. 
With the help of this method the parameters are estimated with 
regression line equation by cumulative density function. From 
Equation 1, the cumulative density function of Weibull distribution 
function with two parameters can be written as (Justus et al., 1978): 
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This function can be arranged as: 
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If we take the natural logarithm of Equation 26 
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And then retake the natural logarithm of Equation 27, we get the 

following equation: 
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Parameters   of   Weibull   distribution   with   two   parameters    are

 



 
 
 
 
estimated by minimizing with Equation 29. The two parameters c 
and k are intersecting by the following equations: 
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From Equations 30 and 31, k and c can be estimated, respectively. 
 
 
Mean-standard deviation method (MSD) 
 
The Weibull factors k and c can also be estimated from the mean 
and standard deviation σ of wind data, consider the expression for 
average and standard deviation given in Equations 9 and 14, from 
these, one has (Fung et al., 2007; Weisser and Foxon, 2003): 
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n is the number of wind observation. Once v
 and    are 

calculated for a given data set, then k can be determined by solving 

Equation 32 numerically, once k is determined, c is given by 
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In a simpler approach, an acceptable approximation for k 
is (Akhlaque et al., 2006): 
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Power density method (PDM) 
 

This is a new method suggested by Akdag and Ali (2009). It is used 
to estimate the two-Weibull parameters, depends on the energy 
pattern factor method; it is related to the averaged data of wind 
speed. This method has simpler formulation, easier implementation 
and also requires less computation. According to the Weibull 
probability distribution, the mean wind speed of Equation 35 can be 
written as (Silva et al., 2004; Paula et al., 2012): 
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And hence the cubic mean wind speed is given as: 
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To determine the energy pattern factor (Epf) one can write 
Equations 37 and 38 as: 
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Equation 39 is known as energy pattern factor (Epf) method. 
Weibull parameters can be estimated with solving energy pattern 
factor Equation 39 numerically or approximately by power density 
technique using the simple formula as follows: 
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Once k is determined, c can be estimated using Equation 37. 
 
 
COMPARISON AND ACCURACY OF THE METHODS 
 
Four methods for estimating the parameters of the Weibull wind 
speed distribution for wind energy analysis for Halabja city are 
presented. The application of each method is demonstrated using a 
sample wind speed data set, and a comparison of the accuracy of 
each method is also performed with the actual time series data for 
the our case study (Halabja city). In order to compare the methods, 
monthly mean wind data used for Halabja region is obtained from 
meteorological automatic station which covers the period of 4 years 
(2001 - 2004). 

Two tests were employed to determine the accuracy of the four 
methods given in this article, first is the coefficient of determination 
R2 of Equation 41 used to how well the regression model describes 
the data, and second is root mean square error (RMSE) of Equation 
42. 
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Where N is the total number of intervals, Xi the frequencies of 
observed wind speed data, xi the frequencies distribution value 
estimated with Weibull distribution, X the mean of Xi values. 

 
 

RESULTS AND DISCUSSION 
 

Once coefficient of determination and RMSEs are 
computed the difference methods can be compared in 
accuracy as shown in Tables 1 and 2. Weibull parameters have 
been estimated monthly according to the four methods 
with the actual time series data for all the years (2001 - 
2004). Figure 1 shows the histogram of the actual 
frequency distribution of diurnal wind speed for all these 
years with the Weibull function for fitting a wind data 
probability   distribution.   Figures   2   and   3   show   the 
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Table 1. Monthly estimated Weibull parameters with actual data. 
 

Month 
Mean V 

(m/s) 

Actual Data  ML method  RR method  MSD method  PD method 

K C(m/s)  K C(m/s)  K C(m/s)  K C(m/s)  K C(m/s) 

Jan 1.49 2.3551 1.6115  1.6072 1.6868  2.9191 1.5669  1.3648 1.6291  1.9102 1.6798 

Feb 1.86 1.8691 2.0018  1.4568 2.0841  2.2292 1.9420  1.2725 2.0082  1.8971 1.8688 

Mar 1.87 2.3688 2.0723  2.0169 2.1260  2.6248 2.0487  2.0558 2.1113  2.8403 2.0985 

April 1.97 2.5514 2.1995  2.2075 2.2420  3.0264 2.1463  2.1368 2.2244  2.9989 2.2053 

May 2.16 2.6301 2.4000  2.2757 2.4431  3.1939 2.3338  2.3462 2.4370  3.0965 2.4144 

Jun 2.45 3.4864 2.7189  3.1190 2.7445  4.4182 2.6468  3.2168 2.7343  3.6739 2.7146 

July 2.43 4.0289 2.6602  3.2868 2.7031  4.6771 2.6293  3.7930 2.6868  3.7933 2.6868 

Aug 2.35 3.3551 2.6115  3.1590 2.6240  4.4598 2.5417  3.5062 2.6090  3.7152 2.6038 

Sep 2.01 3.0376 2.2200  2.5361 2.2657  3.4402 2.1931  2.6195 2.2622  3.3178 2.2398 

Oct 1.75 2.4456 1.9556  2.1106 1.9840  3.1626 1.8745  2.0821 1.9758  2.9119 1.9614 

Nov 1.79 2.2320 1.9837  1.9703 2.0281  2.5358 1.9473  1.8807 2.0169  2.7973 2.0087 

Dec 1.86 2.1564 2.0682  1.8891 2.1184  2.4237 2.0338  1.7736 2.0908  2.7021 2.0915 

Mean 1.99 2.709 2.2086  2.3029 2.2542  3.2592 2.1587  2.3373 2.2322  2.9712 2.2145 

 
 
 

Table 2. Statistical analysis for all the methods with actual data. 
 

Method Variance 
Standard 

deviation 

Coefficient of 

variation 

 Coefficient of determination  Root mean square error 

 K C (m/s)  K C (m/s) 

Actual data                0.5977 0.7731 0.4094       

ML 0.8459 0.9197 0.4605  0.6290 0.4270  0.3235 0.4464 

RR 0.4263 0.6529 0.3374  0.6401 0.4335  0.6328 0.1157 

MSD 0.8081 0.8989 0.4544  0.6201 0.4232  0.2534 0.3702 

PD 0.5251 0.7246 0.3666  0.5307 0.4088  0.3448 0.3089 

 
 
 
estimated parameters c and k, respectively versus the 
months of years, the similarity can be seen among the 
methods with the true data almost for all the months for 
parameter c, while for parameter k, the divergence of the 
methods with the actual data obtained due to the 
difference in the estimated values, these also have 
appear in the RMSE results as shown in Table 2. The 
rank regression and mean standard deviation methods 
give satisfactory results for the shape parameter 
estimation, while rank regression method give 
satisfactory result for the scale parameter estimation. 
Graphically, Figure 4 shows the annual mean wind data 
of the probability density function for Weibull distributions 
using the estimated Weibull parameters by all methods 
have been compared with the annual mean wind true 
time series data, as a result the power density method is 
the most fitted method to estimate the Weibull 
parameters in our study case. We can also see that all 
methods are similar enough to show that each method 
would be sufficient for determining our parameter 
estimates. 

Conclusion 
 

According to the results, it might be concluded that 
suitability of these methods may vary with the sample 
such as data size, sample data distribution (months), 
sample data format, and of fit tests. When wind data is 
available in time series format, according to the R2 and 
RMSE tests both the RRM and MSD, respectively are the 
recommended methods for estimating the shape 
parameter, while for the scale parameter and for the both 
tests, the RRM is recommended method to estimate. 
Graphically, the curves of the methods show that the best 
way to estimate the two Weibull parameters is the PDM. 
This fact is also been supported by means of the RMSE 
and R2 statistical tests (Table 2). From this comparative 
study, it is observed that the values of RMSE and R2 have 
magnitudes that are almost similar for all the methods. 
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Figure 1. Show the histogram of the time series distribution of 
the actual wind data. 

 
 
 

 
 

Figure 2. Estimated Weibull parameter C (m/s) versus the 
months. 

 
 
 

 
 

Figure 3. Estimated Weibull parameter K versus the months. 
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Figure 4. The Weibull probability density function using all 
methods with actual wind data. 
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