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In this paper, we study Frenet-Serret motion and ruled surfaces with constant slope in Euclidean 3-
space. By applying Frenet-Serret motion to the points of a cone, we obtain ruled surfaces with constant
slope and we investigate these surfaces. We give the definition of a Smarandache curve in Euclidean 3-
space. Also, we define a new type of general helix curves on a ruled surface in Euclidean 3-space.
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INTRODUCTION

Frenet-Serret motion has the most important position of
the study of kinematics. In particular, the study of one-
parameter motions became an interesting topic in kine-
matics. The motion was investigated by Bottema and
Roth (1979) in Euclidean n-space.

Ruled surfaces are one of the most important topics of
differential geometry. The surfaces were found by
Gaspard Monge, who was a French mathematician and
inventor of descriptive geometry. Besides, these surfaces
have the most important position of the study of one
parameter motions.

In Euclidean 3-space E’, each regular unit speed curve

a:1c IR — E’ has the orthonormal frame {f,ﬁ,l;} at

all the points of its space. The elements of the frame are
called the tangent, the principal normal and the binormal
vectors, respectively. Furthermore, the planes spanned

by 7.7}, {f,l;} and {ﬁ,l;} are called as the osculating
plane, the rectifying plane and the normal plane,

respectively.
We now recall the definition of general helix in

Euclidean 3-space. Acurve o : 1 Cc IR — E* with unit
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U, so that <f,ﬁ> = cos(@) is constant along the curve. It
has been known that the curve is general helix if and only

if ]]iz(s) is constant, where k, is curvature and k, is
1
torsion of &, respectively.

Constant slope surfaces are considerable subject of
geometry. For their shapes, we can say that constant
slope surfaces are one of the most fascinated surfaces in
the Euclidean 3-space.

There are so many types of these surfaces. Surface for
which the unit normals make a constant angle with a
fixed vector direction is a kind of constant slope surfaces.
Munteanu and Nistor (2009) obtained a classification of
all these surfaces. Moreover, a ruled surface for which
the generating lines make a constant angle with a given
plane is another kind of constant slope surfaces. Malecek
et al. (2009) investigated these surfaces.

The main purpose of this study is to obtain a ruled
surface with a constant slope with respect to the
osculating planes (or rectifying planes, normal planes) to
acurve & by applying Frenet-Serret motion to the points
of a cone.

Also, we give the [ -helix curves on a ruled surface.

But before this, we mention some basic facts which are
useful for the rest of the paper.
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speed is a general helix if there is some constant vector

PRELIMINARIES

Definition 1

One parameter motion of body in Euclidean 3-space is
generated by the transformation:

H:E*>SE?
X 5HX)=AX+C=Y

Here, A is a 3x3 orthogonal matrix and C is a

displacement vector of the origin. Also Aand C are C~
functions of a real parameter f, the motion parameter.

In the special Frenet-Serret motion, C represents a

space curve & and the matrix A is [f 7 b], where

{f,ﬁ,l;} is the Frenet-Serret vector fields of the curve
. Definition 1 was given by Yayli and Masrouri (2011).

Definition 2

Let IcIR be an interval, let «:1— E* be a regular
parametrized curve and let X:1— E* be an arbitrary
smooth function with X(s)=#0 for all se€ I. Thus, we
defined a parametrized surface by:

@(s,v)=d(s)+vX(s),s € I ,velR (1)

This is called a ruled surface with the base curve & and

the director curve X (s). Definition 2 was given by
Sarioglugil and Tutar (2007).

Definition 3

If the generated lines (the lines whose direction vectors
are X(s)) of a surface @ have a constant slope

tand = o (6@ is the angle between X(s) and osculating

plane at the point a(s), 6¢€ (0,7/2) andoe (0,4+e))
with respect to the osculating planes to the curve at every
point on the curve &, then @ is called a surface with a

constant slope with respect to osculating planes to the
curve & in Szarka and Szarkova (2009) work.

Definition 4

If the generated lines (the lines whose direction vectors

are X(s)) of a surface @ have a constant slope
tand = o (8 is the angle between X (s) and rectifying

plane at the point a(s), B¢ (0,7[/2), oe (O,+oo)) with
respect to the rectifying planes to the curve at every point
on the curve &, then ¢@ is called a surface with a

constant slope with respect to rectifying planes to the
curve ¢&¥.

Definition 5

If the generated lines (the lines whose direction vectors
are X(s)) of a surface @ have a constant slope
tand =0 (@ is the angle between X (s) and normal

plane at the point a(s), B¢ (0,7[/2), oe (O,+oo)) with
respect to the normal planes to the curve at every point
on the curve &, then ¢@ is called a surface with a

constant slope with respect to normal planes to the curve
a.

Definition 6

A regular curve in Euclidean 3-space, whose position
vector is composed by Frenet frame vectors on another
regular curve, is called a Smarandache curve. Definition
6 was given by Ali (2010).

Example 1

Let @ = a(s) be a unit speed regular curve in E’ and

{f,ﬁ,l;} be its moving Frenet-Serret frame. Then,

15 Lﬁ p (2
7/_\/§t+\/E +b (2)

. . 3
is a Smarandache curve in E~.

Example 2

Let @ = a(s) be a unit speed regular curve in E’ and
{f,ﬁ,l;} be its moving Frenet-Serret frame. Then,
1- 3=
=—r+—>b (3)
4 2 2

. . 3
is a Smarandache curvein E~.



MAIN THEOREMS
Theorem 1

If we apply the Frenet-Serret motion to the points of the
cone surface:

x2+y2=i2zz, (4)
(o}

then we obtain a surface with constant slope O .

Proof

Let (vcos w(s),vsin w(s),av) be parametric

representation of the cone surface

X2+y2:—2Z .
(o}

Now, we can apply the Frenet-Serret motion to the points
of the cone.
Let & be aregular space curve which is parametrized by

the vector function a =a(s), se 1, the arc length.
Then,

v cos w(s)
q)(s,v):[? i 5] vsinw(s) |+ a(s) (5)
oV

and from Equation 5, we have:
D(s,v)=as)+v (cosw(s)?+sinw(s)ﬁ+d;) (6)

where X (s) = cos w(s)f + sin w(s)ii + ob .

Generating lines of the surface ® are given by the
points on the curve a = a(s) and they have the
constant slope O with respect to the osculating planes to
the curve a = a/(s) .

Actually, ® is a constant slope surface with respect to
the osculating planes to the curve a(s).

We assume that @ is the angle between X(s) and
osculating plane at the point &(s). Then, we can write

ob

= =0
Hcosm{s)t +sim4{s)ﬁ“

tand=

=consi (7)
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where cosw(s)f +sin w(s)n is orthogonal projection of

the vector X(s) on the osculating plane at the point

als).

This completes the proof.

Theorem 2

If we apply the Frenet-Serret motion to the points of the
cone surface:

1

X +zi=—y", (8)
()

then we obtain a surface with constant slope O .

Proof

Let (v cosw(s),ov,vsin w(s)) be parametric

: 2 2 1 2
representation of the cone surface x"+z°=—y".
o

Now, we can apply the Frenet-Serret motion to the points
of the cone.
Let & be aregular space curve which is parametrized by

the vector function a =a(s), se€ I, the arc length.
Then,

v cosw(s)
¢(s,v)=[? ii E] ov

v sin w(s)

+a(s) 9

and from Equation 9, we have:

#(s,v)=a(s)+v (cos W(S)T +sin w(s)b + O'ﬁ) (10)

where X (s) = cos w(s)7 + sin w(s)b + o7 .

Generating lines of the surface ¢ are given by the points
on the curve @ = a¢(s) and they have the constant slope
O with respect to the rectifying planes to the curve
a = a(s). Actually, ¢ is a constant slope surface with

respect to the rectifying planes to the curve a(s) .

We assume that @ is the angle between X(s) and
rectifying plane at the point a/(s). Then, we can write:

|o7]

tand= =o=const (11)

Hcosw(s)f +sinw(s)b| H
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where cos w(s)f + sin w(s)E is orthogonal projection of

the vector X(s)on the rectifying plane at the point
a(s).
This completes the proof.

Theorem 3

If we apply the Frenet-Serret motion to the points of the
cone surface:

1,
y +z7=—75x",(12)
then we obtain a surface with constant slope O .

Proof

Let (Gv, vcos w(s),vsin w(s)) be parametric

. 2 2 1
representation of the cone surface y* +z" =—-x".
o

Now, we can apply the Frenet-Serret motion to the points

of the cone.
Let & be a regular space curve which is parametrized by

the vector functiona = a(s), se€ I, the arc length.
Then,

ov
7(s,v)=[f n I;] vecosw(s) |+ a(s) (13)

v sin w(s)
and from Equation 13, we have:
s, V) =0(s) +v (cosm(s)ﬁ +sin(s)b+d ) (14)

where X (s) = cos w(s)ii + sin w(s)b + of .

Generating lines of the surface y are given by the points
on the curve @ = a¢(s) and they have the constant slope
O with respect to the normal planes to the curve
a = a(s). Actually, ¥ is a constant slope surface with

respect to the normal planes to the curve a(s).
We assume that @ is the angle between X (s) and
normal plane at the point &(s). Then, we can write:

I
Hcos«(s)ﬁﬂinm(s)ﬂ‘

=0o=cst (15)

where cos w(s)n + sin w(s)E is orthogonal projection of

the vector X (s) on the normal plane at the point a(s).
This completes the proof.

Example 3

Let the curve a(s) be a cylindrical helix parametrized by
the vector function:

&(‘v):(4cos£,4sin£,§j’ S€ [0’157[]
5 55

The Frenet-Serret frame is given by the vector functions:

- s .S
=| —cos—,—sin—,0
n(s) ( 5 5 )

E(s):(3sins,—3coss,4)

5 55 55

Direction vectors of generating lines of the surface
o(s,v)=a(s)+ v(cos w($)f +sin w(s)b + aﬁ)
(constant slope surface with respect to the rectifying
planes to the curve a(s)) are given by the vector
function:

> 4 s 3 s
X(s)=| ——cos sin—+—sin sin——
(s) ( 5 w(s)si 5'3 in w(s)si 5

s
o cos—,

5
4 s 3. s .S
—cos w(s)cos———sinw(s)cos——osin—,
5 55 5 5
3 4 .
—cos w(s)+—sin w(s)j
5 5

The surface ¢(s,v) has the parametric representation:

s 4 s 3 s

=48in—+V| —Ccosw(s)Ccos———sinw(s) cos—

y 5 (5 w(s) 573 w(s) 5
.S
—osin—
5)

z=2:+v@cosw(s)+:sinw(s)j , se[0157], ve IR



Figure 1. The constant slope surface
P(s,v)-

The patch of the surface P(s,v) received by

V4
choosing w(s):E, o :i and ve [0,375] is as shown

in Figure 1.

CONSTANT SLOPE RULED SURFACES WHOSE
DIRECTOR CURVES ARE SMARANDACHE CURVES

Note that the constant slope surfaces ®(s,v), @(s,v)
and ¥(s,v) need not to be developable in general.
Here, we assume that the director curves X(s) are

Smarandache curves. That is, we consider that
cosw(s) = x, = const. and sin w(s) = x, = const.

Theorem 4

The surface ®'(s,v) = a(s)+ v(xlf +x,1 + O'];) is
developable if and only if a(s) is a general helix so that:

2 2
ﬁzl X, +o 16)
k, X,0
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is constant where k, is a curvature and k, is a torsion of
&, respectively.

Proof

We know that a ruled surface is developable iff
det(r,X,X)=0.
So, we will compute det(7,X,X’):

X' = (—x,k )T +(x,k, — Ok, )ii + (x,k, )b
and

det@, X, X") = x2k, —(x,k, —0k,)o=0 (17)
From Equation 17, we have:

k, x; +0° (
k, x,0

18)

Since x; +x; =1, we can write:

kl :1—)6124‘0'2 (19)

k, x,0

This completes the proof.

Theorem 5

The surface ¢'(s,v) = a(s)+ v(xlf +x,b + oﬁ) is
developable if and only if a(s) is a general helix, so that:

k _1-xi+0" (50

k, XXy

is constant (k, is the curvature and k, is the torsion of
O, respectively) .

Proof

We will compute det(7,X,X’):

/

f=a
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X = x7 +x,b +0i

X' = (=0k))i +(0k,)b + (x,k, — x,k,)ii
and

det(, X, X") = (x,x, )k, — x2k, —0’k, =0 (21)
From Equation 21, we have:

k x2+0°
— =2 (22
k, XXy

Since x; + x; =1, we can write:

k, 1-x'+0’ 23)

1
k, XXy

This completes the proof.

Theorem 6

The surface ¥'(s,v)=d(s)+ v(xlﬁ +x,b + 0'7) is
developable if and only if a(s) is a general helix so that:

k, x,0

is constant (k, is curvature and k, is torsion of «,
respectively).

Proof

We will compute det(r,X,X"):

X' = (0k, — x,k, )i + (x,k,)b + (=x,k, )F
and
deté’i’i,) = x12k2 —x,(0k; —x,k,) =0 (25)

From Equation 25, we have:

k _x+x (26)
k, X,0

Since x; + x; =1, we can write:

k_1 @7
k, x,0

This completes the proof.

Corollary 1

We assume that the director curves of @  are in the
normal planes and the base curve of @ is not a line.
Then @ is developable if and only if & is a planer
curve.

Corollary 2

We assume that the director curves of ¢" are in the

normal planes or the osculating planes and the base
curve of ¢ is not a line. Then ¢ is developable if and

only if & is a planer curve.

Corollary 3

We assume that the director curves of y are in the
osculating planes and the base curve of ¥’ is not a line.
Then y’ is developable if and only if & is a planer
curve.

S -HELIX CURVES ON A RULED SURFACE IN
EUCLIDEAN 3-SPACE

Definition 7

Let @(s,v)=a(s)+vX(s) be a ruled surface in E’
and let 7 be a curve on the surface ¢ . If the angle

between the unit director vector X(s)and the unit
tangent vector f of 17 at every point of the curve 77 is

constant, then, the curve 77 is called as S, -helix on the
surface @ .

Definition 8

Let @(s,v) = d@(s)+vX(s) be a ruled surface in E’



and let 7 be a curve on the surface ¢ . If the angle
between the unit director vector X(s)and the unit
normal vector 1 of n at every point of the curve 77 is

constant, then the curve 77 is called [, -helix on the
surface @ .

Definition 9

Let ¢(s,v) =a(s)+vX(s) be a ruled surface in E’
and let 7 be a curve on the surface ¢ . If the angle

between the unit director vector X(s)and the unit

binormal vector b of 1 at every point of the curve 77 is

constant, then the curve 77 is called f,-helix on the
surface @ .

Example 4

We consider the cone surface

@(s,v) = ((1 +v)cos(s),(1+v) sin(s),—\/Ev)
= (COS(S),sin(s),O)+ v(cos(s),sin(s),—\/z)

For v=e'—1, n(s)=e’ cos(s),e’ sin(s),(1—e W2
is a curve on the surface@, and the curve 77 is a

[, — helix on the surface ¢ . Actually,

n(s) X(s) __ 3

Tl o] 2

= const,

where

17’ (s) = (e’ (cos(s) —sin(s)),e’ (cos(s) + sin(s)),

—2¢"),
5((5) = (cos(s),sin(s),—\/i )
I o)=2¢

and

Koo =5
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Theorem 7

The base
(s, v) =a(s) + v(cos w(s)f +sin w(s)n + o*l;) is a
B, -helix on the surface @ .

curve a of the surface

Proof

In fact,

—~ }?(s) - o
’§<S>H (1+0?)

77 = const, (27)

where b is the unit binormal vector field of ¢,
X (s) = cos w(s)f + sin w(s)ii + ob and
1/2

“X@ﬂ=@+aﬂ
This completes the proof.

Theorem 8

The base
P(s,v) = a(s)+ v(cos w(s$)f +sin w(s)b + aﬁ) isa f3 -
helix on the surface ¢.

curve a of the surface

Proof

In fact,

<n )—((S) >=
’;?(s)H (1+07)

= consr, (28)

where 7 is the unit normal vector field of a,
X (s5) = cos w(s)f +sin w(s)b + ofi and
[ =+02)"

This completes the proof.

Theorem 9

The base
¥(s,v)=a(s) + v(cos w(s)7i +sin w(s)b + af) isa f3-
helix on the surface ¥ .

curve a of the surface

Proof

In fact,
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. X@)>: o
o "o

72 =const, (29)

where f is the unit tangent vector field of &,

X (s) = cos w(s)ii + sin w(s)b + of and
[%es)|=+02)".

This completes the proof.

Conclusion

In this study, the relationship between the Frenet motion
and the ruled surfaces with constant slope was given.

A new type of general helix curves, which is called as /3 -
helix, was defined. Also, it was given that the base curves
of the constant slope surfaces ®, @ and ¥ are [3-helix
curves.
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