

1

International Journal of the Physical Sciences Vol. 6(10), pp. 2348-2355, 18 May, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.483
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

A novel cost-based framework for communication in
computational grid using Anycast Routing

Abid Ali Minhas1, Fazl-e-Hadi1* and Shakir Ullah Shah2

1
Department of Graduate Studies and Applied Sciences, Bahria University, Islamabad, Pakistan

2
Iqra University, Islamabad, Pakistan.

Accepted 22 April, 2011

Computational grid can perform the computationally extensive jobs by utilizing the wide spread
processing capabilities of volunteer processors. In order to utilize the wide spread resources, failure
options cannot be ignored. In this paper we give the detailed implementation of fault tolerance
techniques, and also propose a modified forwarding mechanism which forwards the request to the next
hop from which more receivers are available, the main contribution of this paper is the implementations
of fault tolerant techniques using anycasting with modified forwarding mechanism and its analytical
analysis for the computational grid. The study analyses the communication cost involved in the
proposed scheme and its comparison with the previous techniques. The implementation of the
computational grid is carried out in Alchemi toolkit which is based on Microsoft .Net framework.

Key words: Anycast, computational grid, communication cost.

INTRODUCTION

The Grid Technologies have greatly been applied to a
number of different sectors especially for flexible and
secure resources/power sharing/aggregation in
coordinated manner. It can be used over the Internet and
Intranet for the developing complex applications e.g.
collaborative scientific simulation, distributed mission
training, analysis of elementary particle physics etc. Grid
computing fulfills the requirements of these applications
such as high speed of parallel computing, storage
capacity and network bandwidth. The basic idea behind
the grid is not to buy additional resources but to use free
cycles of existing underutilized grid resources. Grid can
be classified, according to the types of shared recourses
and their functionalities, into computational Grid, Data
Grid, Storage Grid, Equipment Grid, knowledge Grid,
Interaction Grid (Venugopal et al., 2006) etc.

Computational grid is a kind of distributed and parallel
computing. It is composed of heterogeneous,
geographically distributed resources connected by

*Corresponding author. E-mail: fhadi76@yahoo.com.

unreliable network media. It is used to solve the complex
problems, in sophisticated and user friendly manner,
which require large amounts of computing resources. A
computational grid is a hardware and software
infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end
computational capabilities (Foster and Kesselman, 1999;
Foster et al., 2001). It is used to increase the performance
and reduce the cost of computer hardware and software
in a variety of ways.

The components of a grid may be heterogeneous and
dynamic in nature. Similarly packet loss is also common in
a long range of geographically distributed network and
heterogeneous in nature; so user assigned jobs are
always prone to different type of failures, errors and faults
(Tanimura et al., 2006). Fault tolerance is an important
service of grid, which insures the delivery of a service
despite the presence of fault. The issue of fault tolerance
in grid computing is higher than traditional parallel
computing (Nguyen-Tuong, 2000; Waheed et al., 2000;
Medeiros et al., 2003), which include wide range of errors,
failures and faults (Medeiros et al., 2003) and shows
fragility of grid environment. So the fault tolerance

2

becomes of very much important. Fault tolerance
techniques can be categorized into reactive and proactive
ones.

Retry: If a job fails its execution on a machine due to any
type of failure, error or fault, it can be completed by other
machine by submitting from the start. Submitting a failed
job from start is called retry. This technique may not be
suitable for jobs which require huge computational
resources. Nazir and Khan (2006) proposed a proactive
approach for scheduling jobs in computational grid. In this
technique, history is maintained about the grid resources
and jobs are scheduled according to their history.

Check pointing: is a common and an efficient technique
to save the state of the computation on stable storage
periodically (Roman, 2003; Krishnan, 2004). It is used to
resume the job execution from the previous consistent
stored state rather than from the beginning. It increases
the application response time and improve the efficiency
of a system. It helps in load balancing by migrating jobs
from loaded machine to less loaded machines. Similarly it
helps in fault resiliency by migrating a job from faulty to
stable machine. It is mainly used for long running jobs to
save the work to be recomputed from the beginning. The
idea proposed in (Muhammad and Ansari, 2006) multicast
technique was used, which multicasts address of executer
machine in order to select backup machine. This
technique causes the following problems:

1) Data loss or delivered out of order will increase
unreliability.
2) Increases the network traffic delays.
3) Most multicast servers do not discriminate any clients.

Therefore it is easy to join a group and watch the data that
is being sent to it, that is, Distributed Denial of Service {D
(DOS)} attack is possible. The authors used multicast for
backup selection of the executor machines by transferring
a single packet to multiple recipients which causes the
above mentioned problems.

Some authors used the Anycast for service adaptability
like (Szymaniak et al., 2007). The idea of anycast for fault
tolerance is available in (Imran et al., 2007) but the
authors did not analyze the anycast communication
against the multicast. In this study we have proposed in
anycast backup selection mechanism with Receiver
Based Forwarding (RBF). The study also analyzes the
communication cost involved in multicast and anycast
scenarios. The analysis has been done by creating a
computational testbed using Alchemi middleware. The
test bed results and mathematical proof shows that the
anycast communication is far better for the selection of
backup machines.

Moreover anycast provides not only better efficiency but

Minhas et al. 2349

also enhances the security. A test bed of grid has been
developed for the analysis of communication cost.
Alchemi executors were installed on different
geographically distributed PCs. Alchemi Manager was
installed on local powerful machine. They were connected
through Local Area Network (LAN) having speed of 100
MB/s. The detail is given in Table 1.

The rest of the paper is organized as follows: First is a
description of the related work, followed by that of the
multicast and anycast techniques for backup selection.
The mathematical model is then presented, after which
the performance evaluation is demonstrated, and finally
conclusion of the research with indication of directions for
future works in this field.

RELATED WORK

The Grid Middleware plays a vital role in grid
infrastructure and to be deployed on each machine to
make it as a part of grid. There are various grid
middleware which provides different functionalities.
Globus Toolkit (Foster and Kesselman, 1997) and
Alchemi (Luther et al., 2004) are famous example of
middleware among open source middleware. Grid
architecture is divided into different layers, each
performing a specific functionality as depicted in Figure 1.
The upper layer is application layer and user-centric. It is
used for a variety of applications, engineering, science,
business etc. Users interact with this layer via their
browsers. The middleware layer brings different elements
intelligently. The lower layer is hardware centric which is
used to establish the connectivity among grid resources.

Architecture of Alchemi

Alchemi is .NET based desktop grid framework running on
Windows-based environment and is very user friendly. It is
used for flexible, platform independent, achieving high
throughput, object oriented thread based applications
(fine grained abstraction) and file based jobs (course
grained abstraction). Thread is basic unit of grid
application. Manager, Executor, owner and cross-platform
manager are the component of Alchemi.

i) Manager: Execution is the responsibility of manager.
Executors dedicatedly or non-dedicatedly register with
manager. It creates threads for a job and distributes it for
execution on available executors. It submits the result of
executed threads to the owner.
ii) Executor: Executor executes the grid threads
dedicatedly or non-dedicatedly. It receives threads from
manager and executes it.
iii) Owner: Owners submit jobs to the Manager and inquire

3

2350 Int. J. Phys. Sci.

Table 1. Nodes participating in the computational grid with their specification.

Nodes Specification Platform No. of hops away from the Manager

Manager P IV, 512 RAM, 3.2 GHz Windows XP --

Executer 1 P IV, 512 RAM, 1.73 GHz Windows XP 3

Executer 2 P IV, 512 RAM, 2.0 GHz Windows XP 4

Executer 3 P IV, 1 G RAM, 3.0 GHz Windows XP 9

Executer 4 P IV, 1 G RAM, 3.0 GHz Windows XP 4

Executer 5 P IV, 512 RAM, 3.0 GHz Windows XP 8

Executer 6 P IV, 512 RAM, 3.0 GHz Windows XP 10

Figure 1. Grid architecture layers.

about the status of their jobs.

Alchemi supports .NET based distributed system which is
a collection of independent and distributed processing
components, that is, nodes connected via LAN/WAN as
depicted in Figure 2. Nodes can share their resources
among themselves through centralized authority, that is,
Manager. The following steps describes the functionality
of a grid application:

1) Owner (n) will make a request to Manager to solve a
problem.
2) Manager will create threads and distribute to all
available Executors.
3) Executors will send the result of a thread to Manager.
4) Manager will send the result of all threads to Owner (n).

PROGRAMMING MODEL

Alchemi support two types of parallel programming

models: Job and Thread models (Luther et al., 2004). A
brief description of these models is given below:

Job model: Alchemi supports highly level of abstraction
in which the smallest unit of parallel programming is a
process. It is called course-grained abstraction. In this
approach of parallel programming, grid application deals
with files like input, output and executable files (process).
This model of parallel programming is very complex and is
not flexible. This model helps develop legacy tasks using
different languages like C, C++, Java. Cross platform
Manager manages the legacy tasks using ASP.NET web
services.

Thread model: The primary programming model of
Alchemi is multi-threaded parallel programming which is
more of low level and is called fine-grained abstraction. In
this approach of parallel programming, the basic unit is
Thread (independent unit of work). This approach is more
powerful, easy to use and flexible. There are different
reasons for the selection of Alchemi for creating

4

Minhas et al. 2351

Figure 2. Block diagram of Alchemi.

computational grid. Some of these are given:

i) Globus toolkit is Linux-based and Alchemi is windows
based. Most of the systems are windows based, so
achieving better results, Alchemi was preferred.
ii) It is an open source middleware, so one can bring
changes according to ones needs.

Fault tolerance in Alchemi

Due to heterogeneous and dynamic nature of resources
in computational grid, faults, errors and failure become
likely. Many middlewares have different level of fault
tolerance but most of them are not fully fault tolerant.
Fault tolerance in Alchemi requires much work to fulfill the
challenges. Heart beating is the basic fault tolerance
technique of Alchemi. Executor sends heartbeat signals to
Manager periodically. When Manager receives these
signals, it predicts that executor is alive and working. It is
not necessary that executor is in good operational form.

MULTICAST AND ANYCAST

Figure 3 shows the backup machine selection using
multicast technique. Alchemi manager distributes the
executing threads to the executor 1, 2 and 3. In order to
select a backup executor, the executing machines

multicasts the ’backup request’ to the available volunteers,
that is, Backup 1, 2 and 3 Alchemi executors. The backup
executors will reply back to sending machines. The
executor will select a backup machine based upon the
machine’s configuration. This activity creates a lot of
traffic which includes backup requests and redundant
backup replies. The scenario is also vulnerable to D(DOS)
attack in which a hacker will spoof the IP of requesting
executor machine and will send its multiple backup
machines in the network which will reply back to victim
executor machine and will launch D(DOS) attack. As the
network media is not reliable, huge traffic will also cause
the media failure which will stop future communication of
the computation grid.

Figure 4 shows the backup machine selection using
anycast technique. Alchemi manager distributes the
executing threads to the executor 1, 2 and 3. The Alchemi
manager and executor will coordinate with a separate
utility for finding the distance (number of hops) of the
available backup machines. In order to select a backup
executor, the executing machines will select a nearest
backup machine e.g. ’Backup 1’ will be a backup machine
for ’Executor 1’ rather than ’Backup 2 and 3’ based upon
the distance (number of hops) from ’Executor 1’. In
anycast communication, the executor machines will
coordinate with their relevant backup machines rather
than create the redundant multicast requests and replies.
The one to one anycast communication will minimize the
chances of D (DOS) attack. As far as the communication

5

2352 Int. J. Phys. Sci.

Figure 3. Backup selection using multicast.

Figure 4. Backup selection using Anycast.

6

cost is concerned, it is substantially decreased in case of
anycast communication. In order to maximize the
probability of backup machine’s availability due to
unreliable network media, we are using our own proposed
receiver based forwarding (RBF) (Fazle et al., 2007)
mechanism while forwarding the anycast packet to the
next hop. The RBF selects that next hop through which
more anycast receivers are reachable.

Mathematical model

The generalized mathematical model depicting the
communication cost for multicast, anycast and anycast
with RBF is given below:

Let P = Set of all nodes in population
N= Number of nodes in P
n = Number of groups available in P
g = {g1,g2,g3,....,gi,....,gn}: set of groups where i=1,2,3,..n;
for any group g
g= {d1,d2,....,dm}: set of available nodes in group g where
d1....to ...dm are nodes in gi
m=total number of nodes in gi
ti= Time required to reach a packed at di
Di = Distance of a node di from source (Venugopal et al.,
2006).

Multicasting

As all the members will receive the packet, so in this case:

Delay = Max(ti)
or
Delay= Max{t1,t2,....tm} = tMax (1)

Anycasting

In Anycasting, any one member among the groups will
receive the packet.
Select i: Di is min [send packet to di]

Case 1: select a node randomly then
Delay = Average {t1, t2, tm} = tAvg (2)

Case 2: select a node on FIFO rules or any other then

Delay = Min {t1, t2 ...tm} = tMin (3)

Comparison of Anycast and Multicast with respect to
its delay

From Equations 1, 2 and 3, the following relationship

Minhas et al. 2353

between multicast and anycast is obtained:

Min(t1) <= Average(ti) <= Max(ti) (4)

Where equality holds only when

i) All nodes in gi are at equiv distance from source but
even in this case network traffic is substantially increased
in case of multicast.
ii) A group may have only one node

It is clear from Equation 4 that anycast communication
cost will always be less than the multicast communication.

Anycast with RBF

Receivers Based Forwarding (RBF) considers the number
of anycast receivers available through a link as well as the
path length to the nearest receiver through that link in
deciding the next hop while forwarding an anycast packet
(Fazle et al., 2007).

Condition: Select all shortest path with maximum number
of receivers.

Let H= {h1, h2, h3,....L}: set of next hops which satisfy the
stated condition
Let Ri = No. of receiver available at hi

Where hi € H and i =1, 2, 3.....L

Select i : Ri is Max [Send the packet to hi € H]

Probability of anycast without using RBF

The following three cases are possible while using
anycast without RBF:

Average case:

∑Ri

R (5)

Worst case:

∑ Ri

MinR (6)

Best case:

∑ Ri

MaxR (7)

7

2354 Int. J. Phys. Sci.

Figure 5. Scenario visualization.

Number of hops

Average time taken for
backup node selection
using Multicast

Using Anycast

Figure 6. Cost analysis using Multicast and Anycast.

Probability of anycast with using RBF

Equation 8 shows the probability of anycast using RBF.

∑Ri

MaxR
 (8)

Equation 8 shows that it is always the best case of any
casting without using RBF.

In Figure 5, 6 executors are connected with a single
manager. The weight on edges shows the number of hops
away from manager. The scenario is developed with
central manager at Riphah International University,
Islamabad, Pakistan (University), with the distributed
executers at various universities in Pakistan and other
parts of the world.

PERFORMACE EVALUATION

For performance evaluation, Microsoft .Net framework
has been used with Alchemi open source toolkit (Lab,
2010). Alchemi packages include Alchemi manager and
Alchemi executers with the backend database tools such
as MySQL etc as explained earlier. As the Microsoft has a
major market share so the study focuses the development
of the computational grid using the window based toolkit
to utilize the free cycles of widely spread window based
machines. We have analyzed the communication cost
involved by choosing the Pi calculation program (Lab) for
the grid topology shown in Figure 6. The specifications
are given in Table 1.

We have analyzed the communication cost involved for
the backup node selection in case of failure while varying
the number of hops of the executers. The study shows

8

that as in the multicast scenario the manager have to
contact all the group members for their willingness and
specification so larger communication cost is involved in
term of delay, packet delivery ratio and reliability as
compare to anycast. The reason for the difference in the
cost is that in case of anycast it selects the one and the
best option, if it fails, than it opts for the next best one.

CONCLUDING REMARKS AND FUTURE WORK

The study focused on the detailed implementation of fault
tolerance techniques, the main contribution of this paper
is the implementations of fault tolerant techniques using
anycasting with modified forwarding mechanism and its
analytical analysis for the computational grid against the
multicast technique. The study analysis of the
communication cost involved in terms of delay time and
packet delivery ratio of the proposed scheme and its
comparison with the previous techniques. It has been
observed that using anycast technique for the backup
selection is better than the other methods due to the less
communication cost involved. Communication cost
analysis using cross platform and mixed toolkits might be
an interesting future work.

REFERENCES

Fazle H, Shah N, Syed A, Yasin M (2007). Adaptive Anycast: A New

Anycast Protocol for Performance Improvement in Delay Tolerant
Networks. Int. Conf. Integration Technol., ICIT '07.

Foster I, Kesselman C (1997). Globus: A Metacomputing Infrastructure
Toolkit. Int. J. High Perform. Comput. Appl., 11(2): 115-128.

Foster I, Kesselman C (1999). The grid: Blueprint for a new computing
infrastructure, Morgan Kaufman.

Foster I, Kesselman C, Tuecke S (2001). The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. Int. J. High Perform. Comput.
Appl., 15(3): 200-222.

Imran M, Niaz IA, Haider S, Hussain N, Ansari MA (2007). Towards
Optimal Fault Tolerant Scheduling in Computational Grid. Int. Conf.
Emerg. Technol., ICET.

Krishnan S (2004). An architecture for checkpointing and migration of
distributed components on the grid. Department of Computer Science,
Indiana University. PhD.

Minhas et al. 2355

Lab G (2010) Net Grid Computing Framework. URL:

http://www.alchemi.net.
Luther A, Buyya R, Ranjan R, Venugopal S (2004). Alchemi:

A .netbased grid computing framework and its integration into global
grids. Tech. Rep. Australia.

Medeiros R, Cirne W, Brasileiro F, Sauve J (2003). Faults in Grids: Why
are they so bad and What can be done about it? Proceedings of the
4th Int. Workshop on Grid Computing. IEEE Comput. Soc., pp. 18-24.

Muhammad A, Ansari MA (2006). Distributed Fault Management for
Computational Grids. Fifth Int. Conference on Grid and Cooperative
Computing.

Nazir B, Khan T (2006). Fault Tolerant Job Scheduling in Computational
Grid. Int. Conference on Emerging Technologies ICET '06.

Nguyen-Tuong A (2000). Integrating fault-tolerance techniques in grid
applications. University of Virginia Charlottesville, VA, USA. PhD.

Roman E (2003). A survey of checkpoint/restart implementations,
Lawrence Berkeley National Laboratory, LBNL-54942: 1-9.

Szymaniak M, Pierre G, Simons-Nikolova M, Steen M (2007). Enabling
service adaptability with versatile anycast, J. Con. Comp.: Practice
Experience, 19(13): 1837-1863.

Tanimura Y, Ikegami T, Nakada H, Tanaka Y, Sekiguchi S (2006).
Implementation of Fault-Tolerant GridRPC Applications. J. Grid
Comput., 4: 145-157.

University RI. URL: http://riphah.edu.pk/.
Venugopal S, Buyya R, Ramamohanarao K (2006). A taxonomy of Data

Grids for distributed data sharing, management, and processing. ACM
Comput. Surv., 38(1).

Waheed A, Smith W, George J, Yan J (2000). An Infrastructure for
Monitoring and Management in Computational Grids. Selected
Papers from the 5th Int. Workshop on Languages, Compilers, and
Run-Time Systems for Scalable Computers, Springer-Verlag, pp.
235-245.

